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Hacques G, Seifert L and Gasso G
(2023) Evaluating transfer prediction
using machine learning for skill
acquisition study under various
practice conditions.
Front. Psychol. 13:961435.
doi: 10.3389/fpsyg.2022.961435

COPYRIGHT

© 2023 Aniszewska-Stȩpień, Hérault,
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Recent research highlighted the interest in 1) investigating the e�ect of variable

practice on the dynamics of learning and 2) modeling the dynamics of motor

skill learning to enhance understanding of individual pathways learners. Such

modeling has not been suitable for predicting future performance, both in

terms of retention and transfer to new tasks. The present study attempted

to quantify, by means of a machine learning algorithm, the prediction of skill

transfer for three practice conditions in a climbing task: constant practice

(without any modifications applied during learning), imposed variable practice

(with graded contextual modifications, i.e., the variants of the climbing route),

and self-controlled variable practice (participants were given some control

over their variant practice schedule). The proposed pipeline allowed us to

measure the fitness of the test to the dataset, i.e., the ability of the dataset

to be predictive of the skill transfer test. Behavioral data are di�cult to

model with statistical learning and tend to be 1) scarce (too modest data

sample in comparison with the machine learning standards) and 2) flawed

(data tend to contain voids in measurements). Despite these adversities, we

were nevertheless able to develop a machine learning pipeline for behavioral

data. The main findings demonstrate that the level of learning transfer varies,

according to the type of practice that the dynamics pertain: we found that the

self-controlled condition is more predictive of generalization ability in learners

than the constant condition.

KEYWORDS

learning dynamics, variable practice, constant practice, transfer skill, predictive

model, linear regression, feature selection

1. Introduction

In the proposed approach, we have raised the still open question about the conditions

of practice that are most beneficial for motor learning—is the variability of the task or

goal during practice advantageous or detrimental for the learning effect? Which type

of practice, constant or variable, is more profitable in terms of performance and skill

transfer to novel conditions? We claim to answer these questions through machine
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Aniszewska-Stȩpień et al. 10.3389/fpsyg.2022.961435

learning algorithms. Machine learning would help explain the

learning process by modeling and predicting phenomena such

as the transition between movement patterns, the flexibility of

a given movement pattern (e.g., range of motion), the rate and

dynamics of learning, and the skill and learning transfer. In our

study, we used a predictive model. Prediction is a predominant

manner to evaluate the rate and dynamics of learning through

a statistical approach, but it can likewise evaluate the post-

practice effect known as retention and transfer (e.g., skill and

learning transfer). The next subsection outlines the key features

of skill acquisition in humans, to explain how machine learning

can contribute to a deeper understanding of the learning and

transfer process.

1.1. Learning dynamics

Within the ecological dynamics framework (Button et al.,

2020), learning is defined as the entire reorganization of

the perceptual-motor intrinsic dynamics of the learner (i.e.,

behavioral repertoire). Such behavioral reorganization, in

particular, the nature of the change (shift vs. bifurcation),

involves the interplay of dynamic processes that are cooperation

and competition between the intrinsic dynamics and the

behavioral information (e.g., task goal) (Zanone and Kelso, 1992;

Button et al., 2020). In other words, learning some tasks more

easily than others depends on the extent to which behavioral

information cooperates or competes with the intrinsic dynamics.

If the pattern to be learned is near one of the intrinsically

stable patterns, cooperative processes predominate and the

learners quickly enhance their performance without exhibiting

a bifurcation between patterns, but a shift and refinement of

existing patterns. On the contrary, if the behavior required

by the task is far from the initial pattern contained in the

intrinsic dynamics, competition processes would lead to a drop

in the stability of the existing pattern, and a bifurcation or at

least an intermittent regime between the existing new patterns

will occur (Zanone and Kelso, 1992; Button et al., 2020). To

sum up, learning is a dynamic and continuous process, during

which learners are always navigating between competition and

cooperation processes, according to their improvement, which

is probed and updated continuously through the mutual and

reciprocal coupling between perception and action (Button

et al., 2020). When the task goal is set (and thus the multiple

movement possibilities are reduced to a certain subset) and

with practice, performance stabilizes as the learner discovers

and exploits effective movement solutions that fit the task

dynamics (Davids et al., 2012). In this way, from the constant

interchange of perception and action, the individual’s learning

model is attuned by a continuous flux of information that reflects

coordination dynamics (Kelso and Fuchs, 2016). Likewise, the

number of coordination patterns (Edelman and Gally, 2001;

Price and Friston, 2002) is reduced to a low-dimensional

structure (Liu et al., 2003). The individual learner’s path to

acquire his stable behavior, as manifested in the dynamics of

performance, is believed to be modeled by a monotonic function

and the most prevalent type of this function studied in the

literature is the exponential function. The exponential function

can at the same time be designed to grasp the essence of learning

dynamics. We comment more extensively on our choice of

modeling function curve in Section 2. Our primary goal was to

model the individual learning dynamics to consider the inter-

individual variability that could occur during learning and, more

importantly, that could occur depending on the nature of the

practice (constant vs. different forms of variable practice, as

described in the next section).

1.2. Induced variable practice in learning
protocol

Assuming that multiple coordination patterns (expressing

the exploitation of degeneracy of perceptual-motor systems;

see Seifert et al., 2016 for further details) can emerge within

and between learners for a given task goal, a selection among

those patterns or an intermittence between these patterns would

reflect how learners adapt to the task goal, especially when

variable practice is induced. Despite the pioneering work of Shea

and Morgan (1979) who long ago demonstrated that transfer

was greater in groups with random acquisition than in groups

with a blocked acquisition, there is an ongoing debate about how

inducing variability during practice facilitates learning in the

terms of finding the spectrum of solutions that help the system

generalize adapted skills. Indeed, most studies demonstrate that

increasing variability slows down learning but has a beneficial

effect on generalization (Raviv et al., 2022). Moreover, a similar

effect has been found in various domains, including motor

learning and machine learning. The most interesting questions,

thus, concern the impact of the amount of variability, its

mode of application, and the quantifiable effect it brings to the

generalization level.

