
Frontiers in Psychology 01 frontiersin.org

Edges and gradients in lightness 
illusions: Role of optical veiling 
glare
John J. McCann 1*, Vassilios Vonikakis 2 and Alessandro Rizzi 3

1 McCann Imaging, Arlington, MA, United States, 2 Advanced Digital Sciences Center, Singapore, 
Singapore, 3 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy

Lightness Illusions (Contrast, Assimilation, and Natural Scenes with Edges and 

Gradients) show that appearances do not correlate with the light sent from the 

scene to the eye. Lightness Illusions begin with a control experiment that includes 

two identical Gray Regions-Of-Interest(GrayROI) that have equal appearances 

in uniform surrounds. The Illusion experiment modifies “the-rest-of-the-scene” 

to make these GrayROIs appear different from each other. Our visual system 

performs complex-spatial transformations of scene-luminance patterns using 

two independent spatial mechanisms: optical and neural. First, optical veiling glare 

transforms scene luminances into a different light pattern on receptors, called 

retinal contrasts. This article provides a new Python program that calculates retinal 

contrast. Equal scene luminances become unequal retinal contrasts. Uniform 

scene segments become nonuniform retinal gradients; darker regions acquire 

substantial scattered light; and the retinal range-of-light changes. The glare on 

each receptor is the sum of the individual contributions from every other scene 

segment. Glare responds to the content of the entire scene. Glare is a scene-

dependent optical transformation. Lightness Illusions are intended to demonstrate 

how our “brain sees” using simple-uniform patterns. However, the after-glare 

pattern of light on receptors is a morass of high-and low-slope gradients. 

Quantitative measurements, and pseudocolor renderings are needed to appreciate 

the magnitude, and spatial patterns of glare. Glare’s gradients are invisible when 

you inspect them. Illusions are generated by neural responses from “the-rest-of-

the-scene.” The neural network input is the simultaneous array of all receptors’ 

responses. Neural processing performs vision’s second scene-dependent spatial 

transformation. Neural processing generates appearances in Illusions and Natural 

Scenes. “Glare’s Paradox” is that glare adds more re-distributed light to GrayROIs 

that appear darker, and less light to those that appear lighter. This article describes 

nine experiments in which neural-spatial-image processing overcompensates the 

effects of glare. This article studies the first-step in imaging: scene-dependent 

glare. Despite near invisibility, glare modifies all quantitative measurements of 

images. This article reveals glare’s modification of input data used in quantitative 

image analysis and models of vision, as well as visual image-quality metrics. Glare 

redefines the challenges in modeling Lightness Illusions. Neural spatial processing 

is more powerful than we realized.
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Introduction

Vision, and Images made for humans, have three major 
stepping stones: light from the scene, receptors’ response to light, 
and appearances. This article studies Lightness Illusions, glare, and 
the visual pathway that leads to appearances. Optical Veiling Glare 
is the first step in all of imaging with lenses. It is the first spatial 
transformation of scene luminance information. Glare modifies 
the pattern of light falling on retinal and cameras’ receptors. Glare 
redistributes light from high-luminance scene segments into 
low-luminance regions. The amount of received glare from a 
single scene element, or single donor pixel is tiny. However, glare 
is the sum of all the millions of tiny contributions from all other 
scene pixels. Glare makes a unique (scene-dependent) light 
contribution to all scene pixels (McCann and Rizzi, 2011; McCann 
et al., 2018).

In a 1,000,000 pixel image, the glare added to each individual 
pixel is the sum of glare contributions from 999,999 other pixels. 
That process is repeated a million times to calculate the retinal 
image. In computationally efficient FFT convolutions there are the 
equivalent of 1012 glare contributions. Glare requires a scene-
dependent model. All input scene pixels are necessary to calculate 
each scene-dependent pixel’s output.

The science of Imaging uses two different quantitative metrics. 
First, optics uses the International System of Units (SI), made up 
of 7 base units (second, meter, kilogram, ampere, etc.) For visible 
light SI-7 includes the candela (cd), and derived-unit luminance 
[candela/per square meter; [National Institute of Standards and 
Technology (NIST), 2022]. This standard is traceable to human 
detection thresholds of light, and is based on wavelength and the 
energy of photons. It quantifies the energy required for specific 
human Light/Matter minimum detection thresholds at atomic and 
molecular levels. Here, experimenters ask the observers, did 
you  detect light. Their answer reports the amount of light at 
threshold, and its calibration reports quanta catch (Hecht et al., 
1942). This is vision’s scene-independent measurement.

Some theories, and practical technologies use scene-
independent models. They use only a single scene pixel’s quanta 
catch to calculate each pixel’s final signal. Scene-independent 
models assume that the quanta catch of each individual pixel is all 
the information from the scene that is necessary to model the 
response function to light in all pixels, and in all images. For 
example, silver-halide film responses are accurately modeled by 
the quanta catch of microscopic regions of film. The film has a 
fixed-response function to light. Every scene segment with 
constant light stimulus generates identical film optical densities 
independent of the “rest of the scene.” (The film is scene-
independent, however camera bodies and lenses introduce glare 
(Jones and Condit, 1941), making cameras scene-dependent.) 
Other examples of scene-independent models are: 
CIE-Colorimetry, CIE Color Appearance Models (CIECAM), 
most digital cameras and displays. These calculations allow only 
single pixel scene radiance inputs from the scene to predict single-
pixel quanta response. Scenes with millions of pixels requires 

millions of independent calculations. Digital scene-independent 
calculations, use hardware, firmware, and Look-Up-Tables (LUTs) 
in pipelines for efficiency, but they are unresponsive to optical 
glare, and all of human vision’s scene-dependent mechanisms.

Practical Imaging technology and Image Quality use 
appearance metrics to evaluate human response to prints and 
displays. It measures response at the opposite end of the human 
visual pathway from quanta catch. Instead of quantifying local 
molecular events, it measures vision’s spatial-image processing of 
all 100 million receptor outputs. Here, experimenters ask 
observers which color or lightness sample in a standard collection 
does the ROI match. Their answer reports appearances that are 
scene-dependent.

Psychophysics has innumerable examples of [appearance ≠ 
quanta catch]. Color Constancy (McCann, 2021d) and Lightness 
Illusions demonstrate that successful models of vision require 
input data from “the-rest-of-the-scene.” Since the 1950’s 
neuroanatomy, neurophysiology, and psychophysics have 
documented that the human visual pathway is a cascade of spatial 
comparisons. Retinal receptors, amacrine, horizontal, ganglion, 
ipRGC, lateral geniculate, striate cortex, blobs, and v4 cells 
perform different types of spatial comparisons at different spatial 
resolutions and orientations (Hubel and Wiesel, 1965; 
Oyster, 1999).

Retinal receptors’ outputs are not relayed as independent pixel 
responses to the brain. They become time-modulated, spatial 
comparisons that apply different image-processing mechanisms at 
every stage. The input data for vision require all receptor responses 
simultaneously to perform all of its analysis. Vision models 
requires efficient spatial image processing of all pixels to calculate 
appearances. The interactions of all spatial scene elements 
generates appearance (McCann and Rizzi, 2011:pp. 173–375).

This article studies how glare affects normal-dynamic-range 
Lightness Illusions for two reasons. First, Lightness Illusions 
demonstrate that vision is the result of scene-dependent spatial 
processing. Second, these Illusions work well in the limited 
range of light found on normal low-dynamic-range displays. 
Lightness Illusions contain two identical scene-luminance 
segments that are identified as the “regions-of-interest” (ROI). 
Those segments appear identical if the “rest-of-the-scene” is 
restricted to a single uniform luminance. However, the designers 
of Illusions introduce clever “rest-of-the-scenes” that makes two 
identical ROI luminances have different appearances in the same 
scene. Since glare redistributes light from all of the scene’s pixels, 
the question becomes how does the Illusion’s “rest-of-the-scene” 
alter those equal scene-luminance segments. Glare has its 
strongest effects on the darkest scene segments, moderate effects 
on mid-range segments; and minimal effect on the brightest 
regions. However, glare’s most influential effects are found at 
edges between different scene segments, and changes 
in uniformity.

High-Dynamic-Range (HDR) studies (McCann and Rizzi, 
2011) have renewed interest in glare’s effect on appearance 
pioneered by Hering (in Hurvich and Jameson, 1966) and Fry and 
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Alpern (1953) and Fry and Alpern (1954). Vos et  al. (1976) 
measured the eye’s Glare Spread Function (GSF), and Vos and van 
den Berg’s (1999) standardized the newer CIE GSF; expanded by 
Franssen and Coppens (2007). McCann and Vonikakis (2018), 
expanded Rizzi/Farup’s MATLAB® program for converting all 
scene luminances to retinal light levels. The present submission 
introduces Python (open-source code) that performs the same 
calculations. Both programs analyze the actual spatial distribution 
of light on receptors.

The Gregory and Gombrich (1980) review of illusions includes 
all types of identical stimuli that are modified by the rest of the 
scene (lines, constant-size objects, and constant light stimuli). All 
illusions appear markedly different because of the influence of the 
“rest-of-the-scene.” Observing ROI’s different appearances, in 
Lightness Illusions and their controls, side-by-side, is compelling 
evidence of vision’s scene-dependent spatial processing. There are 
three Lightness Illusion types: Simultaneous Contrast, 
Assimilation, and Edge/Gradient scenes [Edwin Land’s Black and 
White Mondrian Land and McCann (1971), and Adelson’s 
(1995)]. All have equal-luminance pairs of scene segments(ROI) 
that appear different because of the influence of “the-rest-of-the-
scene.” Many visual properties could contribute to Lightness 
appearances: adaptation, lateral-neural interactions, multi-
resolution processing, edges and gradients, perceptual 
frameworks. This article adds scene-dependent optical veiling 
glare to this list of appearance mechanisms affecting 
Lightness Illusions.

