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Introduction

Antweiler and Frank’s (2004) paper “Is All That Talk Just Noise? The Information

Content of Internet Stock Message Boards” published in The Journal of Finance,

is an important piece of literature on the relationship between investor sentiment

and stock markets based on natural language processing. More than 2,400 research

publications have acknowledged its techniques, background, or conclusions (Google

Scholar, 2022.5.17), making it an outstanding academic resource for future researchers.

This article is not intended to challenge the paper’s interpretation or conclusions, but

rather to provide further references to the “bullishness index” and “agreement index.”

Antweiler and Frank denote the number of bullish, bearish, and neutral messages

in a period t using the symbols MBUY
t , MSELL

t , and MHOLD
t , respectively. After

aggregating the messages, they created three functions to calculate the bullish signal,

using the formula

Mt = MBUY
t +MSELL

t (1)

to represent the sum of messages related to the sentiment metric. The one used in the

paper’s report is the second function formula,

B
∗

t = ln

[

1+MBUY
t

1+MSELL
t

]

. (2)

Antweiler and Frank also created the “agreement index” to measure investor

disagreement, which is calculated as follows:

At = 1−

√

√

√

√1−

(

MBUY
t −MSELL

t

MBUY
t +MSELL

t

)2

(3)

In a recent study, we used the above formula to create a bullishness index and an

agreement index to measure the volatility cycle of investor sentiment on social media.
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While visualizing the data, we discovered that the distribution

of the “bullishness index” and “agreement index” is so neat

that we find it difficult to believe that this is due to the data

itself. As a result, we suspect that there is a strong relationship

between Equations (2) and (3). We confirmed our suspicions

with mathematical proof and data simulation. We discover

that this association is absolute at larger, Mt., regardless of the

data examined in the study. When using the above formula

to study investor sentiment, if a variable is correlated with

the “bullishness index,” it is inevitably correlated with the

“agreement index.” This is due to the formula, not the object

under study. We’re not sure if this is in conflict with the original

intent of creating and analyzing the “bullishness index” and

“agreement index,” respectively.

Traditional approaches to sentiment proxies are divided

into three categories: market indices, survey indices, and special

events. Market indicator proxies measure investor sentiment

indirectly by using market indicators such as trading volume,

closed-end fund discounts, first-day returns on initial public

offerings (IPOs), and so on. Survey index-based proxies quantify

investor sentiment by collecting optimistic or pessimistic

expectations regarding the stock market from investors via

surveys, such as the Consumer Confidence Index (Brown

and Cliff, 2005), the Business Confidence Index (Liston-Perez

et al., 2018), and the UBS/GALLUP Investor Optimism Index

(Lemmon and Portniaguina, 2006). In a special event-based

approach, special social events are frequently used as emotional

proxies, and COVID-19 may be the most illustrative current

example. Naseem et al. (2021) look at how COVID-19 affects

the minds of investors and how that affects the stock market.

Market-based measures have the advantage of being readily

available at a relatively high frequency, but they also have the

disadvantage of being the equilibrium result of many economic

forces other than investor sentiment. The data acquisition of the

proxy approach based on market indices is very slow, and it is

usually done monthly or quarterly. The agent approach based

on special things, on the other hand, is often used to analyze the

impact of special events and is not universal.

“Google search queries” based investor sentiment proxies

are easy to obtain and highly credible (Da et al., 2015),

and are gaining more attention from scholars (Trichilli

et al., 2018, 2020a,b,c). In addition to the emotional proxy

methods mentioned above, natural language processing (NLP)

technologies provide new ways to measure how investors feel.

NLP is a research basis for social media-based investor sentiment

research because it can tap into investor sentiment embedded

in text and social networks. It also has the advantages of easy

data availability, real-time access, and high credibility. It also

gives us the chance to predict stock market returns based on

high-frequency sentiment (Renault, 2017; McGurk et al., 2020).

The research conducted by Antweiler and Frank (2004) was

one of the very first to investigate the relationship between

investor sentiment and the stock market based on social media.

Researchers rely on their “bullishness index” and “agreement

index” to construct investor sentiment (Rao and Srivastava,

2014; Checkley et al., 2017; Liu et al., 2017; Chernozhukov

et al., 2018; Fallahgoul, 2021). These studies typically measure

daily investor sentiment, resulting in a large Mt in formula (1)

and a high correlation between the “bullishness index” and the

“agreement index”. Xiong et al. analyzed the correlation between

investor sentiment and the stock market. According to the

paper’s disclosures, the average daily total number of messages

in that study was 10,443, and the averageMt was∼3,550 (Xiong

et al., 2017).

In this age of exploding social media, natural language

processing-based approaches to sentiment agents are growing

in importance. Therefore, the research of Antweiler and Frank

is increasingly cited by scholars. Due to the strong correlation

between Equations (2) and (3), however, some of the researchers’

conclusions regarding investor sentiment may be susceptible to

systematic errors. They may not be able to confirm whether

these conclusions are caused by the characteristics of the

study subjects or by the formulas themselves. Disclosure of

the relationship between the characteristics of the “bullishness

index” and the “agreement index” will assist researchers in better

constructing the investor sentiment index, thereby preventing

analytical misunderstandings. This is essential for analyzing

investor sentiment, disagreement, and their relationship.