Two types of externally induced variability can be

distinguished (Ranganathan and Newell, 2013). The

unstructured variations, usually applied with random rigor,

employ the modification of multiple variables at the same time

to perturb the proficiency of the performer (Frank et al., 2008).

They are contrasted with the structured variability (Braun et al.,

2009), which involves only one variable so by observing the

change they engender in the particular learning outcome, we

are allowed to explicitly match the operational variable with

the shift in performance (Newell et al., 1991; Pacheco et al.,

2019). When contrasting these two approaches, the results from

Hossner et al. (2016) indicated that a learning protocol, in which

some variables are varied and others are not changed from the

previous trial, was more effective in post and retention tests
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than a learning protocol involving variations in all variables.

This result suggests that more structured variations could more

effectively guide learning.

Moreover, recent results demonstrated that practice

conditions leading to excessive exploration of movement

solutions can be detrimental to learning (Sidarta et al., 2022). In

fact, newly discovered behavioral solutions require exploitation

during practice to stabilize them in the learners’ repertoire

(Hossner et al., 2016; Komar et al., 2019). Since the ratio

between exploration and exploitation of coordination patterns

differs among individual learners, giving them some control

over their practice conditions could be more respectful of the

individual learning dynamics. Such practice conditions have

been tested and have revealed promising results suggesting

that participants applied the given control to optimize their

practice schedule to their needs (Liu et al., 2012). Indeed, giving

self-control over the practice schedule to learners would be

consistent with the key property of emergence observed in a

dynamic system, which is expressed by functional adaptive

behavior in learning dynamics. In this regard, we will test this

claim in our approach.

1.3. Transfer test

To understand how variable practice (and its various forms,

e.g., teacher-led practice vs. self-controlled by learners) could be

beneficial to the development of functional adaptive behaviors,

it is needed to overcome the traditional retention test used to

assess learning and to evaluate as well the learning generalization

by measuring the skill transfer to the new context. The skill

level acquired during practice is in this case followed by a

variant condition (in the case of a climbing task—a new

route) for which performance is assessed. In comparison with

another post-practice test, the retention test, which is the

measure of the stability of the acquired skill level over time

(or the inverse of forgetting), the formal definition of skill

transfer emphasizes the degree of similarity (or difference) of

the original, practiced condition (Pacheco and Newell, 2018b),

with the transfer condition (Ranganathan et al., 2014). In

our approach, we predict the value of performance transfer

(climbing fluency level), based on the spatial and temporal

performance dynamics during practice (reduced to the form

of fitting function parameters). The accuracy of this prediction

is subsequently used, comparatively, to judge whether the type

of practice was predictive of generalization, that is, whether

learners developed adaptive behavior to produce the skill

transfer effect.

A similar approach (but based on the raw biomechanical

variables rather than on performancemetrics, as was done in our

case) was used in Pacheco and Newell (2018b) to trace variability

in constantly practicing individuals. Our approach, however,

extends the previous analysis and compares the constant practice

result with the variable practice conditions that we consider

crucial to judge the stability of the learners’ dynamics under both

practice conditions (Pacheco and Newell, 2018a).

1.4. The rationale of the approach

For all the aforementioned reasons, repetitive practice

on an ongoing basis (constant practice under unchanged

conditions) seems insufficient for gaining knowledge about

transfer prediction in motor skill acquisition. Even if the

variability of some degree is always present in the learner–

environment system, it would probably be beneficial to

introduce the variable practice, which should adapt tasks design

to the needs and motivation of the learner along the learning

process. It is likely that in the absence of confronting the

effects of constant and variable practice, we would not be able

to capture the full range of learning dynamics. Therefore, the

selection of appropriate assessment (in terms of measuring the

level of variability), becomes crucial (Section 4) both during

the implementation of practice variants (training session) and

at the end of the learning process (testing session, in our case,

transfer trial).

In our study, we undertook the challenging task of

evaluating measures of learning used in behavioral neuroscience

applied to human movement science, under assumptions that

allow for simple application and interpretation. Anchored

within the framework of ecological dynamics (Button et al.,

2020), our main objective was to assess how learners functionally

adapt their behavior during constant and variable practice in

a learning protocol and then to predict how different forms of

variable practice could help to more efficiently transfer their

skills to a new situation. Thus, in light of this framework, we

questioned how the shape of the dynamics (steaming from a

given practice) is predictive of reaching a high level of transfer.

The presented analysis is based on the climbing training of

three groups of participants, who followed either training on

only one climbing route (constant practice), variants of that

route (variable practice), or on variants of the route but with

the opportunity to practice on the same routes for several

sessions (self-controlled practice), for which the skill transfer

test (on a new climbing route) was used for validation. For

each route, the performance scores of the participants, efficiency

(understood as fluency of movement or smoothness, detailed

in Supplementary Section 2.1) were calculated, which gave us

general access to the participants’ dynamics (i.e., time series of

fluency indicators). Climbing fluency (as exhaustively exposed

in the study by Seifert et al., 2014) proved to be a measure

that in different aspects (spatial and temporal, depending on

the indicator in use) corresponds to the learners’ skillfulness

in the climbing task. We assumed that both constant practice

(repetitive training on a single route) and variable practice (with

route variants introduced) might be effectively evaluated by the
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test of transfer of acquired skill to a new context. In our study,

this measure in each practice condition (constant and variable)

was matched with methods used in the machine learning

(Belloni and Chernozhukov, 2013) to predict the training

outcome (total effect of training) based on input (learning

dynamics reflected in ongoing training scores throughout the

climbing training protocol).