In order to study human vision, we need to understand the 
sequence of events along the visual pathway. Each stage has a 
unique input/output response function to light:

 • Stage 1. Light from scenes (scene luminance: measured 
with photometer)

 • Stage 2. Light on the retina (retinal contrast: after optical 
veiling glare)

 • Stage 3. Light/Matter interactions (linear sums of rod 
and cone quanta catch)

 • Stage 4. Receptor output ➜ Neural input (log 
quanta catch)

 • Stage 5. Image processing in the visual pathway (Neural-
Spatial comparisons)

 • Stage 6. Appearance (Psychophysical Appearance and 
Perception data)

There is universal agreement about the facts listed in the first 
four stages: (1) Scenes are described as arrays of all calibrated 
scene luminances (cd/m2), each at a calibrated visual angle; (2) The 
pattern of light on the retina equals scene convolved with the 
standard CIE Glare Spread Function (GSF); (3) Light/Matter 
biochemical reactions, initiated by photons, takes place at a 
molecular level within cubic microns (linear sum of rod and cone 
quanta catch); (4) Receptor’s chemical output (at receptor’s neural 
junctions at the other end of the cell) generates a response 
function equal to log quanta catch response across its synapse in 

the horizontal cells (Hartline and Graham, 1932; Werblin and 
Dowling, 1969; Oyster, 1999).

In summary, the sequence of different human Response 
Functions to light is:

 1. Scene luminance = cd/m2

 2. Glare redistributes light
 3. Visual pigments count photons = linear quanta catch
 4. Receptor output ~ log quanta catch

The physiology of receptors presents a compelling case that 
receptor response is proportional to log quanta catch for a spot of 
light on a receptors.

Psychophysical research on Uniform Color Spaces shows a 
different total Response Function to Light in Stage 6. Munsell 
asked observers to make judgments of uniform distances in 
Lightness, Hue and Chroma. This data established a Colorimetric 
Uniform Space describing appearances in complex scenes 
(Newhall et al., 1943). Munsell’s Lightness is proportional to the 
cube-root of luminance. Many experiments have verified Munsell’s 
results. CIE(L*) has a cube-root response function to scene 
luminances (Wyszecki and Stiles, 1982; McCann and Rizzi, 2008).

The analysis of Scene Content, scene-independent, and scene-
dependent experiments are key to understanding the apparent 
conflict between physiology and psychophysics. Physiology 
experiments measure receptor cells in a dark room with a small 
spot of light on them. These are scene-independent experiments. 
Psychophysical Uniform Lightness Scale experiments are 
performed in a light environment as a part of a complex scene. 
These are scene-dependent experiments. The physiological 
experiment had minimal glare, while the psychophysical 
experiments had considerable glare.

Stiehl et al. (1983) made an HDR Lightness Scene composed 
of neutral density filters whose appearances are equally-spaced 
Lightness patches in a uniform surround. They measured the 
luminances of each of the equally-spaced Lightness steps. They 
plotted those luminances vs. Lightness step and found the cube-
root function often reported in the literature. This complex scene 
contained nine Lightness segments that observers selected to 
be equal steps in Lightness. The high-luminance surround around 
each segment added glare to each of them. The cube-root plot of 
the scene before glare means, when starting from Max luminance, 
the difference in log luminance between each Lightness step 
increases with every darker step. That is, the scene’s log-luminance 
difference between max and the next darker Lightness is the 
smallest value; and the scene’s log-luminance difference gets larger 
with every darker Lightness step.

Stiehl calculated the retinal contrast of these equally-spaced 
Lightness using the Vos et al. (1976) GSF. This data showed that 
glare added variable amounts of stray light to each of the equally 
spaced Lightness segments. The plot retinal contrast vs. log 
luminance was fit by a straight line. That means that all of the 
sequence of equally spaced Lightness segments had a constant 
difference in log luminance on the retina. The calculated glare 
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added the amount of stray light needed to make all decrements 
appear equal.

Another way to look at this result is that the observers had 
to decrease the luminance of darker patches to make the 
Lightness steps equal. The darker the step, the greater the 
decrease needed.

Uniform Color Space target scenes have considerable glare. 
Observers reported that equally-spaced Lightnesses have equal 
decrements in log luminance. The sum of [scene luminance + 
glare] equals constant log-luminance decrements. The assumption 
of zero glare generates the cube-root Lightness function in 
CIE(L*). Calculating the light on the retina generates the straight 
line log-luminance function. Physiological receptor response is a 
log-luminance function. Lightness is promotional to receptor 
response in these high-glare scenes.

Our visual system performs complicated spatial transformations 
of light patterns from scenes. Measurements of appearances in HDR 
scenes (McCann and Rizzi, 2007, 2009, 2021a, 2021e; Rizzi and 
McCann, 2009; McCann and Vonikakis, 2018) showed large 
reductions of retinal-dynamic range in maximal-glare scenes. Two 
transparent films were superimposed to make 40 patches (white-to-
black) with scene luminance range of 5.4 log units. All patches were 
surrounded by a max-luminance surround. After intraocular glare 
the retinal contrast range was 1.5 log units. In a nearly million:1 
range scene, glare reduced the range of light on the retina to 33:1.  
The scene’s appearance varied from bright white to very-dark  
black.

A second experiment changed the background around each 
of the 40 patches from max-luminance to min-luminance. In this 
nearly million:1 range scene, glare reduced the range of light on 
the retina to 5,000:1. The second scene’s appearance varied from 
bright white to very-dark black. Observers reported that whites 
appeared the same white in both experiments. Remarkably, blacks 
appeared the same black in both experiments despite the change 
in range from 33:1 to 5,000:1. Appearances over the range of white 
to black have variable scene-dependent response functions to light 
on receptors (McCann and Vonikakis, 2018). In all cases, these 
response functions are all straight-line log luminance plots, with 
variable, scene-dependent slopes (Stiehl et al., 1983; McCann and 
Vonikakis, 2018).

This previous HDR glare study described an open-source 
computer program code using MATLAB programming 
language. The present study describes a new more accessible 
version using Python (open-source) programming language. 
Both programs describe techniques to compare the calibrated 
image of scene luminances with the calculated retinal contrast 
image. A computational model of appearances must first 
calculate the light imaged on the retina. This article describes 
computer calculations, based on the CIE Standard for 
Intraocular Glare (Vos and van den Berg, 1999), which makes 
specific adjustments for observer’s, age and color of iris. Our 
new software is implemented in Python. Both code and 
programming language are freely available to all researchers. 
(The code is in Data Sheet 1 in Supplementary material.)

Luminance, unambiguously defined in physics, is the 
measured input array used by the Glare Spread Function (GSF) 
convolution in the Python program. This article defines retinal 
contrast as the name of the program’s first calculated output 
image. The GSF convolution conserves the total energy in the 
input scene_luminance array. It redistributes all of the input 
energy into the output image. As described by Hecht et  al. 
(1942) the light falling on receptors is attenuated by front 
surface reflection, intraocular and macular pigment 
absorptions. The eyes’ pupil size, and pre-retinal light 
absorptions are not accounted for in our program. This article 
uses retinal contrast as the specific term for the amount of light 
imaged on the retina. It is the normalized, linear photopic 
energy per pixel in a flat array congruent with the flat visual 
test targets. We do not use the term retinal luminance because 
our calculation does not measure intraocular light attenuation. 
Retinal contrast is the convolution’s output (normalized pattern 
of light on receptors).

(Figure 1-left-side) illustrates the fabrication and calibration 
of each Lightness Illusion. The <test_retinal_contrast.py > program 
(right-side) converts the Illusion’s Photoshop map using 
calibration measurements of each digit values to make the <scene_
luminance > input array. The program calculates <retinal_
contrast>, and provides tools to analyze the effects of glare.

In today’s world, most visual media are seen on electronic 
displays. Their ~10% surface reflectance appears black in displayed 
images. Digital displays of illusion have replaced those on printed 
pages. Investigating appearances in Natural Scenes have become 
the study of edges and gradients of light, replacing studies of 
printed reflectance and ambient illumination. It is difficult to 
discuss illusions on a screen in terms of its reflectance and its 
illumination. Its reflectance is irrelevant background light, because 
the image is all emitted light. Displays emit illumination with 
edges and gradients. The thoughtful explanation of illusions has 
moved on to the analysis of spatial patterns of light. The analysis 
of reflectance and illuminance becomes a historical footnote, 
while the scene luminances’ spatial array is the source of 
information that generates the array of receptor’s quanta catch, 
that generate appearances.

The appearance of every segment in illusions and Natural 
Scenes involves the entire human visual system. That system has 
a visual angle of 120°, and uses the simultaneous responses of all 
100 million retinal receptors. Neural-spatial processing compares 
all the receptor responses to generate an illusion’s appearances. 
Glare simply adds a new layer of complexity to neural-spatial 
vision’s input from receptors. Receptors capture quanta, and 
neural-spatial comparisons find edges, sharpens them, and 
ignores the subtle gradients caused by glare. This article’s study of 
Lightness Illusions is limited to glare’s transformation of scene 
luminance inputs to all retinal contrast outputs, and the 
appearances of retinal contrasts. This article does not model, nor 
predict appearances of Lightness Illusion segments. The study of 
computational models of appearance is an enormous topic that 
involves many different approaches (Land and McCann, 1971; 
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Frankle and McCann, 1983; Adelson, 2000; Gilchrist, 2006; 
McCann and Rizzi, 2011; Blakeslee and McCourt, 2015; McCourt 
et al., 2016; Rudd, 2020). This topic is far too large to fit in the 
scope of this paper.

This article simply presents Lightness Illusions, and asks the 
reader whether ROI A is lighter, the same, or darker than ROI B. It 
also asks if particular scene segments appears to be uniform. This 
study shows that glare is hard to see; namely its effects are nearly 

invisible, or invisible. Because it is so hard to appreciate glare by 
visual inspection, quantitative analysis of glare is required in 
evaluating models of vision, imaging, and particularly image-
quality assessments.

