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Introduction

Publication bias (e.g., Leggett et al., 2013; Francis, 2014) and the replication crisis

(e.g., Open Science Collaboration, 2015) in empirical Psychological studies have been

discussed especially intensively during the last 10 years (see Nelson et al., 2018 for a

review). Many of these empirical studies report results that are too good to be true and

the percentage of these studies in Psychology that can be successfully replicated has been

estimated to be low.

These problems can be partly attributed to misunderstandings in Statistics. Cassidy

et al. (2019) pointed out that the correct definition of a p-value is described only in 11%

of Introduction-to-Psychology textbooks (see also Gigerenzer, 2018; Lakens, 2021). The

assumptions underlying the central-limit theorem are often missing in the textbooks and

the effectiveness of the central-limit theorem for securing normality of a distribution can

be overestimated in Psychology (Hesterberg, 2008; Sawada, 2021). The standard error of

the mean (SEM), instead of the standard deviation (SD), has been misused to describe

variability across samples in Anesthesiology (Nagele, 2003). It seems likely that the same

misuse can also be observed in Psychology.

Nowadays, authors of empirical Psychological studies are encouraged to report

details of the Statistical tests and their results, including their confidence intervals

(CI) when they report results of Psychological experiments (American Psychological

Association, 2019). The CI of an unknown parameter is an interval estimate of

the parameter. Consider repeatedly conducting a session during which you collect

data and compute the CI of this unknown parameter with 100(1 – α)% (e.g.,

95% when α = 0.05) of the confidence level. Note that the computed CIs change

randomly across the sessions while the unknown parameter is regarded as a constant.

With this done, a CI in each session will cover the parameter with a probability

100(1 – α)% (Figure 1A)1. So, 100(1 – α)% of the CIs estimated in the sessions

include the unknown parameter asymptotically when the number of the sessions

goes to positive infinity. The computation of the CI of an unknown parameter

1The CI is often described as a range of values within which the unknown parameter falls with 100(1 – α)% of a

probability. This description can lead to a misunderstanding, namely, that the unknown parameter is a random

variable and that the CI of the parameter is fixed. This misunderstanding is especially problematical whenmultiple

CIs of a single unknown parameter are discussed (e.g., a forest plot of a meta-analysis).
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FIGURE 1

(A) The 95% CIs of the mean of the standard normal distribution

computed from 100 sessions of a computer simulation. In each

session of simulation, 10 samples were taken from a standard

normal distribution and the CI was computed from samples

based on a t-distribution (see Equation 1). The CIs that do not

include the mean (0) are dotted. (B) The inverse cumulative

distribution function T−1 of the t-distribution plotted as a

function of the sample size n. The colors show the levels of α (α

= 0.01, 0.05, and 0.10 for the 99, 95, and 90% CIs). The values of

the inverse cumulative distribution function Φ−1 of the standard

normal distribution are 2.58, 1.96, and 1.64 with α = 0.01, 0.05,

and 0.10, respectively (shown in this graph as dashed lines).

depends on the distribution used to characterize the relationship

between the unknown parameter and its point estimate. Note

that this distribution is used to test statistics of the parameter,

e.g., a t-distribution of the mean of a normally-distributed

population for both the t-test and for the CI of the mean

(Devore, 2011). The CI represents the range of a value that is not

significantly different from the point estimate of the unknown

parameter with the 100α% level. The definition of the CI must

be understood properly and it must be computed correctly if

one is going to report the CI and to discuss empirical results

based on it. Unfortunately, misunderstanding the CI is common

(Hoekstra et al., 2014; Greenland et al., 2016).

In this study, we deliberately concentrated our discussion

on the CI of the mean of the population because this is

the most common CI used in Psychology, as represented

in the Statistical textbooks that are currently being used in

this field (these textbooks and their editions are listed in

our Supplemental Material, https://osf.io/r7b8t/). We surveyed

descriptions of the definition and of the equations used to

compute the CI in the Statistics textbooks often used in

Psychology. We found that the equation in 25% (5/20) of the

textbooks computes the CI differently from the way the CI is

computed in the other textbooks.