In the subsequent section of the paper, we use mathematical

functions and data simulation to describe the relationship

between Equations (2) and (3).

Mathematical description

To improve the readability of the paper, x is used below to

denote the “bullishness index” B∗t and y is used to denote the

“agreement index” At .

From Equation (2)

x = ln

[

1+MBUY
t

1+MSELL
t

]

we can get

ex
(

1+MSELL
t

)

= 1+MBUY
t .

Substituting Equation (1) into the above formula, we can get

ex + exMt − exMBUY
t = 1+MBUY

t ,

then

MBUY
t =

ex + exMt − 1

ex + 1
=

ex + (ex + 1)Mt −Mt − 1

ex + 1

= Mt −
−ex +Mt + 1

ex + 1
, (4)
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FIGURE 1

The relationship between the “bullishness index” and the “agreement index” in a simulation. (A) The simulation for N = 100, while (B) represents

the simulation for N = 1,000. (C) The simulation for N = 10,000, while (D) represents the simulation for N = 20,000.

and

MSELL
t = Mt −MBUY

t =
−ex +Mt + 1

ex + 1
. (5)

Combining Equations (4) and (5), we can get

MBUY
t −MSELL

t = Mt −
−2eBt + 2Mt + 2

eBt + 1

=
eBtMt + 2eBt − 2−Mt

eBt + 1
=

(eBt − 1)(Mt + 2)

eBt + 1
. (6)

In Equation (3), introducing Equations (6) and (1) can obtain

y = 1−

√

√

√

√1−

(

MBUY
t −MSELL

t

MBUY
t +MSELL

t

)2

= 1−

√

1−

(

(ex − 1) (Mt + 2)

(ex + 1)Mt

)2

= 1−

√

1−

(

ex − 1

ex + 1
×

Mt + 2

Mt

)2

,

and approximate formula

y ≈ 1−
2e

x
2

ex + 1
. (7)

Data simulation

By controlling the total number of messages, Nt in period t,

we indirectly control the number of valid data, Mt. With data

simulation, you can see how the “bullishness index” and the

“agreement index” are related to each other.

Let the minimum value of investor message volume be 3

and the maximum value be N in this experiment. The message

volume Nt of period t is a random number in the range [3,

N], MBUY
t is a random number in the range [0, Nt), and

MSELL
t is a random number in the range [0, Nt − MBUY

t ]. In

each experiment, 1095 simulated samples are made, and the

samples are numbered from 0 to 1094. If (xt , yt) stands for the

“bullishness index” and “agreement index” of period t, and xt

and yt are found by using Equations (2) and (3), then the set of

all sample points is defined as

(X,Y) =

1094
⋃

t=0

(

xt , yt
)

.

Figure 1A shows the scatter plot of the sample set (X, Y) when

the control variable N is equal to 100. The black curve in

Figure 1A is the plot of the approximate function

y = 1−
2e

x
2

ex + 1
.

The ratio of Mt+2 to Mt is relatively large when the number

of messages in time period t is small, as shown in Figure 1A,

and most random sample points are above the approximation

curve. The shape of the sample distribution, on the other hand,

is consistent with the approximation curve, and the “bullishness

index” and the “agreement index” show statistical correlation.

Except for N = 1,000, the settings in Figure 1B are

identical to those in Figure 1A. The random sample points

fit the approximation curve better as the volume of investor

messages increases in period t, and the correlation between the

“bullishness index” and the “agreement index” increases.

The simulated graphs for N = 10,000 and N = 20,000

are shown in Figures 1C,D, where the relationship between the

“bullishness index” and the “agreement index” is well fitted to

the curve of Equation (7). With a very small error, the value of yt
can be deduced from x t using Equation (7) at this point.

In conclusion, the “bullishness index” created by Antweiler

and Frank demonstrates a strong correlation with the
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“agreement index” even when the total sample size is small,

indicating a statistical association.

Conclusion

In the age of artificial intelligence and big data, the sentiment

agent approach based on natural language processing is gaining

importance (Farzindar and Inkpen, 2015). At the same time,

sentiment measurement based on natural language processing

has become an essential tool for governments, research

institutions, and financial institutions to formulate industry

policies and manage financial risks (Ku et al., 2008; Fisher et al.,

2016). The “bullishness index” and “agreement index” developed

by Antweiler and Frank are becoming increasingly cited by

academics. In this paper, we use a mathematical formula to

approximate the relationship between the “bullishness index”

and the “agreement index” and examine the effect of the range

of the total sample on the error of the formula through data

simulation. Due to the correlation, the correlation analysis of

investor sentiment and investor opinion disagreement using

Equations (2) and (3) may produce conclusions that are

unrelated to the underlying data. Although we do not consider

the paper’s conclusion, “Is All That Talk Just Noise? The

Information Content of Internet Stock Message Boards” to be

problematic, we advise avoiding the use of both Equations

(2) and (3). Disclosure of the approximate relationship

between the “bullishness index” and the “agreement index” is

crucial for the study of investor sentiment, disagreement, and

behavioral finance.

This paper demonstrates and confirms the relationship

between the “bullishness index” and the “agreement index”

and the possibility of analytical error. However, we do not

offer a superior alternative. In future studies, we will propose

potential substitutes.
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