Both Glare and Neural Spatial processing are scene-dependent 
mechanisms. While more efficient scene-independent calculations 
can model receptor quanta catch for spots of light in a no-light 
surround (Colorimetry), they cannot accurately calculate 

FIGURE 1

Illustrates the eight different images used in the Lightness Illusion’s construction, calibration of scene luminance input, and retinal contrast 
calculation of the light falling on receptors, followed by the analysis of the effects of glare. The image (1) is the Photoshop® digital file (the array of 
8-bit values) of a Contrast Illusion. Contrast has two Gray Regions-of-Interest (ROI), surrounded by max digit on the left, and min digit on the right. 
The image (2) is that 8-bit array displayed on the Apple XDR powerbook screen. Using a Konica Minolta C100A telephotometer, the experimenters 
measured the scene luminances of light emitted by the screen at all digital inputs. Using this calibration, max-White was set to digit 255; the min-
Black to digit 21, so that the range of measured luminances of the display was 200:1 [log_range = 2.3]. The experimenters adjusted the digital 
values of the GrayROIs to be equal, and to optimize the Contrast Illusion’s effects on Grays’ appearances. The image(3) made by the Python 
program, is a digital file that uses photometer measurements, and Photoshop’s map to make the <scene_luminance > (64-bit per pixel double 
precision floating point) file. This file is the Scene that is convolved with the CIE GSF to calculate <retinal_contrast > of the pattern of light on the 
Retina (image 4). These 64-bit double precision arrays, images (3) and (4), cannot be accurately rendered on a display at full precision. The next 
two rows show the four images used to analyze and visualize the effects of glare. Images (5) and (6) are converted from 64-bit double precision 
data to 8-bit log, scaled to the Scene’s [log_range = 2.3]. These images are used for numerical analysis of pixels’ values, and their plots of Scene and 
Retina. The bottom-row uses Pseudocolor renditions to visualize the spatial distribution of light on the retina. Many glare-generated gradients in 
retinal contrast are invisible in <grayscale>. Pseudocolor rendering makes the spatial patterns of these gradients highly visible. Each Lightness 
Illusion uses these 8 different images to create the Illusion; calibrate its Scene luminances; calculate the light on the Retina; and quantitatively 
analyze glare’s re-distribution of light.
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appearances in Natural Scenes (McCann, 2020). Glare is the first 
spatial transformation of scene information. Quantitative studies 
of human retinal images shows that neural spatial mechanisms 
can overcompensate for glare (McCann, Vonikakis, 
Rizzi,2018:pp.142–159). The study of neural processing requires 
quantitative data from all of its input, namely the array of all 
receptor responses.

Section Methods and materials: Calculating and analyzing 
intraocular glare of this article describes how to calculate retinal_
contrast and how the program uses pseudocolor to visualize it. 
Section Results describes nine Lightness Illusions, their numerical 
analysis, and pseudocolor rendering. These results identify Glare’s 
Paradox, namely that human neural processing overcompensates 
glare’s effects in Contrast, but not in Assimilation. Section 
Discussion explores the visibility of gradients of light; 
compensation for glare by neural spatial processing; and glare’s 
role in Image Quality metrics.

Methods and materials: Calculating 
and analyzing intraocular glare

As illustrated in Figure 1, we made an image in Photoshop® 
of the familiar Contrast Illusion (ROI-Grays darker in White; 
lighter in Black). We sent the illusion’s digital file to a calibrated 
display [range of cd/m2 set to 200:1]. We measured the luminance 
of all scene segments. The Python program that calculates glare’s 
effects on Illusions has two parts. First, it makes an array of 
calibrated display luminances and convolves it with the CIE 
GSF. Second, it makes meaningful visualizations of the millions of 
pixels in each scene, and its retinal image.

Calculating retinal image

The GSF specifies the fraction of a pixel’s light scattered onto 
every other pixel in the whole scene. It varies as a function of angular 
distance (1/60° to 60°) between donor and receiving pixel. The 
convolution sums all the millions of glare contributions from all the 
other pixels. Hence, 64-bit floating-point double precision was used 
for the convolution. The retinal image calculation (Vos and van den 
Berg, 1999) covers 60° visual angle, and the range of scattered light 
[(log10 [Leq/Egl]total)] covers 8 log10 units (Figure 2).

Optical glare spread function

The calculation of light on the retina used the GSF formula (Vos 
and van den Berg, 1999; Equation (8) formula) to calculate the spatial 
distribution of the light on the retina. The retinal image is the sum of 
scene luminance, plus light scattered into each pixel. The amount 
scattered into each pixel depends on the luminance of the donor pixel 
and its angular separation between the donor and receiving pixels. 
CIE GSF calculations are described in McCann and Vonikakis (2018) 

that contains additional background information. Using this CIE 
standard, we calculated the relative luminance at each pixel (Leq/ Egl). 
It is the ratio of Equivalent Veiling Luminance (Leq in cd/m2) and 
Glare Illuminance at the Eye. In the calculations we used brown eye 
color pigment = 0.5 and age = 25 to calculate predictions for young 
observers, with minimal-glare vision.

Glare spread function convolution filter 
kernel

We first compute the 2D filter kernel (Vos and van den 
Berg, 1999; equation (2) CIE-GSF), which will be used in the 
convolution with <scene_luminance>. The kernel’s radius is 
equal to the maximum size of the luminance input array (+1 
for symmetry). This ensures that every pixel will be able to 
“affect” all others during convolution. When the center of the 
kernel is positioned on the top-left pixel, the kernel should 
cover the whole luminance input array. The python code is 
written to process any size of input luminance array. We have 
to adjust the kernel size, to accommodate the input size, and 
maintain angular calibration of the image. Even though the 
radius of the kernel is large, its values are never zero. This 
means that every position in the retinal input array will 
contribute to all the others. Once the 2D filter kernel values 
are calculated from Equation (2), they are normalized by their 
total sum, ensuring that all add up to unity and thus, no 
energy is introduced during the convolution. Also, there is no 
radial distance at which the glare contribution reaches a 
constant asymptotic value.

The next operation computes the retinal image by convolving 
the filter kernel on the scene luminance array, resulting in retinal 
contrast. Performing the convolution, with such a large size kernel 
in the spatial domain, is computationally expensive, since each of 
N pixels is affected by all others. As such, the complexity of this 
operation is O(N2). Performing the convolution in the frequency 
domain shortens computation time, resulting in O(NlogN) 
complexity. Our Python code performed MATLAB’s < imfilter>, 
convolution in the frequency domain using the Fast Fourier 
Transform (FFT).

The calculation of the 2D filter kernel, as well as the 
convolution operation with the <scene_luminance> input array, 
are implemented in <test_retinal_contrast.py > (see Python script 
in Github repository (Vonikakis, 2022).

Input/output ranges

The calculation of retinal contrast from scene luminance 
modifies an image’s dynamic range. There are three aspects to 
managing range:

 • First-Glare redistributes a very small fraction of light 
from all pixels to all other pixels
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 •  largest sources of glare light are the highest 
luminance pixels

 •  largest recipients of light are the lowest 
luminance pixels

 •  input image must represent both the entire range of 
scene_luminances, and tiny glare contributions  
accurately.

 • Second-Computational precision of pixel values. The GSF 
convolution uses linear, 64-bit double floating point precision to 
calculate the result of all pixels’ contributions, and the 
accumulation of these tiny amounts of light. This need for 
precision includes the padding of external input boundaries in 
the convolution.

 • Third-Visualization of input/output information. 
Calibrated images can exceed display’s range used to visually 
inspect them. Displayed rendition of (in/out) calculation data 
must account for display’s firmware luminance transformations 
of digit values, and vision’s response to light. We also need tools 
to visually inspect scenes that exceed the display’s range. We need 
to inspect data in gradients-in-luminance by making them visible 
using pseudocolor.

Computational padding

Computation of glare values near borders of the input array 
requires special treatment, because part of the kernel goes out of 

the area of the input array. In our Python code, we  used a 
“boundary replication” padding approach, similar to the MATLAB 
“replicate” option for the imfilter function. According to this, the 
pixels of the outer rim of the image are replicated in order to cover 
the padded area.

 • If all the outer edge pixels in <map.tif >  file are 
White(max-digit), the”boundary replication” becomes the 
equivalent of a uniform white surround 9 times the area of 
<map.tif>, with the map placed at the center. Consequently, 
glare is calculated as if the target was on a uniform 
white surround.

 • If the outer edges are min-luminance, glare is calculated 
as if the target is in a darkroom on a black background.

Vos and van den Berg (1999) describe the shape of the 
GSF. That shape does not include the glare loss of 
(re-distributed) light from every pixel. In our program the 
filter kernel is normalized so the sum of all output retinal_
contrast equals the sum of all input scene luminances. In the 
<test_retinal_contrast.py > program we verified the kernel in 
each calculation, e.g., [kernel sum = 0.999999999999998] was 
a typical result. Without this normalization step, the sum of 
output could exceed the sum of input. The filter calculates the 
light distribution projected on a sphere (CIE GSF); and the 
program converts that to the light projected on a plane. Input 
pixels and output pixels are planar and have identical 
dimensions. It does not include the effects of pre-retinal 
light absorptions.

FIGURE 2

Glare Spread Function plotted on log–log axes. Note the extreme ranges of these axes. The horizontal visual-angle axis covers (1 min to 60°). The 
vertical axis plots the decrease in glare as the function of the angular separation between donor pixel and receiving pixels. It covers 8 log10 units 
(150,000 to 0.005). Despite its range, it does not approach a constant asymptote. The glare on each receiving pixel is the unique sum of 
contribution of all the other scene pixels. Glare is a scene-content-dependent transformation of scene luminances.
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Range analysis

The test_retinal_contrast.py program has input values 
between 0 and maximum luminance. For analysis, the program 
writes the analytical file <scene_luminance_log _mapped> (8-bit), 
which records the log-luminance values scaled to <parameter.
range>. In other words, by selecting the input range, and 
logarithmic scaling, calibrated <scene-luminance> and < retinal_
contrast> data becomes displayable on a monitor for 
spatial evaluation.

The calculation and output of the convolution, <retinal_
contrast> array, is linear, 64-bit values. The content of the input 
scene, namely, the population and distribution of luminances 
determines the range in the <retinal_contrast> output file. The 
greater the population of high-luminance pixels, the higher the 
mean-and min-values of <retinal_contrast>. However, since each 
glare donor pixel sends most of its light to nearby receiving pixels. 
The scene’s local organization (pattern of scene’s content) affects 
the local range of <retinal_contrast> values. An Illusion’s pixel 
population and the separations of max-and min-luminance pixels 
affects the local ranges of <retinal_contrast>.

Visual inspection of <retinal_contrast_
log > images

Human vision’s spatial-image processing suppresses the 
visibility of luminance gradients (McCann et al., 1974; McCann, 
2021b). Visual inspections of <retinal_contrast> images make 
two flawed assumptions. First, it ignores our vision’s spatial 
suppression of gradients. Second, it ignores the fact that looking 
at the calculated image adds a second pattern of actual optical 
veiling glare to the monitor-displayed calculated glare image. 
Visual inspection is quantitatively inaccurate. Numerical analysis, 
and pseudocolor renderings are needed to examine 
retinal contrast:

 • GSF transformed all discontinuous sharp edges into 
steep retinal gradients.