The CI of the mean of a population

Consider a population that is normally distributed. The CI

of the mean of this population is computed as:

[

µ̄ − T−1
(

1− α
2 , n− 1

)

σ̄√
n

µ̄ + T−1
(

1− α
2 , n− 1

)

σ̄√
n

]

(1)

where n is the sample size, µ̄ is the estimated mean of the

population, σ̄ is the estimated standard deviation and, σ̄√
n
is the

estimated standard error of the mean, and T−1(1− α
2 , n− 1) is

the inverse cumulative distribution function of the t-distribution

with the degree of freedom n – 1 and for the probability 1 – α/2.

The level of the CI is 100(1 – α)% (e.g., α = 0.05 for the 95% CI).

Note that the 95% CI of the mean is the range of the value from

which the estimated mean µ̄ is not significantly different with

the 100α% level (p ≥ α) when a single one-sample, two-tailed

t-test is conducted2.

Note that the function T−1(1 − α
2 , n − 1) can be well-

approximated with the inverse cumulative distribution function

of the standard normal distribution when the degree of freedom

n – 1 is large enough (say n ≥ 30, see also Hesterberg, 2008).

The inverse cumulative distribution function of the standard

normal distribution is independent from n. If one assumes that

the sample size n is large enough, the 100(1 – α)% CI can be

written as:

[

µ̄ − Φ−1
(

1− α
2

)

σ̄√
n

µ̄ + Φ−1
(

1− α
2

)

σ̄√
n

]

(2)

2 Consider comparing the means of two populations using their CIs

(Equation 1). Goodwin (2010) stated that, if the CI of the mean of one

group does not overlap with the CI of the other group, the di�erence is

necessarily significant (p < α) on the basis of an unpaired t-test (either

equal or unequal variances). This statement is true but its inverse is not

necessarily true. If the CIs of the means do overlap, the di�erence may

or may not be significant (Schenker and Gentleman, 2001, see Cousineau

et al., 2021 for adjusting the CI to compare themeans of two populations).
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where Φ−1(1 − α
2 ) is the inverse cumulative distribution

function of the standard normal distribution for the probability

1 – α/2. Note that Φ−1(1 − α
2 ) is ∼1.96 when α is 0.05. This

number 1.96, alone, is occasionally introduced as a constant to

compute the 95% CI in Psychology (e.g., Marks and Yardley,

2004).

The difference between Equations (1) and (2) is attributed to

the distribution of the estimator (the estimated mean µ̄ of the

population). Equation (1) is derived by using the t-distribution,

while Equation (2) approximates the t-distribution with the

standard normal distribution. This change of the distributions

occurs because the standard deviation of the population is

underestimated by the sample standard deviation σ̄ computed

from the samples when the sample size n is not sufficiently large.

This bias of the sample standard deviation distorts the shape of

the distribution of µ̄ from a normal distribution. If the sample

size n is not sufficiently large, Equation (2) will underestimate

the CI (Figure 1B)3. Both Equations (1) and (2) assume that

the population is normally distributed in order to derive the

distribution of µ̄. So, one must know the distribution of the

estimator to compute the CIs.

Crucially, using Equation (2) instead of (1)means that the CI

computed is asymptotic. In other words, it is only valid when the

population is infinitely large. This means that the intuition we

presented in the Introduction is no longer valid. When we repeat

sessions, we have no guarantee that 100(1 – α)% of the intervals

computed with equation (2) contain the true mean. A similar

point can be made when the Central Limit Theorem (CLT) is

used to circumvent the Gaussian assumption on the population.

Now, consider a population that is not normally distributed

and its variance is a non-zero finite value. The CI of the mean

of this population depends on the shape of the distribution

of the population. According to the Central Limit Theorem,

the CI can be computed by using Equation (2) asymptotically

when the sample size goes to positive infinity (Dekking et al.,

2005; Kwak and Kim, 2017). But, note that in a real experiment,

the sample size will always be finite. The CI of the mean

can be computed approximately by using Equation (1) when

the sample size is finite and sufficiently large. Note that a

“sufficiently-large” sample size depends on the shape of the

distribution of the population (Cuadras, 2002; Wilcox, 2012).