The rationale for employing the statistical method to trace

the effectiveness of transfer is rooted in the presumed attribute

of this test to track the ability of the climber to generalize to new

climbing routes. Indeed, during climbing, especially outdoors,

climbers are always faced with new environments and new

routes. Obviously, they may train on the same route if they

do not succeed or they wish to improve their fluency (which

justifies the distinction between imposed variable practice and

self-controlled variable practice groups). However, the essence

of climbing is to be able to climb “on-sight” a new route

(i.e., without any prior knowledge of the route). Furthermore,

by applying the reduction of the learning signal (the learner

performance history) measured by four metrics (entropy, jerk,

immobility ratio, and climbing duration, detailed in Section 2),

to the parameters of an exponential function fitted to it, we were

able to significantly reduce the dimensionality of the machine

learning prediction problem. Thus, in our analysis, the learning

dynamics could be captured by just a few parameters, which

facilitates machine learning algorithms that could be applied to

compare the transfer test prediction under different conditions.

To summarize, in our study, by means of machine learning

predictive algorithms, we attempt to address the problem of

learning evaluation with a transfer test applied to different

conditions of climbing practice (constant or variable one). The

method provided assumes the relation between the relevance

of test attribution in human movement science and statistical

predictivity understood as the relationship of the output data

(transfer test scores) to the input time series (variables of

learning dynamics). In further sections, we will describe the

methods used in the study (Section 2), brief the results

(Section 3), and discuss the results and their interpretation

(Section 4).

2. Methods

2.1. Data collection

2.1.1. Climbing experimental setup
A group of 34 student volunteers from the University of

Rouen Normandy (11 female students and 23 male students)

were recruited to participate in this study. On average, the

participants were 20.3 ± 1.2 years old, 172.3 ± 6.8 cm tall, and

66.4 ± 9.8 kg, and had an arm span of 172.7 ± 8.6 cm. Five

participants were left-handed, and the remaining 29 were right-

handed. One participant dropped out of the study during the

training sessions due to injury.

The participants of the experiment were climbing designed

routes on an artificial wall. They were novice climbers following

training consisting of 84 trials divided into 10 training sessions

that have been performed within 5 weeks with two sessions

per week (within 5 working days, excluding the weekend),

with at least 1 day of rest between two sessions. The training

concluded with one trial on a route, where the participants did

not train. This route was called the transfer route. The climbing

protocol has been thoroughly described in Hacques (2021).

The necessary elimination (resignation of one participant and

exponential divergence of three participants’ data, explained

further) resulted in a total of 30 participants being included in

the analysis: Nine of them (constituting the constant practice

group CP) were following the very same route (called the control

route) throughout the training. The remaining 21 climbers

(constituting the variable practice VP group) were climbing the

same route (control route) only on the first three trials of each

session, while the remaining trials in a session (three in sessions

1 and 10, and six in sessions 2 through 9) were performed

on different routes (called variant routes). Nonetheless, all the

FIGURE 1

Protocol of data collection for the acquisition of a behavioral signal. The rectangular blocks in the top figure count the sessions. The dots in the
bottom figure illustrate the number of trials in the sessions, which was the same for all the groups (CP, VP1, and VP2). The color of the dots
distinguishes the variability that was introduced. The black dots represent the route that was identical for all the climbers in all the sessions and
which was the control route. The gray dots represent either 1) control route in the case of the CP group, or 2) variant route in the case of the
VP1 and VP2 groups. The last red dot symbolizes the transfer route (test route which was di�erent from the control route or variant routes),
which is used to assess participants’ progress when faced with a novel context.
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groups practiced the same amount of trials per session. The

subgroup of the climbers who climbed the altered routes (VP)

could choose at the end of each session whether they wanted to

continue their practice on the same routes or be confronted with

a new route (VP2 subgroup). The rest of the VP group (VP1

subgroup) performed the instructor-controlled protocol and

were confronted with the new climbing route at each learning

session. The protocol is illustrated in Figure 1 and the climbing

routes examples in Supplementary Figure S2 in Supplementary

Section 2.1. By examining route modifications, we were able to

clearly discern the differences in the route designs. The route

conversions did not account for the handle shape modifications

or the rotation of the handle and focused mainly on their

displacement (due to the climbing variability detailed study

Hacques et al., 2021).

The hip coordinates of the participants were recorded based

on the trajectory of a red light provided by a LED lamp

attached to the climbing harness. Moreover, participants had

a Hikob IMU (Inertial Measurement Unit) placed on their

back. The IMU contains an accelerometer, a gyroscope, and a

magnetometer (Figure 2). Some of these recordings (position

and acceleration) were used to calculate the fluency indicators

for each of the 84 training session trials and one post-training

transfer route (detailed later in the present section). Before

each session opening, climbers were given feedback1 about their

climbing fluency during the preceding session.

2.1.2. Ethics statement
The protocol followed the guidelines of the Declaration of

Helsinki. Procedures were explained to the participants who

then gave their written consent to participate.

1 Feedback was intended to provide participants with information

about their climbing performance and guide their learning. The aim was

to encourage participants to discover newways of climbing the route and

to fluently chain movements to lower their fluency scores to the greatest

extent possible, without explicitly indicating how to do it (encouraging

external focus of attention Wulf and Shea, 2002). Before starting a new

session, the feedback from the previous session was described and

explained to the participants. It was presented in the form of images

of harness light trajectories on climbing routes during the session (one

image per climb, as in Supplementary Figure S3, Supplementary Section

2.1) and the corresponding values of three fluency scores labeled spatio-

temporal fluency (JE), spatial fluency (GE), and immobility (IM). They were

informed that the drawn line corresponded to the trajectory and that the

more direct it is, the lower the spatial fluency score (GE) would be. The

temporal fluency score (IM) was described as the percentage of climbing

time spent immobile and the spatio-temporal score (JE) as the measure

of saccadic movements during climbing (“knots” on the trajectory line).

The participants were also informed that their aim was to reduce these

scores to the greatest extend during training sessions.