 • Many low-slope gradients are below human detection 
threshold. Visual inspection does not reveal these gradients.

 • Pseudocolor maps, with visible quantization steps, 
converts subtle luminance gradients into discriminable bands 
of color, allowing readers to visualize bands of equal-
luminance regions, that reveal glare’s nonuniform 
luminance transformations.

Figure 3 Files(top-row) describes the specifications of image 
files used in the program’s sequence (left to right). 
Scene(middle-row) begins with a reproduction of the Illusion on 
the display(left column); followed by images used in analysis. 
Retina(bottom-row) shows images of the pattern of light on the 
retina scaled to [log_range = 2.3], the input range of the scenes’ 
luminances.

The CIE GSF uses linear-luminance input data, and high-
precision calculation to accumulate all the very small amounts of 
light from millions of other pixels that fall on each individual 
pixel. There is no practical method for displaying in this article the 
actual linear <retinal_contrast> with 4 million pixels at 
64-bit precision.

The Pseudocolor renditions allow observers to visualize 
glare’s gradients of light on receptors. As discussed above, 
visual inspection does not correlate with quantitative light 
values. An accurate analysis of the input and output arrays 
requires numerical inspection and visualization techniques. 
Readers can identify specific <retinal_contrast_log> values by 
matching any image pixel’s pseudocolor color to the calibration 
color map.

Pseudocolor color-index maps

Figure  4 illustrates two different LUT visualizations using 
different color-index maps. The Python program includes the 
pseudocolor [cmap.LUT] with 64 color index values, arranged in 
8 progressions (top-half). Below it, [3-3-2RGB.LUT] is a different 
kind of color-index map that emphasizes the visibility of gradients. 
It illustrates glare’s re-distribution in low-luminance regions better 
than [cmap.LUT]. It was applied to retinal contrast using  National 
Institute of Health (NIH) (2021) application ImageJ®. It is hard to 
identify the square’s Max-Min boundary with this LUT. The 
Superposition panel (bottom-right) identifies the location of that 
very sharp input-edge using four quarter-image sections. The thin 
red band falls at max/min boundary that became a steep gradient 
after glare.

Please take the time to evaluate the spatial patterns caused by 
glare’s transformations. Please inspect the full-resolution (2MB by 
2MB) retinal contrast patterns in Figure 4 file in Data Sheet 1 in 
Supplementary material.

Results

This article studies glare’s role in three types of Lightness 
Illusions: Contrast, Assimilation, and Natural Scenes. 
We  begin with four “Contrast + Assimilation” targets in 
Figures  5A–D. A Contrast Illusion is the top-half, and 
Assimilation Illusion the bottom-half. In the Scene row, the 
Contrast, Gray-in-Black surround ROI appears lighter than 
Gray-in-White. Below Contrast, we  add Michael White’s 
Assimilation Illusion (White, 2010). In Assimilation, Gray-in-
Black ROI appears darker.

All Contrast + Assimilation targets are restricted to three 
scene components: White, Gray, and Black. Identical Gray 
rectangles (ROI) appear darker in Contrast’s Black surrounds, 
and lighter in Assimilation’s surround. These different Grays are 
the result of scene’s spatial content, and spatial arrangements of 
segments made from uniform Whites and Blacks. The ROI-Grays’ 
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appearances are the consequence of two spatial properties of the 
scene. First, scene’s histogram, describing populations of all scene 
pixels (independent of location). Second, size, shape, and location 
of White and Black segments. In other words, the arrangements 
of the spatial content in the “rest-of-the-scene” modifies 
receptors’ responses, and the appearances of GrayROI equal 
scene_luminances.

Contrast + Assimilation Illusions are robust. Contrast is 
insensitive to target size (or viewing distance) that changes 
retinal size (McCann, 1978). Changing viewing distance alters 
spatial-frequency distribution (intensity vs. cycles/degree). 
As well, Contrast + Assimilation are insensitive to varying 
luminance levels. Viewing them in conditions that excite only 

rods generates the same spatial effects; they just appear 
dimmer. Viewing color Contrast + Assimilation Illusions 
in  conditions that excite only rods and long-wave cones 
generates the same color spatial effects, they just appear 
different hues, and less-sharp than in photopic 
vision(McCann, 2012, 2021c).

Natural Scenes are much more complex because they do not 
have any of Contrast’s + Assimilation’s restrictions: uniform scene 
segments, limited range, uniform illumination. Natural and 
complex scenes include the interactions of illuminants, 
reflectances, light emitters, multiple reflections, refractions, 
shadows, and variable dynamic ranges. The light coming to the eye 
can be  almost any light distribution. Natural Scene Lightness 

FIGURE 3

Required data for calculating <retinal_contrast>, and analyzing the effects of glare. Columns illustrate the sequential steps in <test_retinal_
contrast.py>: Image on Display; GSF Convolution; Grayscale and Pseudocolor Analysis. Rows identify the Files; Scenes; and Retina. Files-(top-row) 
identifies the names, specifications, and precisions at each step. The terms nonlinear, linear, and log refer to plots of cd/m2 vs. digit value in the 
images. The measured luminances from the display were a nonlinear function of Photoshop digits. The program’s calibration step made <scene_
luminance > linear for the convolution. The analysis of glare used [log_range = 2.3]. Scene-(middle row) illustrates the appearance of the image on 
the display in the first column; the CIE GSF convolution in the second; the normalized cd/m2 input image in the third; and the Pseudocolor 
visuization of the uniform luminance patches in the fourth column. Note the Color-bar on the right side of this image scene. It plots all 256 
pseudocolor samples and identifies the [log_range] of the image. Max luminance is White with [scene_luminance_log = 0.0] while Min luminance is 
Black with [scene_luminance_log = −2.3]. This Color-bar links the RGB digit values to log luminances. Note that all Gray pixels in 
Scene(Pseudocolor) have the same Color-bar visualization (green RGB triplet [192, 255, 64]). That triplet is the Pseudocolor output for all grayscale 
digits in the scene from digit 194 to 197, that calibrates to a log scene luminances range between −0.52 and −0.55. Each Color-band is traceable 
to log luminance cd/m2 values. The second column in Retina-(bottom-row) shows a Pseudocolor 3D plot of convolution kernel for the CIE GSF. 
The third column shows the grayscale log retinal contrast image used to provide calibrated data for plots, and numerical analysis of <retinal_
contrast > image segments. The fourth column shows the Pseudocolor image used for visual inspection of the spatial pattern of gradients. 
Gradients are not visible in grayscale images, but are clearly observed in Pseudocolor. Note Contrast’s large Black surround for the ROI in the third 
column. Compare it with the Pseudocolor’s visualization of in the fourth column. Peudocolor’s bands of colors reveal the magnitude, and 
complexity of glare’s gradients.
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Illusions include experiments that generate different appearances 
from GrayROI with identical scene luminances.

Contrast and Michael White’s 
assimilation targets

First, we  made a display’s test target on a display; then, 
measured its luminances; then, calculated the light on the retina, 
and finally compared scene luminances with retinal contrasts.

In Figures 5A–D-Scene (top row) show four targets displayed 
individually on the computer. Each grayscale Contrast + 
Assimilation scene is a digital array [2,048, 2,048] 8-bit viewed on 
a Powerbook computer screen at 24 inches, each subtending 10° 
by 10°. Each pixel subtends 0.24 min of arc. This figure uses a 

gray-blue background to identify the boundaries of the four 
targets. A&B targets differ in the size of both Contrast surrounds; 
A’s is much larger than B’s. This affects the amount, and 
distribution of glare in Figures 5A,B, but does not change the 
GrayROI appearances. In Figures 5C,D, outer bands are Black, 
replacing White in Figures 5A,B. This affects the amount and 
distribution of glare in both Illusions, but also does not change 
Illusions’ appearances.

The top row (Figure 5-Scene) shows the images on the display. 
Placing both Assimilation and Contrast together in each target 
does not disturb either Illusion. They do not interact. Each does 
not affect the others’ appearance. Both Contrast and Assimilation 
appear indifferent to each other. These Illusions add another kind 
of robustness, and implies that both mechanisms, Contrast and 
Assimilation, are influenced by relatively local-spatial properties.

FIGURE 4

Illustrations of two different Pseudocolor Look Up Tables (LUT). The <cmap.LUT > (top-row) emphasizes the order of lightness appearances. The 
left panel shows a 2,049 by 2,049 pixel background (min-luminance) with a centered 601 pixel (max-luminance) square. The left panel is the input 
file <scene_luminance_log-mapped > using <grayscale.LUT>. The middle panel is <retinal_contrast_log_mapped > showing the effects of glare. The 
right applies <cmap.LUT>, and shows its color map in its Color-bar on the right. This is used to analyze most of the scenes in this paper. Its color 
map is encoded in the <retinal_contrast.py > program. It used 64 different color bands. (Bottom-row) shows a different LUT, that is implemented in 
a different way. It has four times more color bands, for better visualization of low-slope gradients. The bottom-left panel shows all 256 different 
colors in the [3-3-2 RGB.LUT] color map, from Min Black [0] to Max Yellow [255]. Its color index emphasizes the visibility of gradients. The bottom-
middle panel applies the [3-3-2 RGB.LUT] to the retinal contrast file. Note the differences in visualization between [cmap] and [3-3-2 RGB.LUT]. 
The [cmap] rendition preserves the sense of the Lightness separation between Max and Min regions. The [3-3-2 RGB] rendition does not. 
However, it reveals the presence of gradient throughout the large Min region. Using [3-3-2 RGB LUT] makes it difficult to find the location of the 
highly visible edge between the Max center and the Min surround. The bottom-right panel identifies the location of that Max/Min input-edge in 
<[3-3-2 RGB] using the Superposition of four quarter-image sections. The Superposition contains: (1) top-left quadrant is log scene luminance; (2) 
top-right quadrant is log retinal contrast); (3) bottom-right is background-alone using [3-3-2 RGB]; (4) bottom-left quadrant is square-alone using 
[3-3-2 RGB], A thin red band locates the Max/Min boundary, that became a gradient after glare.
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Numerical analysis of scene input <map.tif>
Scene’s digital values <map.tif > were selected to make the 

best-looking Illusion on the display. In all four targets the Konica-
Minolta CS-100A measurements were: Whites (450 cd/m2); Grays 
(136 cd/m2); and Blacks (2.24 cd/m2) from a Powerbook Pro XDR 
display. All targets had a linear range 200:1 [log_range = 2.3]. In all 
targets, all Gray segments had identical locations, and occupied 
14% of each target’s area. In targets A&B, White occupied 57%, 
and Black 29%. In targets C&D, White occupied 29%, and Black 
occupied 57% area. These variable patterns of Whites and Blacks 
caused major changes in glare, shown in retinal_contrast’s 
histograms. However, these changes in the “rest-of-the-scene” do 
not alter the appearances of the GrayROIs.