Mathematical bounds can be derived using Berry Essen’s

Theorem, and for some reason, the number 30 has become stuck

in the literature (Hesterberg, 2008). Note, however, that more

3 Consider computing two CIs using Equations (1) and (2) from 10

samples taken from a normal distribution. The CI computed by using

Equation (1) is larger than the CI computed by using Equation (2) by a

factor of 1.15 (=2.26/1.96). This smaller CI computed by using Equation

(2) represents the range of a value that is not significantly di�erent from

the mean with the 8.2% level using a one-sample two-tailed t-test when

the sample size is 10.

regularity through moment conditions is assumed, but hardly

ever checked in practice.

If the population is not normally distributed and the sample

size is small, the CIs computed using Equations (1) and (2)

do not have any theoretically-valid meaning. For a non-normal

distribution with a small sample size, the CI of the mean of the

population is (Devore, 2011):

[

µ̄ − Π
−1
µ̄−µ

(

1− α
2

)

µ̄ − Π
−1
µ̄−µ

(

α
2

)

]

(3)

where µ is the true mean of the population and Π
−1
µ̄−µ

is the

inverse cumulative distribution function of the distribution of

µ̄ − µ. Note that Equation (3) is theoretically valid but is not

practically useful because the inverse cumulative distribution

function Π
−1
µ̄−µ

of µ̄ − µ is generally unknown. There exists

techniques for computing the CI from samples even when

Π
−1
µ̄−µ

is unknown (Rousselet et al., 2019) but the techniques

relies on Bootstrap. These techniques need a sufficiently large

sample size so that the empirical distribution is already close to

the actual distribution of the population (Hesterberg, 2015).

We surveyed the equations used to compute the CI in the 20

Statistics textbooks often used in Psychology (these 20 textbooks

and their editions are listed in our Supplemental Material,

https://osf.io/r7b8t/). Five of the 20 textbooks were personally

owned by the first author (TS). The other 15 textbooks were

taken from the library at HSE University. Textbooks that do not

describe any equation used to compute the CI were not included.

We found that 75% (15/20) of the textbooks used Equation (1)

that was based on a t-distribution to compute the CI. Ten of

these 15 textbooks also described Equation (2) that is based on

the normal distribution for a sample size that was sufficiently

large. The remaining 25% (5/20) of the textbooks only used

Equation (2).

Discussion

In this study, we surveyed descriptions of the computation of

the CI of the mean of a population in the 20 Statistics textbooks

that are often used in Psychology today. The computation of

the CI described in 75% (15/20) of the textbooks was based

on a t-distribution (Equation 1) and the remaining 25% (5/20)

of the textbooks used a different computation that was based

on a normal distribution (Equation 2). The CIs computed

by using these two different methods are different from one

another. This inconsistency in the computation of the CI

makes it difficult to compare results across studies quantitatively

(e.g., meta-analysis).

Nowadays, psychologists are encouraged to report the

results of their experiments with CIs (Wilkinson and Task Force

on Statistical Inference American Psychological Association

Science Directorate, 1999; Cumming and Finch, 2005).
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Considering the inconsistency across the textbooks that we

noted, we encourage psychologists to describe how their CIs

were computed (e.g., distributions, equations, or scripts) when

they report CIs. Another remedy for this inconsistency is

reporting estimated SDs or/and estimated SEMs with their

sample sizes. Equations (1) and (2) show that the CI of the

mean can be computed from the estimated SD or the estimated

SEM when the sample size n is available. This means that the

amount of information included in the CI that was computed

from data is, theoretically, the same as the amount of data

in the estimated SD as well as in the estimated SEM (see

Francis, 2017). These inclusions can elucidate how the CIs were

computed. Psychologists also need caution to read empirical

studies reporting the CIs especially if the report does not have

these inclusions.

It is worth pointing out that the CI in Psychology often refers

to the CI of the mean of the population because only the CI of

the mean of the population is described in many of the Statistics

textbooks often used in Psychology. This reflects a current

practice in Psychology that empirical data are discussed only

on the basis of the difference of means across conditions. But,

this is bad because it can discourage a quantitative discussion

of other parameters (e.g., variance, median, and quantile)

with their CIs. Note that the CIs of different parameters are

computed by using different equations (see Harding et al., 2014

for a review).

Note that the issues of the CI that are discussed in this

study are only a part of problems in the way that Psychologists

handle statistics. Statistics education and the textbooks used in

Psychology should be improved to address these problems.
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