2.2. Modeling the climbing learning signal

2.2.1. The reviewed signals
Three measures of fluency, which were precalculated for the

purpose of the study from the climbers’ trajectory, were used to

assess their performance while climbing each route: geometric

index of entropy (GE with units [bits] or [log2]), jerk of the hip

acceleration (JE, dimensionless), and the ratio of hip immobility

(IM measured in [s]), as in the Supplementary Section 1. All of

them are classic measures employed in the evaluation of motor

performance in climbing (Cordier et al., 1994; Seifert et al., 2014;

Orth et al., 2017) and describe the smoothness of movement

during climbing of each route (spatial fluency for GE, spatio-

temporal fluency for JE, or purely temporal fluency for IM). In

addition, as an auxiliary measure2, we used climbing time (CT,

measured in [s]).

Figure 3 presents the examples of behavioral signals

obtained by computing the fluency indicators of each trial

for one training participant. The trials’ fluency constituted the

training session scores and was taken into account as training

features in the machine learning algorithm. They shape the

learning curve, whereas the transfer trial fluency (post-training

evaluation score), which appears each time as a single red dot,

accounted for the prediction target in the statistical learning.

We can observe that the transfer fluency is of a completely

different nature than the learning function. Moreover, as the

climbing raw fluency values for different indicators demonstrate

a large range of discrepancies (from 10−12 for jerk to 101

for immobility and duration time), before any processing, we

applied standardization of data. It is worth noting, that for the

input data, we utilized fourmetrics (including climbing duration

CT), while only three fluency indicators were our prediction

outputs (GE, JE, and IM). Thus, we utilized four types of metrics

as features and three metrics as targets (Table 1).

2.2.2. Signal preprocessing and feature
extraction

For the prediction purpose, the main challenge that we face

from the machine learning point of view is the large number of

features in comparison with the small set of samples we dispose

of. We addressed this problem in two possible manners: by

fitting the exponential function to the measurements and by a

further feature selection step implemented in the first procedure

of our prediction algorithm (STEP 1 in Algorithm 1).

As mentioned in Section 1, the exponential curve has been

postulated as a function that reflects the learning progress

among the trainees and provides the best fitting to the learning

data. In the comparative study (Newell et al., 2009), the authors

2 Participants were not instructed to climb fast, but as smoothly as they

could.
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FIGURE 2

Climbing route setup: the led lamp light to track the trajectory of the climber is attached to the harness along with the IMU. The handholds on
the artificial wall are equipped with sensors.
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FIGURE 3

Four metrics (GE, JE, IM, and CT) of one participant of the VP group (ordinate axis indicates raw value scale, i.e., the values prior to
standardization). The black dots represent parts of the signal of each indicator that will be preprocessed to build the input features via
exponential fitting, they correspond to the training routes. The red dot exhibits the target value to be predicted; these target values correspond
to the last transfer route. The gray vertical lines indicate the session’s division. It is worth noting that the transfer route fluency score is of
di�erent nature than the practice session scores; thus, it cannot be estimated by extrapolating the exponential regression.

referred to established training data (data for testing fine visual-

motor skills: pursuit rotor task Adams, 1952 and mirror tracing

task Snoddy, 1926) and evaluated the power law and exponential

models with single- and double-time dynamics. In the rationale,

the authors mention (as in Mayer-Kress et al., 2006) the

slow dynamical evolution of the learning, which accounts for

general memory involvement, was additionally furnished with

the second time parameter. This parameter represents the

adaptation process within the ongoing session to grasp the fast

changes, usually predominant during the rest periods (outside

the scope of the measurements, thus their immediate presence

remains unregistered). However, even if the slow time dynamics

progress is undeniably present in our data (reflecting the stability

of the learning curve), patterns that reflect the fast time scale

(adaptation) are not possible to be captured in a task that induces

high fatigue, such as climbing (thus we dispose of too few trials

TABLE 1 Set of 8 features used for prediction of the 3 targets

(yI, I = {GE, JE, IM}).

Features (computed on training phase) Targets
(transfer
phase)

yGE

aGE eGE aJE eJE aIM eIM aCT eCT yJE

yIM

per session to reflect the fast scale effect). Hence, in our study,

we focus on modeling the slow dynamics using a decreasing

exponential function (Figure 4).

Exponential curve fitting is intended to summarize the

climbing training dynamics in a few features with which we

attempted to obtain the lowest number of parameters (features)
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1: STEP 1 ⊲ feature selection

2: procedure LASSO MODEL

3: Input X, y

4: Output S ⊲ the selected feature indices

5: for k=1 to n do ⊲ LOO-CV

Xk = X | {xk}, yk = y | {yk} ⊲ Xk is X deprived of sample xk

6: solve

ŵk = argminw
1
2 ‖yk − Xkw‖

2
2 + L̂k‖w‖1 ⊲ L̂k > 0 is selected with grid-search

7: end for

8: average over the estimates w̄ = 1
n

∑n
k=1 | ŵk | ⊲ most ŵk are sparse

9: select the relevant features across models

10: S = {1w̄(i)6=0}
p
i=1 ⊲ indexes of the non-zero elements of w̄

11: end procedure

12: STEP 2 ⊲ prediction refinement

13: pr = VP1, VP2 or CP

14: X̃ = [:, S] ⊲ reduced to set of indices S

15: procedure LINEAR REGRESSION MODEL

16: Input X̃pr , ypr

17: Output vector of errors errpr

18: for k = 1 to n do ⊲ LOO

19: estimate w̃pr = argminw
1
2

∑
j(y

pr
j − wT x̃

pr
j )2

20: compute error of prediction err
pr

k
= (y

pr

k
− (w̃pr)T x̃

pr

k
)2

21: end for

22: end procedure

Algorithm 1. Two-stage model (one indicator case)

possible (to apply the sequence of fluency indicators on sessions

to the prediction algorithm in further steps). Thus, if we focus on

the predominant tendency and reduce the number of parameters

involved in the exponential models, we might approximate

the dynamics as close as possible with a simple exponent that

could be ultimately symbolized with only two terms. In our

approach, the first parameter (an additive part a present in the

formula Equation 1) would refer to the maximum performance

of each participant (understood as the inverse of the fluency

measure) achieved during training (the asymptotic minimum

of the exponential decay, which is an inverted plateau and a

stable state of the learning dynamics) while the second one (the

exponential parameter in Equation 1, i.e., e = c · exp−b) would

depict the individual learning rate of each participant. This way,

the simplified two-parameter approach satisfies both: motor

description exhaustion (using as many parameters as necessary)

and data processing convenience (using the least number of

features).