Appearance of calculated retinal_contrasts
Figure 5-Scene recreates the appearances on the display. The 

Python code combines the Scene’s design with its luminance 
calibration to make convolution’s input array (normalized linear 
luminances) at 64-bit, double precision. The convolution calculates 
high-precision retinal_contrast values. Three additional steps are 
needed to analyze the output: precision (64 to 8-bit) for display: 
mapping to input’s range; and logarithmic scaling. 

Figure 5-Retina(middle-row) shows [log10_range = 2.3] output. 
Retina’s logarithmic data optimizes grayscale and pseudocolor 
visualizations. The <retinal_contrasts_log_grayscale> images have 
apparently less-sharp edges, and have less range of light. Glare has 
rounded the scenes’ square-wave edges that appear sharp when 
viewing them on the display (Figure 5-Scene).

Vision’s spatial-image processing has synthesized these sharp-
edge appearances from the retinal image. Thinking about the 
observer’s appearances of Retina’s fuzzy images, recalls many 
relevant facts. For example, cones in the fovea have approximately 
1 min of arc spacing. However, stereo depth can resolve 2 seconds 
of arc in retinal disparities. Observers with good binocular vision 
can have stereo-acuity thresholds as low as 2 s of arc, and 80% have 
30 arcsec thresholds (Howard and Rogers, 2002). In hyper-acuity, 
optimal discrimination threshold for relative positions of two 
features in the fovea is a few seconds of arc(Westheimer and 
McKee, 1977). Vision’s spatial-image processing is more precise 
than cone spacing. Hubel and Wiesel (1965) discovered that 
Visual Cortex neurons respond to edges, while they are 
unresponsive to spots of light. Zeki’s v4 cortical color cells respond 
to complex images, but not to “spots of light” (Zeki, 1993). Vision 
uses spatial-image processing to synthesize the appearance of 

FIGURE 5

(A–D) Four Contrast + Assimilation targets: Scene (top-row) shows four Illusion scenes displayed individually on the computer screen <map.tif>; 
Retina (middle-row) calculated pattern of light on receptors <retinal_contrast_log_grayscale>; Histograms (bottom-row) linear (black fill) and log 
(blue fill) histograms of <retinal_contrast_log_grayscale>. Above the horizontal axis the color bar illustrates [cmap.LUT] pseudocolor mapping. All 
renditions used parameters [log_range = 2.3], [padding = replicate].
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sharp edges. Today’s powerful AI object recognition techniques 
use Hubel & Wiesel, and edge-detection techniques in early stages. 
Edges lead to shapes, that lead to identifying objects. Engineering 
development of “Event Cameras,” that mimic human image 
processing are wide spread(Curtis, 2022). These observations, as 
well as innumerable others since the 1960s, changed vision 
research and electronic imaging by mimicking human spatial 
processes in Retinex, Object Recognition and Neuromorphic 
Cameras. Vision, human and virtual, went from using scene-
independent models of pixels to scene-dependent models 
of images.

Numerical analysis of calculated retinal_
contrast

Figures 5A–D—Histograms plots linear and log histograms of 
Retina. All histogram plots are [log_range = 2.3], equal to input 
range. Recall that the scene luminance input images have histograms 
(not shown) of only three spikes at digits 255, 145, and 21. Glare has 
re-distributed those spikes into four very different light patterns. 
Target A is the most familiar version, viewing the Illusion on a white 
paper, or white screen. Glare reduces RetinaA to  [67% log_range]. 
The outer white band adds enough glare light to the large Contrast 
Black surround to set the abrupt lower range limit at digit = 83. 
Target RetinaB replaces Contrast’s large Black, and large White 
surrounds with Assimilation’s stripes. Here, Contrast’s Gray test 
areas are still surrounded by Black, and by White segments, but they 
are alternating bands. These changes greatly reduced the average 
angular distances between Whites (glare net donors) and Blacks 
(glare net receivers). The result of closer glare sources decreased 
RetinaB to [52%log_range]; half that of the input scenes.

In Targets SceneC and SceneD the outer band is Black. The 
program’s [padding = replicate] setting for outermost pixels 
calculates displays in a darkroom on a Black background. 
Replacing White with Black outer edge, and decreasing the size of 
Contrast’s surrounds in D caused a major increase in range of 
retinal_contrast_log. The abrupt lower limit of the minimal 
retinal_contrasts in RetinaA and RetinaB resulted from nearby 
White segments in the outer edge and Contrast regions. Here, in 
RetinaC and RetinaD retinal ranges increase because there is less 
glare light in Blacks. Target RetinaC range is [95%log_range]; 
Target D range is [100%log-range]. Overall, these four targets 
varied from 52% in RetinaB to 100% in RetinaD.

Numerical analysis of calculated retinal contrast describes two 
distinctly different types of targets: one with a max-luminance 
outer band (RetinaA, RetinaB); the other with a min-luminance 
band (RetinaC, RetinaD). Nevertheless, observed appearances of 
Contrast and Assimilation are constant, despite major changes in 
retinal contrasts’ patterns, and the subsequent responses of 
retinal receptors.

Numerical analysis of retinal contrast in Figures 5A–D Retina 
shows that all four Contrast Illusions exhibit Glare’s Paradox; 
namely, regions-of-interest Gray-in-White appear darker despite 
larger amounts of glare light. And Gray-in-Black ROIs appear 
lighter despite less glare light.

For example: in top-half Contrast(A) GrayROI rectangles 
have uniform <scene_luminances>. After glare those rectangles 
become ranges: Gray-in-Black[68%–83% log-range] retinal_
contrasts, and [81%–93% log-range] in Gray-in-White. The large 
white surround adds more glare light to its GrayROI. The 
psychophysical challenge is to understand why more-light in 
GrayROI-in-White in all Figures  5A–D—Retina look darker 
in Scene.

Assimilation does not exhibit Glare’s Paradox; more-light in 
GrayROI-in-White in all Retina(A,B,C,D) look lighter in 
Scene(A,B,C,D).

Glare created four different log range outputs. To 
understand different spatial patterns of light re-distributions, 
we  use pseudocolor LUTs to visualize the gradients of light 
on receptors.

Please inspect the full-resolution <grayscale> retinal 
contrast patterns in Figure  5 file in Data Sheet 2 in 
Supplementary material. Gradients are nearly invisible.

Pseudocolor analysis of calculated retinal 
contrast

Figure 6 maps images in Figure 5 using pseudocolor. All four 
targets have only three luminance values: (max-White, Gray, 
min-Black) illustrated by images in Figures  6A–D-Scene. 
Pseudocolor renders max = white; gray = green; min = black. 
Figure  6-Retina applies the same LUT to retinal images. As 
expected, glare has minimal, but apparent changes in Whites’ 
pseudocolor segments. Many Whites that are adjacent to Black 
become yellow at the edge.

The substantial, but subtle effect on Gray scene segments is seen 
best by studying the Grays only row. The constant Gray borders in 
all Scenes around Contrast and Assimilation Illusions shows that 
retinal_contrast has a different border patterns in A,B,C,D. Contrast’s 
GrayROI rectangles are affected by the traditional large White and 
Black surrounds. The outer White and Black bands and the replicate 
option adds to scene-dependent variability.

The most striking result from these four targets is the retinal_
contrast maps of Black regions. These constant, uniform scene 
segments became highly variable, nonuniform, scene-specific 
retinal contrast values. The ranges of Retina Black are plotted in 
Figure 6E beside the color bar. The effect of glare on Blacks is very 
large and highly variable. The appearances of all Black segments 
are constant, but the amounts of light on receptors are variable: 
(A)log_range[49%–98%]; (B)log_range[62%–99%]; (C)log_
range[26%–93%]; (D)log_range[15%–86%].

Scene has [log_range = 2.3]; and Retina(Blacks-Only) has 
[log_range(A) = 1.1]; [log_range(B) = 0.9] [log_range(C) = 1.5] 
[log_range(D) = 1.7]. Scenes(A,B,C,D) are not million-to-one 
range HDR targets; they are normal range 200:1 displays. How 
does vision generate nearly identical appearances from such 
variable information in receptor responses? What mechanisms 
can calculate these results?

By addressing the actual image on the retina, we can no longer 
assume a zero-glare hypothesis in “normal” scenes. That 
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zero-glare hypothesis made us believe that designs of Illusions 
were appropriate stand-ins for uniform-surface objects in the 
world that had recognizable independent shapes and interpretable 
perceptual properties. Real retinal images require mechanisms 
that finds these shapes in each illusion’s nonuniform unique 
retinal gradients. Then, these mechanisms must find a way to 
make them appear identical.

Glare does not alter the fundamental proposition of Illusions, 
namely that equal scene_luminances do not generate equal 
appearances. However, glare creates a unique spatial pattern for 
each of the four Contrast + Assimilation targets in (Figure 6). 
Observers do not see glare’s re-distribution of light. Nevertheless, 
glare is scene specific. There are no accurate short-cuts modeling 
these targets because the GSF never reaches an asymptote. Short-
cuts based on highly simplifying assumptions can be misleading. 
Models of glare must incorporate all the individual scene-
dependent contributions from all the other pixels.

In summary, Figure 6 visualizes the retinal light pattern that 
becomes the array of receptor responses. That pattern shows  
the scene-dependent transformations of scene_luminances. 
Distortions of GrayROI luminances, make them unequal 

retinal_contrasts. This affects the asserted logic of a Lightness 
Illusion, that GrayROIs are equal stimuli. The range distortions for 
GrayROIs are small. However, that range is very large for Blacks, 
even though the Scene’s range is limited to 200:1.

The summary from section Contrast and Michael White’s 
Assimilation Targets is very simple. Figure 5-Scene shows all 
four Contrast + Assimilation Illusions on the display. They are 
made of only 450, 30, and 2.2 cd/m2 regions. Figure 6-Scene 
shows the spatial distribution of scene_luminances. 
Figure  6-Retina shows glare’s redistributed light patterns 
on receptors.

Please inspect the full-resolution pseudocolor retinal contrast 
patterns in Figure 6 file in Data Sheet 3 in Supplementary material. 
Gradients are clearly visible.

Contrast and Todorovic’s assimilation 
targets

In Figure 7A we have eight identical gray luminances (four 
circles-top and four crosses-bottom). On the left side these grays 

FIGURE 6

Pseudocolor renditions of the four Illusions shown in <grayscale> in Figures 5 (A-D). Column (E) shows [cmap.LUT] color index map. Scene (top-
row) < scene_luminance_log_cmap > images [log_range = 2.3]. Retina (middle-row) calculated <retinal_contrast _log _cmap > images. Grays only 
(bottom-row) copies of Retina are covered by a light-blue mask over all the max-and min-luminances. This leaves Grays only pixels in all four 
Illusions. Enlarging the Grays Only image illustrated glare’s distortions of uniformity in GrayROIs. Column (E) adds an enlarged color-bar showing 
the Pseudocolor conversion from digits to color patches. The range of digits is [0, 255]; the range of log_retinal_contrast is [−2.3, 0]. The black 
vertical lines (A–D) plot the ranges of <log _retinal_contrast > of all Black pixels (scene_luminance = 2.2 cd/m2) in the each Illusion. The horizontal 
line in each range is its mean log _retinal_contrast value. Every Black glare-receiving pixel value varies with the angular distances between itself 
and all the donating White and Gray pixels. The changes in spatial position of these scene elements causes the dramatic variability of Black retinal 
contrast values. Nevertheless, they have identical rich black appearances on the display (Figures 5A–D-Scene).
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(uniform background) all appear the same lightness. On the right, 
the four grays (different backgrounds) have different appearances.

On top-right we see the background pattern has the traditional 
Contrast Illusion surrounds: Black (lighter appearance); White 
(darker appearance). Below that, Todorovic (1997) Assimilation is 
scaled to fit Contrast. In Assimilation apparent-Gray circles are 
behind slits in White, and Black foregrounds. In this spatial 
arrangement, the mostly-White ground makes Gray appear lighter, 
mostly-Black makes Gray appear darker.

We used Python code to calculate the <retinal_contrast> of 
Figure 7A 4,096 × 2,048 pixels; 8-bit display. The viewing_distance 
was 24 inches, subtending 20° by 10°. Each pixel subtends 
0.24 min of arc.

Numerical analysis of scene luminance and 
calculated retinal contrast

Glare changes the output range of linear retinal contrast to 
62:1, compared with the input range of 200:1. The blue arrows and 
red arrows in Figure 7A indicate the locations of two horizontal 
digital (1 pixel high) scans across the input and output images of 
the Contrast Illusion’s Gray circles and Assimilation crosses.

The dashed-black line (Figure  7B) plots the input scene 
luminance values. These inputs are identical at both blue and red 
arrows. They plot input, and illustrate edge sharpness in displayed 
scene_luminance. They pass through a portion of all four types of 
scene segments (W, B, G, and background).

Along the blue scan, glare has reduced retinal_contrast to 
[log_range = 1.7]; and along red scan Assimilation [log_
range = 0.75]. Linear values are[Scene range = 200:1; Contrast 
range = 50:1; Assimilation range = 5.6:1]. Assimilation segments 
have lower range and more rounded retinal edges.

In Figure 7B blue-line plots retinal_contrast_log through the 
middle-line of all gray circles. The red-line plots crosses’ middle-
line of horizontal arms. The red and blue scans of GrayROIs are 
different. In uniform light-gray background, Grays-in-background 
crosses (red) have slightly more scattered light than circles (blue). 
On the right-side (Illusions), Assimilation’s White foreground 
adds the most glare light. Contrast’s circle in Black surround 
received the least amount of glare in all scene segments. Its large 
Black surround becomes a large asymmetric U-shaped gradient.

In Figure 7A both Circles are examples of Glare’s Paradox. The 
GrayROI-in-White appears darker with more glare than GrayROI-
in-Black; that appears lighter. Todorovic’s Assimilation has a very 
different glare pattern. Here, Todorovic’s Cross-in-White 
foreground is maximal glare and Cross-in-Black is minimal. These 
glare-induced changes are much larger than Contrast, with 
opposite effects. Assimilation’s glare adds more glare to apparently 
lighter segments; and less to darker ones. Again, Assimilation does 
not exhibit “Glare’s Paradox.”

Histograms of gray-ROI’s in contrast and 
Todorovic assimilation targets

Figure  8 plots histograms of all Gray pixels in circles and 
crosses in different backgrounds. Contrast and Assimilation differ 

in ranges and distributions of glare. In circles (Figure 7A; top) the 
max/min edges are 46 min radius from their centers. The crosses 
are 10 times closer to max/min edges (4.2 min at nearest pixel). In 
Assimilation, glare adds the most glare to Gray-in-White 
pixels(red-plot). Grays-in-Black(green-plot) have the least glare. 
In Assimilation, glare adds more glare to Grays that appear lighter, 
and the least to those that look darker. The opposite happens in 
Contrast’s circles, showing Glare’s Paradox.

Pseudocolor analysis
Contrast and Todorovic Assimilation have uniform scene_

luminances with perfect square-wave edges. There are no gradients 
in this input digital image. In retinal_contrast all sharp edges 
become a wide variety of different slope gradients. Figure 7C is a 
pseudocolor rendition of <retinal_contrast_3-3-2 RGB.LUT>. Glare 
transforms uniform scene Blacks into an assortment of gradients on 
the retina. Figure 7C shows dramatic local-spatial-transformations 
of the “equal scene Grays.” The [3-3-2 RGB.LUT] was designed to 
visualize numerically uniform scene segments. It does not preserve 
apparent lightness, as [cmap.LUT] does. Four uniform scene_
luminances, become this very complex pattern of receptor responses.

Todorovic crosses are made of lines that are 380 pixels long, 
and only 25 pixels wide. When viewed at 24 inches these lines 
subtend 1.5° by 6 min of arc. Figure  7D shows enlarged glare 
gradients surrounding crosses. The sharp pseudocolor edges in 
Figure 7D allow us to visualize gradients that are invisible to us in 
grayscale images. The resolution of these computations was 
chosen to be slightly higher than foveal cone-mosaic spacing, but 
lower than spatial-processing performance in Hyperacuity and 
Stereo Acuity. This image describes patterns of light on receptors. 
There are many subsequent variables that follow in the visual 
pathway to appearance: observer acuity, rod and cone sampling, 
receptive-field organization, cortical-multi-resolution fields 
(image domain), or spatial-frequency channels (Fourier domain), 
and neural-spatial processing. These steps are beyond the scope of 
this article.

Intraocular glare upsets Lightness Illusions “null experiment.” 
Glare redistributes scene’s light patterns. These retinal patterns are 
unique in every scene because they respond to the entire pixel 
population (histogram), and each pixel’s relative positions to each 
of the other 8-million pixels. The complex-spatial patterns made 
with Pseudocolor LUTS suggests how difficult it is to analyze 
appearances if we restrict ourselves to using single-pixel analysis 
of data. Every pixel’s correlation with scene luminance is altered 
before light reaches retinal receptors. Predicting appearances 
based on scene-independent models (extensions of silver-halide 
films and Colorimetry principles) is an extraordinary challenge. 
The light falling on a single pixel (quanta catch, or CIEXYZ) is an 
unreliable prediction of its appearance. The only condition in 
which single-pixel data correlates with appearance is the special 
case of perfectly uniform segments, in uniform illumination, in 
uniform constant “rest-of-the-scene” (McCann, 2017, 2020). 
We  need to recall that appearances are the result of spatial 
comparisons. Post-receptor neurons in the visual pathway 
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perform these spatial image processing steps. Illusions make the 
point that appearances are the consequence of spatial comparisons 
involving “the-rest-of-the-scene.”

Please inspect the full-resolution <grayscale> and pseudocolor 
retinal contrast patterns in Figure  7 file in Data Sheet 4 in 
Supplementary material.

FIGURE 7

Contrast and Todorovic Assimilation targets. (A) Scene: Image [log_range = 2.3] displayed on computer screen (top-half is Contrast; bottom-half is 
Assimilation). (B) Horizontal log luminance plots through the centers of the circles and crosses. Horizontal log scene luminances plots are identical 
in top Contrast and bottom Assimilation (dashed black line). Log retinal contrasts are different: circles (blue line at blue arrows); crosses (red line at 
red arrows). (C) Retina: Calculated log retinal contrast using [padding = replicate] and Pseudocolor [3–3-2RGB LUT], [log_range = 2.3]. 
(D) Enlargements of Retina Assimilation crosses: Gray-in-Gray surround (left); Gray-in-White surround (middle); Gray-in-Black surround (right). 
The 3-3-2 RGB LUT reveals equal luminance regions in Retina. Recall that the Scene is made up of only 4 uniform luminance (White, Gray cycles 
and crosses, Black, and background). Glare transforms Scene uniformities in very complex nonuniform patterns on the Retina. Blacks show the 
largest glare distortions. These luminance distortion patterns are invisible when viewing the display in (A).
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Edwin Land’s black and white Mondrian

Figure  9 is a simulation of Edwin Land’s constructed 
Natural Scene. The original experiment used over 100 
achromatic-matte-surface papers, intentionally made with 
different paper sizes and shapes to avoid afterimages (Daw, 
1962; Land and McCann, 1971). It used an illumination 
gradient (bright-at-bottom), (dim-at-top). Land selected two 
paper ROIs (circles in this simulation): high-reflectance paper 
at the top, and low-reflectance at the bottom. He adjusted the 
gradient of light so luminances from these papers had identical 
scene luminance circles. The top circle appears near white; 
bottom is much darker. Land demonstrated that both White 
and Black appearances were generated by the same light, at the 
same time, in the same scene. In 1967, this observation, made 
by the OSA audience, was unique. Land’s actual demonstration 
had greater range of light, and greater range of appearances 
than Figure 9. In Land’s HDR scene construction, paper at the 
top appeared whiter; and bottom paper appeared blacker.