The exponential model we employ to reflect climbers

dynamics is

f (t) = a+ c · exp(−b · t) (1)

With parameters a, b, and c (Figure 4). For each climber and

each of the related fluency indicators (GE, JE, and IM), we fitted

the exponential model by solving

min
a,b,c

1

n

∑

t

(a+ c · exp(−b · t)− I(t))2

Where I denotes the fluency indicator (GE, JE, or IM).

Hence, for each climber, the estimated parameters serve as

features to predict the outcome of learning progress in the post-

training transfer route fluency. Specifically, we consider a (an

additive parameter) and e = c · exp−b (exponential parameter)

as features associated with each fluency indicator (Table 1).

Even though the exponential model adopted here is justified

for learning curve modeling, we must be cautious since the

individual intrinsic dynamics (the inter-participant differences

in pre-training dynamics Kostrubiec et al., 2012) and the

context of motor activity (e.g., the different sports) may promote

different learning functions, as explained in the work (Newell

and Liu, 2012).

2.2.3. Sum-up of the input features
For post-training transfer score prediction, we used

the parameters of the exponential function fitted to the

training performance based on all four metrics (entropy,

jerk, immobility, and duration). Therefore, after reducing the
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FIGURE 4

Diagram of the modeling stages. The first stage, illustrated as black dots in the figure, depicts fluency calculation for the training data of one
participant, and the last red dot symbolizes climbing fluency for the transfer route in the post-test trial. In the second stage (learning dynamics
modeling), the exponential function is fitted to the training data signal, except for the transfer test value (unmatched). Subsequently, the
exponential function parameters of all metrics (entropy, jerk, immobility ratio, and climbing duration) are utilized in the prediction algorithm
(third stage) as an input set of features, while the transfer value is utilized as an output (target). This stage models the learning generalization. The
exemplary entropy data in the graph have been standardized beforehand.

parameter number to 2 (an additive, a, and an exponential term,

e = c·exp(−b)), we used altogether eight features to predict each

indicator’s transfer value for the datasets that consisted of 9 (CP)

and 21 (VP) samples (9 in VP1 and 12 in VP2).

We underline that (to be able to apply linear regression

algorithms), in the prediction, as in the exponential fitting

procedure, our priority was to reduce the number of features,

while not discarding essential information from data. The

involved initial specification for our model is detailed in Table 1.

2.2.4. The prediction algorithm
In our approach, we applied the linear model, suspecting

a linear relationship between input (the joint exponential

parameters of learning dynamics for all the indicators) and

output (test transfer fluency). For this aim, as mentioned in

Section 1, we evaluated the model predictions on each set of

practice separately (VP1, VP2, or CP).

For the y ∈ R
n, which is the output (transfer tests vector),

and X ∈ R
n×p, which is our input of the parameters of

exponential curve fitted to the fluency indicator history (learning

dynamics), where n and p are, respectively, number of the

samples (30) and of the features (8), we can formulate a linear

model. In order to apply the least squares linear regression

model, a necessary condition is that p ≤ n. Due to Table 1,

it is possible for VP1, VP2, and CP; however, by applying

the pre-train selection procedure with Lasso (Belloni and

Chernozhukov, 2013) (STEP 1) in advance of linear regression

application (STEP 2), we could improve our prediction result

(i.e., we are guaranteed not to degrade it). The method for

finding the best coefficients (weights) w in the linear models

(both steps) was leave-one-out cross-validation (LOO-CV)

(James et al., 2021). Lasso (Tibshirani, 1996) is known to perform

as a model selection method due to its properties of zeroing

out the unimportant coefficients in the model and returning the

sparsified vector of weights for further processing. A prerequisite
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of the two-stage approach (Belloni and Chernozhukov, 2013) is

that we should expect a sparse model. In Lasso hyper-parameter

tunning, the grid search was employed to find the best L̂ value

(Hastie et al., 2009). We configured the two-stage model as

follows in the Algorithm 1 (specified for one indicator).

3. Results

3.1. Exponential fitting evaluation

A measurement-based analysis is often challenged by

incomplete data. Because the protocol consisted of hundreds

of recordings per participant, it was likely that the equipment

sometimes failed, which was the case with our recorded

data. The voids were of two kinds: isolated random missing

fluency values and the missing sequences that corresponded

to one session (for jerk measurements). To handle the voids

in recordings, we first compared the fitting accuracy for

the (selected) participants’ complete samples of data with all

(sometimes incomplete) participants’ sample data, to check for

possible inconsistency. There were a total of 33 incompletely

measured tracks of participants, for which we performed fitting

of the exponential function, whereas there were a variable

number of full training tracks evaluations, depending on the

fluency score (GE: 27, JE: 20, IM: 27, and CT: 30). Obviously,

we aimed at including the incomplete samples in the study, to

increase the sample size and thus the reliability of the prediction.

From Figure 5, we can observe that difference in fitting

accuracy for incomplete and complete training tracks was in

favor of full training tracks (with an exception of the time

indicator CT, which, however, was not taken into account as

a valid measure of fluency in our study, as mentioned in the

beginning of the current section). For this reason, wemay expect

that, by imputing voids with appropriate data (e.g., using a

missing data reconstruction machine learning algorithm), we

could achieve a more accurate prediction. It is worth noting,

however, that the two statistical tests, Mann–Whitney U-test and

Kruskal–Wallis H-test (applied separately to each indicator),

performed on the full track data and the data with voids, did not

manifest statistically significant difference in the distributions

of fitting results. For that reason and for the sake of simplicity

(since the fitting accuracy difference was not substantial), we

assumed in the following analysis that we could rely on curve fit

to the corrupted signals (i.e., the data including missing values,

without reconstructing the data).