Figure  10-Scene (top-left) shows the Mondrian on the 
display; log grayscale, and pseudocolor renditions. Below are 
the retinal_contrast_log _mapped images. Pseudocolor shows 

clearly how luminance was affected by the gradient of 
illumination. The scene’s gradient is barely detectable in the 
grayscale image. The retinal contrast data show small 
amounts of spatial distortion by glare at the Mondrian’s top. 
Each circle center has scene_luminance equal to [80% log_
range]. After glare, the retinal_contrast top-circle (appears 
lighter) is [78% log_range]. The lower darker circle is [84% 
log_range]. Glare increased retinal_contrast of the darker 
circle. This is another example of Glare’s Paradox. Neural 
spatial processing overcomes the effects of glare by making 
the circle with increased receptor responses appear darker.

Please inspect the full resolution B&W Mondrian retinal 
contrast patterns in Figure  10 file in Data Sheet 5 in 
Supplementary material.

Adelson’s Checkershadow illusions

Ted Adelson (1995) made a synthetic target called the 
Checkershadow® Illusion. Land never called his Black and 
White Mondrian experiment an Illusion. The B and W 
Mondrian, and the Checkershadow are, in fact, the same 
experiment. They are made of highly visible edges, and hard-
to-see gradients. Land used luminance and appearances 
measurements in the B&W Mondrian experiment to propose 
a bottom-up model of calculating apparent Lightness 
sensations. As Land pointed out, Lightness does not always 
correlate with reflectances (Land, 1974). In this research, 
Lightness is defined as appearance measured by observer 
matches to a standard complex target (McCann et al., 1970). 
The work developed into a multi-resolution application, and 
hardware implementations (Frankle and McCann, 1983; 
McCann, 1999, 2004) that calculated Lightness appearances 
that correlated with observer matches (McCann and Rizzi, 
2011, pp.293–337).

Land believed that accurate illumination was “unknowable,” 
as he wrote in the last sentence of his Ives Medal Address (Land 
and McCann, 1971). Given the array of all scene luminances, 
Retinex’s approach was to build appearance by emphasizing edges 
and minimizing gradients. These Land and McCann, and other 
Retinex algorithms modified the statistical properties of scene 
luminance arrays (McCann and Rizzi, 2011).

Adelson’s (1995) version of edges and gradients 
(Checkershadow®) is in-practice the same as Land’s B&W 
Mondrian. Adelson introduced digital gradients attributed to 
illuminance, and digital edges attributed to reflectance. Adelson 
used a different definition of Lightness, namely “Lightness is 
defined as the perceived reflectance of a surface. It represents 
the visual system’s attempt to extract reflectance based on the 
luminances in the scene.” Adelson claimed that “… illuminance 
and reflectance images are not arbitrary functions. They 
are constrained by statistical properties of the world.” (Adelson, 
2000). Land and McCann defined Lightness as observer 
appearance matches to a standard complex scene (McCann 

FIGURE 8

Histograms of all Gray pixels in Contrast (circles) and Todovoric 
Assimilation (crosses) in different backgrounds. Plots of retinal_
contrast_log scaled to log_range = [−2.3,0.0] vs. pixel count. The 
vertical axis is a linear count (256 bins). Each histogram is 
normalized to its own peak. Gray-in-Black surrounds are green; 
Gray-in-gray are blue; Gray-in-White are red. In Assimilation 
crosses, glare adds more light to Gray segments that appear 
lighter in White, and the least light to Grays that appear darker in 
Blacks (Figure 7A). The opposite happens in the Contrast’s circles, 
showing Glare’s Paradox.
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et  al., 1970; Land and McCann, 1971; Land, 
1974).  Later,  Adelson’s defined Lightness as a surface 
perception(Adelson, 2000).

Since this article has limited scope, it cannot resolve which 
set of statistical properties are the better framework for 
appearance: bottom-up statistics of each scene, or top-down 
statistics of the world. The article will continue with the study 
of effects of glare on Adelson’s Checkershadow’s retinal_contrast 
(Figure 11).

The Checkershadow has edges connected by gradients. The 
biggest difference between Mondrian and Checkershadow 
experiments is the large-White surround, resembling a beach scene 
(McCann, 2014). The Checkershadow has mean scene_luminance 
of 50%log_range compared with 30% for B&W Mondrian.

That White surround reduces Checkershadow’s scene_
luminance [log_range = 1.6] to retinal_contrast [log_range = 1.2]. 
Adelson’s specified square (Checkershadow, top-edge) ROI 
appears darker. Its retinal_contrast values vary from [72% to 
90%log_range]. The lighter-central square varies from [65% to 
71%log_range]. The “Illusion” overcompensates glare because 
receptor responses to “darker square” are greater than those of 
“lighter square.” It is another example of Glare’s Paradox.

Please inspect the full-resolution Checkershadow retinal 
contrast patterns in Figure  11 file in Data Sheet 6 in 
Supplementary material.

Glare’s paradox
Figure 12 (top) shows the appearance of the Contrast, 

B&W Mondrian, Checkershadow computer displays. It adds 
Negative displays of B&WMondrian and Checkershadow 

made with (Photoshop’s® Invert function). Negative Illusions 
work very well. The Mondrian has a different pattern with 
top-illumination. The “shadow” in Checkershadow now 
appears to emit light. The [cmap.LUT] (Figure  12, 
bottom-row) displays the complexity and variable range of 
Glare Paradoxes.

In the Negative Mondrian, the top-darker circle has retinal_
contrasts varying from [70%–79%log_range]. The bottom-darker 
circle varies from [65%–71%log_range]. In the Negative 
Checkershadow, the central-darker ROI has retinal contrasts 
varying from [86%–92%log_range]. The top-lighter square varies 
from [78%–85%log_range]. Appearances of both GrayROIs in 
Negative Illusions (Mondrian and Checkershadow) 
overcompensate glare.

Five Contrast Illusion targets, Positive-and Negative B&W 
Mondrians, and Checkershadows are all examples of Glare’s 
Paradox. Namely, darker GrayROIs appearances have more glare 
light. These darker ROIs are in local regions with higher-than-
average scene_luminances. The sequence of observations is 
[greater average scene_luminance region ➜ greater glare ➜ 
smaller edge ratios ➜ higher-slope visual response function ➜ 
darker appearance].

Studies of glare in HDR scenes (McCann and Rizzi, 2011) 
showed extraordinary reductions of retinal-dynamic range in 
maximal-glare scenes. The input scene has [log_ range = 5.4]; after 
glare [log_range = 1.5] (McCann and Vonikakis, 2018). Vision’s net 
response function to light on receptors varies with scene content. 
Vision has limited-range (high-slope) visual-response function in 
high-glare scenes. These darker Glare Paradox regions in Lightness 
Illusions, affected by glare, produced lower-range retinal_contrast, 
and have appearances associated with high-slope visual-
response functions.

Glare’s Paradox exhibits reciprocal properties for GrayROIs 
that appear lighter. In all Contrast and Natural Scene examples: 
the sequence of observations [lower average scene_luminance 
regions ➜ less glare ➜ larger edge ratios ➜ lower-slope visual 
response function ➜ lighter appearance].

Glare’s Paradox is not found in Assimilation segments. Glare 
adds more glare light to segments that appear lighter; less light to 
segments that appear darker. The angular separation between max 
and min are smaller, and local retinal_contrast range is smaller. 
Glare assists Assimilation’s change in appearance. Assimilation 
Illusions improve with smaller angular size, unlike Contrast 
Illusions where observer matches are constant with changes in 
size. (McCann, 1978).

Region-dependent visual response functions could 
account for neural-spatial image processing that tends to 
cancel glare. Examples of region-dependent image processing 
hardware that mimics vision’s-spatial processing are described 
in McCann and Rizzi (2011) pp. (292–340). In all scene 
studied here, Contrast and Assimilation show distinctly 
different responses to light. Models of vision must predict 
both Illusions. Single pixels scene-independent models 
(sensor, film, Colorimetry) cannot predict either. 

FIGURE 9

Illustration of Land’s B&W Mondrian. Edwin Land’s demonstration 
of his Black and White Mondrian (Ives Medal Address to the 
Optical Society of America in 1967).
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FIGURE 11

Checkershadow Illusion—Scene (top-row) reproduces the image on the display; scene_luminance_log_grayscale; and log_cmap. Retina (bottom-
row) retinal_contrast using the same mapping. All calculations used parameters: pseudocolor [cmap.LUT], [padding = replicate]. The first three 
columns used [log_range = 2.3]. The extended White surround for the Tower and Checkerboard raised the mean retinal contrast values and reduced 
the total [log_range = 1.2]. The final column on the right used [log_range = 1.2] to get a better rendition of retinal_contrast values in this illusion.

Multi-resolution edge-detection techniques (Frankle and 
McCann, 1983; McCann and Rizzi, 2011) are needed to 
address Glare’s Paradox.

Please inspect the full-resolution retinal contrast patterns 
of five examples of Glare’s Paradox in Figure 12  in Data Sheet 7 
in Supplementary material.

Discussion

Since the 1960s, vision research and digital electronic imaging 
have produced an exponential growth in spatial-image-processing 
mechanisms. The work of Edwin Land, Fergus Campbell and John 
Robson, David Hubel and Torsten Wiesel, Gerald Westheimer and 

FIGURE 10

Land’s B&W Mondrian. Scene (top-row) Mondrian on display; scene_luminance _log_grayscale, and scene_luminance_log_cmap. Retina 
(bottom-row) retinal_contrast using same LUTs. All Figure 11 calculations used parameters [log_range = 2.3], [padding = replicate].
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Suzanne McKee, Semir Zeki, Mark McCourt and Barbara 
Blakeslee expanded vision research by studying complex scenes. 
Instead of input pixels, they studied how entire scenes, or extended 
scene segments build appearances.

This article provides a new Python computer program that 
calculates the relative contrast of light imaged on the human 
retina. It also describes the analysis of scene_luminance input and 
retinal_contrast retinal response.

A previous study of glare, used HDR scenes with 1 million 
to 1 range (McCann and Vonikakis, 2018). The greater the range 
of luminances, the greater the magnitude of glare changes in the 
darkest regions. However, glare (on a pixel) is sum of all other 
scene pixels’ contributions. The content of the scene, and its 
local spatial arrangements of luminances generate unique glare 
patterns for every scene. This is because GSF does not approach 
a constant value. As shown in Figure 2 the CIE GSF maintains 
its high-slope decrease at 60° angular separation from the 
source pixel.