In addition, in both cases (complete and incomplete

datasets), three samples were eliminated due to the divergence

problems of the fitting algorithm. The significantly divergent

three samples of data to which the exponential function could

not be fitted may have been the result of the different initial

internal dynamics of the three participants, which had been

established before training [we can suspect that there was a

competition between the initial intrinsic dynamics and the

task dynamics, which would explain the poor performance

improvements observed in these participants, at least initially

Kostrubiec et al. (2012)]. Due to the first result obtained, we were

not reluctant to finally proceed with the 30 samples based on the

incomplete datasets.

3.2. Predictivity evaluation

We aimed to examine the predictivity of the sets of each

practicing group (VP1, VP2, and CP), by evaluating transfer test

prediction stability (i.e., error variability).

We assessed the quality of the prediction with error errpr

defined in Algorithm 1 (line 20). The final evaluation to be

depicted in Figures has been based on the median of the error

vector that is the output of the Algorithm 1 (the result of the

LOO procedure).

As Figure 6 demonstrates, the VP2 group excelled over the

other two groups VP1 and CP by the measure of squared

error (SE) variability in prediction (i.e., the adjustment of the

prediction to the true value) and SE median (except for the

immobility measure for CP). We recognize the lower variability

of entropy and jerk metrics as an effect of more appropriate

attribution of the prediction result to the learning set, which

would be accurate in the case of the variable practice dataset

VP2. The VP1 entropy SE is lower than CP entropy SE, but this

pattern is reversed for a jerk (CP jerk SE is lower than VP1 jerk

SE). The immobility metric demonstrates superior prediction

for CP SE, whereas higher SE for both variable practice groups

(and highest for VP1). However, it is worth noting that the

algorithms that were utilized for the prediction are not designed

for discrete feature values. Since the immobility ratio is based

on the threshold for describing mobile and immobile action, the

machine learning procedure is not guaranteed to be properly

adjusted to this discrete score. The IM inverted effect could be

a result of not meeting the assumption that the IM measure

is continuous (it is based on an arbitrary threshold value, as

defined in Supplementary Section 1), thereby demonstrating

low prediction reliability. To support the hypothesis that IM

differs in nature from the remaining (continuous) metrics, we

may also verify the Lasso pre-train selection result (STEP 1 in

Algorithm 1): We found that the following number of features

was retained for the second step (refinement of the model): GE:

5, JE: 4, and IM: 1 (Table 2). In the case of IM, thus, only one

feature was kept as important (providing very sparse result),

which confirms the fact that this particular fluidity indicator is

not very informative and the output assigned to input might be

too elusive for Lasso algorithm to be properly predicted. Another

reason for the misbehavior of the immobility ratio might be the

sheer nature of this purely temporal indicator. In considering

the nature of each one of the indicators, we might discuss the

fluidity aspects that each of them prioritizes: whether fluidity
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FIGURE 5

Fitting evaluation for full track data of the subset of samples (left) and the incomplete tracks of all the participants (right). The figure indicates
the median of mean squared error (MSE).

TABLE 2 Lasso feature selection result (a-additive term of fitting

function = the maximum performance, e - exponential term of fitting

function = the learning rate).

GE JE IM CT

Target

Features

a e a e a e a e

yGE 0 1 0 1 1 1 1 0

yJE 1 0 1 1 0 0 0 1

yIM 0 0 0 0 0 0 1 0

should reflect efficient movement toward the end of the route

(ultimate goal), or with general agility, allowing different ways of

completing a given stretch of the route to be tested (exploration

of multiple manners of goal reaching), even if, at the expense

of efficient movement, it entails to move temporarily away from

the goal. We can note that the rapid movements (that are given

priority in the temporal fluency indicators) might impede the

overall smoothness evolution in climbing. From our result, we

conclude that our approach is appropriate mainly for measures

that bear the characteristics of displacement (entropy and jerk)

and not merely the temporal ones (immobility).

To validate the results with statistical tests, we used Kruskal–

Wallis H-test (KW) (Kruskal and Wallis, 1952) and Mann–

Whitney U-test (MW) (Mann and Whitney, 1947). These tests

are recommended in case the compared sample sizes vary.

The initially applied KW test (for VP1, VP2, and CP; df=2)

demonstrated the only significant difference for the jerk score (p

= 0.001 with H = 10.227), even though for entropy it was close

to significance (p = 0.076, H = 3.157); immobility exhibited no

difference (p = 0.776, H = 0.081). Furthermore, group pairwise

MW test analysis revealed that only the entropy and jerk SE

TABLE 3 Statistical significance p (with U-value in brackets) for the

sets with Mann–Whitney U-test (MW).

p (U) GE JE IM

VP1 vs VP2 0.041(29) 0.001 (9) 0.402(50)

VP1 vs CP 0.362 (36) 0.329 (35) 0.329 (35)

VP2 vs CP 0.035 (28) 0.001 (10) 0.322 (47)

for the VP2 group vs. other groups VP1 and CP indicated

significantly different distribution. The MW test values (p- and

associated U-value) are illustrated in Table 3 (we did not find

sufficient statistical significance in the distributions of our results

for IM, as p > 0.05). These findings further support the fact that

the prediction stability that was significantly higher for VP2 in

the case of GE and JE compared to the other groups (VP1 and

CP) should be valid, in contrast to the opposite result obtained

for the IM (which provided higher prediction stability for the

CP group), and unlike the comparison between the VP1 and CP

group (Figure 6).