Contrast + Assimilation targets are the combination of 
lower-dynamic-range scenes (smaller glare magnitudes), and 
extreme “rest-of-the-scene” contents, limited to Whites and 
Blacks. The million-to-one HDR input range is reduced to 200:1 
for these Illusions. This combination has a normal range of glare, 
and a large local glare re-distribution caused by 
max-and   min-luminance scene content everywhere in the 
“rest-of-the-scene.”

Appearances are the consequence of glare plus neural 
processing. Glare is a simple optical process (rapid decrease in 
scatter with increase in visual angle). The GSF is convolved with 
all scene_luminances. All of the scene’s content is the co-creator 
of the spatial pattern of receptor responses.

Visibility of gradients

Gradients are an essential sub-topic in vision. In the 
spatial-frequency domain, they live below the peak of the 
eye’s Modulation Transfer response function. Campbell and 
Robson (1968) transformed vision research in the 1960’s. 
They initiated decades of research in which oscilloscopes 
became vision research’s instrument of choice. Measurements 
of sinusoidal gratings at different frequencies generated 
vision models using Modulation Transfer Functions. Vision 
research moved from studying a few pixels to complex 
images and entire scenes. Campbell and Robson’s Contrast 
Sensitivity Curve was a plot of log Sensitivity (1/sinusoid’s 
detection threshold) for variable sinusoids (0.1 to 100 cycles 
per degree) with a peak at 3 c/degree and a lower slope 
decrease in sensitivity. The data reached a practical lower 
limit; at 0.1 c/degree one-cycle of sinewave target 
subtends 10°.

Land and McCann (1971) used gradient threshold to remove 
them from luminance input arrays in early Retinex Lightness 
models. McCann and colleagues measured the detection threshold 
of gradients.

“At first, we  thought that threshold was the range 
compression mechanism. It stimulated our MIT neighbors' 
interest in the problem. Tom Stockham described 
homomorphic filters, and Horn and Marr described 
Laplacian operators. These approaches applied 
mathematical functions to the removal of gradients. Our 
research at Polaroid turned in a different direction. If the 
threshold mimicked our human visual system, our model 

FIGURE 12

Glare’s Paradox-Scene: (top-row) shows Appearances of: Contrast, Mondrian [positive and negative], Checkershadow [positive and negative]. 
Retina:(bottom-row) pseudocolor rendering using [cmap.LUT]. On the far right is a plot retinal contrast digit value [0,255] vs. pseudocolor samples 
used to identify retinal _contrast_ log values. In total, this article calculates the retinal_contrast image for 9 Lightness illusion scenes. All 9 scenes 
contained GrayROI segments that showed Glare’s Paradox. In the 5 scenes that contained Assimilation Illusions, none of their pairs of GrayROI 
showed Glare’s Paradox.
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should have exactly the same properties as vision. 
We needed to measure the rate of change on the human 
retina that was at the threshold of detection. …We 
undertook a major effort to understand the visibility of 
gradients. We  felt we  needed better data on the rate of 
change of radiance on the retina that was at detection 
threshold to improve our model. It took 10 years, but 
we  learned that there is no universal rate of change at 
threshold.” (McCann and Rizzi, 2011; p.312)

McCann et al. (1974) measured the detection threshold of 
linear gradients at five different viewing distances (range = [4, 
to 16] feet, and [4.8°,to 1.2°] angle). Despite the 4× change in 
slopes of luminance gradients, detection thresholds were 
constant at all viewing distances. Savoy and McCann (1975) 
used threshold detection and supra-threshold matching to 
show that below the 3 cycle/degree peak, the visual detection 
thresholds for sinusoids no longer correlated with their 
spatial frequency. They found that the number of sinewave 
cycles correlated with visual responses. Hoekstra et al. (1974) 
found similar results. All that matters is angular size and 
number of cycles of sinusoid, and the size of the surround 
(McCann, 1978; McCann et al., 1978; Savoy, 1978; McCann 
and Hall, 1980; McCann, 2021b). Although we had proposed 
this rate-of-change threshold, we  could not find 
psychophysical evidence for it as a visual mechanism. The 
Land and McCann gradient threshold, the Stockham spatial 
frequency filter, the Marr and Horn Laplacian can improve 
some pictures, but they do not have the same properties as 
vision. They cannot improve all pictures. Gradients are an 
under-appreciated special spatial challenge to vision research. 
As described above (Results), gradients are present in the 
retinal images, particularly in Lightness Illusions and real 
Natural Scenes.

Glare’s role in image quality

Glare requires attention in quantitative image research. 
Glare adds a substantial modification of scene-content-
dependent light on receptors. It is present in all accurate 
quantitative analysis of image data. We realize this every time 
we  measure a scene with a well-designed low-glare-optics 
photometer, and compare its data with data from digital 
cameras [Camera digits ≠ Meter measurements] (McCann and 
Rizzi, 2007). Cameras capture scene radiances plus glare from 
camera’s optics. Cameras then add additional signal processing 
(McCann and Vonikakis, 2018). It is not possible to correct 
camera’s glare without knowing the data we  are trying to 
measure (ISO 9358, 1994; McCann and Rizzi, 2011-pp.99–
112). Glare’s scene-dependent re-distribution of light is 
difficult to observe (McCann, 2017). More important, glare 
redistributes the scene’s light in all scenes; it modifies both 
edges (higher-spatial frequencies) and uniform scene 
segments (lower-spatial frequencies).

Neural spatial comparisons tend to 
cancel glare

Vision has two powerful spatial transforms of light from 
scenes: optical, then neural. Image quality of a scene_luminance 
array is degraded by optical veiling glare. However, receptor 
responses are the input to neural-spatial processing.

The central theme of Lightness Illusions is [Appearance 
≠ scene luminance]. Contrast and Assimilation Illusions 
proved, a long time ago, that the “rest-of-the-scene” controls 
the appearance of scene segments. Many Lightness Illusions 
are designed with perfectly uniform segments (something 
that is rarely found in Natural Scenes). Uniform segments, 
with different luminances create a reasonable, but hidden 
assumption that these segments become an “object” with 
perceptual consequences. Glare upsets the “object” 
assumption. The uniform scene segments become a complex 
pattern of nonuniform light on receptors. After glare, 
populations of individual receptor responses cannot reliably 
report scene segmentation of “objects” to neurons. Sharp 
edges have become high-slope gradients. Other neural-spatial 
computations are needed to find and specify the location of 
objects’ edges that have become gradients (Figure 4).

All of the non-uniformities in Contrast + Assimilation 
experiments are not visible. All scene segments in these 
targets appear to be uniform patches on the computer display. 
Appearances are not accurate renditions of a receptor’s 
response to light. The lesson from Illusions is [Apparent 
Lightness ≠ scene luminance]. The lesson from this study is 
[Apparent “object” Uniformity ≠ retinal contrast and 
receptor responses].

Vision’s second spatial transformation is [Receptor responses ➜ 
ROI Appearance]. A comprehensive model of vision requires 
separate analysis of both independent transformations: optical and 
neural. Understanding appearances generated by scene_luminance 
is made more difficult because Glare’s Paradox shows these two 
strong spatial-transformations tend to cancel each other. All nine 
Lightness Illusions in this article contained pairs of GrayROI 
segments that showed Glare’s Paradox. Neural spatial processing not 
only cancels the effects of glare, it also overcompensates for it to 
create Glare’s Paradox. (In the 5 scenes that contained Assimilation 
Illusions, none of their pairs of GrayROI showed Glare’s Paradox.) 
Vision’s minimization of glare has the advantage that we rarely notice 
glare in everyday life. Neural-spatial comparisons, seen in Glare’s 
Paradox, overcompensate the effects of glare. Post-receptor-neural 
mechanisms emphasize edges, and minimize gradients.

Neural cancelation of glare creates a challenge for vision 
research; namely the separation of the independent optical 
effects from later neural effects. The psychophysical 
measurements of the neural effects caused by the “rest-of-the-
scene” are severely underestimated when glare is assumed to 
be zero. In the Contrast experiments, the “Gray-in-White” has 
more light from glare. But, this “Gray-in-White” scene 
segment appears darker, showing Glare’s Paradox. The neural 
process compensates for glare’s increased luminance, and 
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then overcompensates to make the “Gray-in-White” darker 
than the lower luminance “Gray-in-Black” segments. What 
we measure as psychophysical change in apparent lightness is 
a small residual difference from the sum of two-substantial 
lightness vectors in opposite directions. We need to know the 
glare-distorted receptor output to measure the magnitude of 
Contrast’s neural-spatial transformation in the opposite 
direction (McCann and Rizzi, 2011).

The combination of intraocular glare and Lightness Illusions 
shows complex-spatial-image-processing transformations 
following receptor responses. While optical veiling glare distorts 
the pattern of light from the scene, neural spatial processing 
cancels glare, and then over compensates for it. That is why glare 
is hard to see.

Instead of individual receptors, vision uses arrays of receptor 
responses to locate and synthesize sharp edges, and minimize the 
appearance of gradients. Post-receptor vision modifies the many 
local ranges of retinal_contrast to generate more useful 
appearances. Local neural-spatial processing is needed to 
compensate for the range of light in Natural HDR Scenes, and for 
glare in normal-range Lightness Illusions.

Summary

This work adds essential facts to research in vision and image 
quality. Glare transformations of scene information are substantial 
in all of imaging, not just HDR.

 1. While Lightness Illusion’s paradigm of equal stimuli holds 
in scene photometry, it fails for retinal receptor’s quanta 
catch and receptor responses.

 2. Models of neural-spatial processing and human image 
quality must consider the actual spatial array of receptors’ 
quanta catch.

 3. Nine examples of Glare’s Paradox shows that glare adds 
more light to GrayROIs with darker appearances; and less 
light to lighter ones. Neural spatial image processing 
cancels and then overcompensates the effects of 
optical glare.

 4. Glare adds considerable light to Assimilation’s ROI that 
appear lighter. More research studies are needed to 
determine whether glare alone can predict Assimilation’s 
appearances. Both retinal receptor responses and 
appearances increase with increases in optical glare.
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