3.3. Recap of the results

Wehave indicated the set of climbers VP2 asmore predictive

of transfer3, but additionally, by means of Lasso selection

method, we revealed the fluency indicators (features being

their parametric representation terms a or e) that could affect

the prediction of skill transfer fluency. Therefore, we might

3 The results for variable practice VP=VP1+VP2 vs. control practice CP

can be found in Supplementary Section 2.
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FIGURE 6

Comparison of the predictive power (due to square error SE) for variable practice (VP1 and VP2) and constant practice (CP) groups.

suspect that spatial metrics are more adapted for this purpose,

which may suggest their usefulness in future studies of dynamic

variables that address the generalization property of the climber.

4. Discussion

In our analysis, we attempted to quantify the effect of three

different practice conditions on the transfer evaluation stability

(the magnitude of prediction error) with machine learning and

its impact on attunement of the learner’s dynamical variables to

the most important information (Pacheco et al., 2019). In the

discussion, we will comment on the methodological issues and

state how, by solving them, we were able to make reference to

the state of the art in motor learning science.

4.1. The methodological challenge

From the machine learning perspective, one important

adversity in our study is the sample size, which is quite limited

due to the complexity of data collection and ways of measuring

it. In machine learning, a small sample size is a factor that

strongly undermines the effectiveness of the methods used,

reducing their reliability. For that reason, it was a noteworthy

challenge to handle prediction with the large number of features,

in comparison with a small number of samples in the datasets.

We paid special attention to the correct selection of the final

pipeline for the movement science framework application. Our

solution to this problem was to 1) reduce long sequences of

measurements to the parameters of the fitted curve and 2)

introduce a pre-training step into the prediction algorithm.

Nevertheless, we may notify that finding other ways of feature

selection methods may result in other variants of the algorithm.

Thus, further exploitation of other types of methods to reduce

the complexity of the input data is highly desirable, given the

importance of the ratio of the size of the input set to the number

of parameters in statistical learning.

A similar issue is the heterogeneity of the sample, i.e., inter-

individual variability among participants, and whether this has

affected the generality of statistical methods in use. It is well-

known that the averaging (the standardization or normalization

of data required by particular algorithms) from motor learning

perspective may intrude or falsify the individual dynamics of

each participant (Newell and Liu, 2012). Although we may

suspect that the algorithm accounts for the subtle structure of

the data, we did not focus on it in our analysis by, for example,

clustering the different types of learning dynamics among the

participants; thus, this question remains open for future studies.

An important type of challenge in machine learning applied

to behavioral signal analysis that should be highlighted is the

need to handle incomplete data problems and the need for

data imputation. The original signal (entropy, jerk, immobility,

and climbing duration time sequences) to which we fitted

the exponential function contained missing data, so finding

an imputation method for an approximate value instead of

ignoring the voids could impact the results of our prediction

accuracy. In this view, research into an adequate approach

to address the missing data problem (although not applied

here, but inspired by Figure 5) in the case of a behavioral

signal would be beneficial for improving the quality of the

final prediction.
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Once the limitations of the method are known and we

are convinced that we have successfully addressed them in our

approach, we are ready to discuss the results from a human

movement science perspective.

4.2. Implications for human movement
science

Induced variability in climbing tasks is straightforward

to apply through handhold manipulation, as in our case.

In our study, the task variants were designed by displacing

the holds, that is, the modifications were applied to only

one dimension during the practice sessions. The same

dimension was manipulated to design the transfer test, to

account for the same individual variables of the climbers’

intrinsic dynamics. According to ecological dynamics (Button

et al., 2020), the climber learns to continuously adapt to

a set of interacting constraints (task, environment, personal

resources) and attune himself to relevant opportunities for

action. Therefore, ecological dynamics hypothesize that variable

practice further increases adaptive behavior in the sense that

climbers would learn to adapt more functionally (i.e., facilitating

transfer and generalization). Attuning to variables that facilitate

transfer to a new motor condition is considered a crucial part

of the learning process, which in our case has taken place

during training sessions. Then, the contextual change, that the

learner faces in the transfer test trial, accounts for the adaptation

of the learned variables within the reduced dimensionality,

which supports transfer to new contexts in the case of a well-

trained climber. Our results have pointed to the added value

of the variable practice for skill acquisition and transfer and

are consistent with Shea and Morgan’s (1979) pioneering study

demonstrating greater transfer when the three motor tasks were

presented in a blocked vs. random sequence. Furthermore, our

findings revealed that the positive effect of the variable practice

was particularly significant when the variability of practice was

self-controlled by the learner.

In our study, we revealed that in the self-controlled practice

(VP2) the climber’s intrinsic dynamics cooperate to provide

more useful variables that guarantee stable performance in the

transfer trial (Smeeton et al., 2013). In light of our results,

the self-controlled practice learners were able to generalize

more effectively in the sense that their intrinsic dynamics

constituted during practice allowed for reduced randomness in

learning curve adjustment and transfer fluency. These results

might be explained by the fact that variable practice actively

led climbers to successfully find more reliable information to

tune to. However, the variable practice group (VP1) did not

demonstrate improved predictions of their performance in the

transfer test relative to the constant practice group. Overall,

these results suggest that VP2 participants primarily benefited

from a lower level of induced variability (compared to VP1)

which gave themmore opportunities to stabilize their discovered

behavioral solutions practice (especially important for novices

Ranganathan and Newell, 2013). Indeed, since VP2 could decide

to practice on the same route for several sessions, they would

make improved exploitation of route properties and optimize

their chain of actions, whereas the rate of route changes in

VP1 may have been too high for some participants. Thus,

these results confirm and expand the previously acknowledged

positive effects of self-controlled practice schedules on skill

acquisition (Liu et al., 2012).

4.2.1. Nature of fluency dynamics
One important aspect of our climbing experimental protocol

is that climbers not only attempted to climb the route (to

reach the last handhold on the trial route) but also to improve

their fluency according to the feedback score from the previous

session. This caveat made it possible to quantify the learning

effect with fluency measures but at the same time emphasized

the focus on the quality of the movements on the way to the

goal, making it difficult to disentangle the effects of task and

target on the learners’ functional dynamics (Pacheco et al.,

2019). However, we could still question to what extent the

parameters of the exponential function of fluency history

deployed in the study remain related to the subjects’ intrinsic

dynamics. Intuition would suggest that they are strongly

associated with the parameters of the jerk score exponential

fit, for which we obtained the lowest level of prediction error.

Moreover, the jerk and entropy values were equally prominently

represented among the selected features in the pre-training

step of the machine learning algorithm. We can speculate that

further research on how spatial fluidity corroborates particular

aspects of dynamics during learning may elucidate the details

(particular movement types) that allow contextual tuning of

individual learners. Specifically, some research with various

feature selection methods, that further structure (e.g., with

feature grouping) the type of relevant indicator in use as an

input (Tibshirani et al., 2005; Yuan and Lin, 2006; Jacob and

Obozinski, 2009), may be helpful in understanding the particular

contribution of fluency indicators (entropy, jerk, or immobility)

to test score outcomes.

4.3. Concluding remarks

In summary, we have demonstrated that the self-controlled

variability in practice induces greater stability in the individual’s

learning dynamics than in the absence of modification.

The methodology presented here allowed a statistical study

of the behavioral signal with a small dataset; however, some

methodological improvements could help to constitutionalize

the insights obtained, and in this direction (e.g., solving the
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problem of missing data or the selection method evolution)

we envision potential for further development of research in

machine learning applied to the behavioral neuroscience of

human movement.

Data availability statement

The datasets presented in this article are not

readily available because it is a property of ANR

France. Requests to access the datasets should

be directed to guillaume.hacques@univ-rouen.fr;

ludovic.seifert@univ-rouen.fr.

Ethics statement

Ethical review and approval was not required for the study

on human participants in accordance with the local legislation

and institutional requirements. The patients/participants

provided their written informed consent to participate in

this study. Written informed consent was obtained from the

individuals for the publication of any potentially identifiable

images or data included in this article.

Author contributions

AA-S wrote the first draft of the manuscript and produced

the main results as well as their statistical analysis. GH and

LS contributed to the writing and revision of the first and

last sections. RH and GG contributed to the writing and

revision of the second and third sections of the manuscript. GH

provided the dataset and made the pre-calculation. All authors

contributed to the conception and design of the study, read, and

approved the submitted version.

Funding

This work was supported by a grant from the

French National Agency of Research (reference:

ANR-17-CE38-0006 DynACEV).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those

of the authors and do not necessarily represent those

of their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be

evaluated in this article, or claim that may be made by

its manufacturer, is not guaranteed or endorsed by the

publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

fpsyg.2022.961435/full#supplementary-material

References

Adams, J. A. (1952). Warm-up decrement in performance on the pursuit rotor.
Am. J. Psychol. 65, 404–414. doi: 10.2307/1418761

Belloni, A., and Chernozhukov, V. (2013). Least squares after model selection in
high-dimensional sparse models. Bernoulli 19, 410. doi: 10.3150/11-BEJ410

Braun, D., Aertsen, A., Wolpert, D., and Mehring, C. (2009). Motor
task variation induces structural learning. Curr. Biol. 19, 352–357.
doi: 10.1016/j.cub.2009.01.036

Button, C., Seifert, L., Chow, J., Davids, K., and Araujo, D. (2020). Dynamics of
Skill Acquisition, 2nd Edn. Champaign, IL: Human Kinetics.

Cordier, P., France, M., Pailhous, J., and Bolon, P. (1994). Entropy as
a global variable of the learning process. Hum. Mov. Sci. 13, 745–763.
doi: 10.1016/0167-9457(94)90016-7

Davids, K., Araujo, D., Hristovski, R., Passos, P., and Chow, J. (2012). Ecological
Dynamics and Motor Learning Design in Sport. London: Routledge.

Edelman, G., and Gally, J. (2001). Degeneracy and complexity
in biological systems. Proc. Natl. Acad. Sci. U.S.A. 98, 13763–13768.
doi: 10.1073/pnas.231499798

Frank, T., Michelbrink, M., Beckmann, H., and Schöllhorn, W. (2008).
A quantitative dynamical systems approach to differential learning: self-
organization principle and order parameter equations. Biol. Cybern. 98, 19–31.
doi: 10.1007/s00422-007-0193-x

Hacques, G. (2021). Perceptual-motor Learning and Transfer: Effects of the
Conditions of Practice on the Exploratory Activity in a Climbing Task. (PhD thesis),
Rouen University Normandy.

Hacques, G., Komar, J., and Seifert, L. (2021). Learning and transfer of
perceptual-motor skill: relationship with gaze and behavioral exploration. Attent.
Percept. Psychophys. 83, 2303–2319. doi: 10.3758/s13414-021-02288-z

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd Edn. Verlag: Springer.

Hossner, E.-J., Käch, B., and Enz, J. (2016). On the optimal degree of
fluctuations in practice for motor learning. Hum. Mov. Sci. 47, 231–239.
doi: 10.1016/j.humov.2015.06.007

Jacob, L., and Obozinski, G. (2009). “Group lasso with overlaps and graph lasso,”
in Proceedings of the 26th International Conference on Machine Learning.

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.961435
mailto:guillaume.hacques@univ-rouen.fr
mailto:ludovic.seifert@univ-rouen.fr
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.961435/full#supplementary-material
https://doi.org/10.2307/1418761
https://doi.org/10.3150/11-BEJ410
https://doi.org/10.1016/j.cub.2009.01.036
https://doi.org/10.1016/0167-9457(94)90016-7
https://doi.org/10.1073/pnas.231499798
https://doi.org/10.1007/s00422-007-0193-x
https://doi.org/10.3758/s13414-021-02288-z
https://doi.org/10.1016/j.humov.2015.06.007
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
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