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In the estimation of item response models, the normality of latent traits

is frequently assumed. However, this assumption may be untenable in

real testing. In contrast to the conventional three-parameter normal ogive

(3PNO) model, a 3PNO model incorporating Ramsay-curve item response

theory (RC-IRT), denoted as the RC-3PNO model, allows for flexible latent

trait distributions. We propose a stochastic approximation expectation

maximization (SAEM) algorithm to estimate the RC-3PNO model with

non-normal latent trait distributions. The simulation studies of this work reveal

that the SAEM algorithm produces more accurate item parameters for the

RC-3PNO model than those of the 3PNO model, especially when the latent

density is not normal, such as in the cases of a skewed or bimodal distribution.

Three model selection criteria are used to select the optimal number of knots

and the degree of the B-spline functions in the RC-3PNOmodel. A real data set

from the PISA 2018 test is used to demonstrate the application of the proposed

algorithm.

KEYWORDS

item response theory, Ramsay curve, 3PNO model, marginal maximum likelihood

estimation, stochastic approximation EM algorithm (SAEM), density estimation

1. Introduction

A premise of item response theory (IRT) is that observed item responses

are indicators of one or more latent traits. For item parameter estimation,

the latent variable is usually presumed to be normally distributed. However,

many psychological constructs, such as ambition, dysthymia, and borderline

personality disorder, as well as other latent traits in sociology such as drug

abuse, are unlikely to be normally distributed in a general population.
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For example, a psychiatric disorder trait is typically positively

skewed in a general population because most people are located

at the non-pathological end of the trait, whereas a small group

of individuals is spread out along the mild, moderate, and severe

end of the disorder (Woods, 2006; Woods and Thissen, 2006;

Wall et al., 2015; Wang et al., 2018). In addition, variables

representing symptoms of pathology that are rare in the general

population may be skewed because they exist at low levels for

most people and at high levels for a few individuals. Therefore,

the assumption of the normal distribution of latent traits leads to

biased parameter estimates when the true latent trait distribution

g(θ) is non-normal (Woods, 2006, 2007; Woods and Thissen,

2006; Woods and Lin, 2009; Azevedo et al., 2011; DeMars, 2012;

Molenaar et al., 2012; Reise and Revicki, 2014; Wall et al., 2015;

Reise et al., 2018).

Various studies have developed approaches to dealing with

non-normal distributions of latent traits. In particular, the

empirical histogram (EH) approach (Bock and Aitkin, 1981;

Reise and Revicki, 2014) has been proposed to estimate the

height of the latent trait density g(θ) at each quadrature point

(i.e., the values on the θ continuum, usually the number

of quadrature points is large) instead of computing the

heights based on the normal density. This is more flexible

than the expectation maximization (EM) algorithm (Bock and

Lieberman, 1970; Dempster et al., 1977; Bock and Aitkin, 1981),

which is restricted to the normal assumption of latent traits.

However, the EH method is sensitive to the user-specified

rectangular quadrature scheme. In addition, the graphical

representations from the EH method are usually “choppy” or

jagged, which makes it difficult to use them to clarify the

characterizations of latent traits.

To address this issue, several methods have been proposed

to approximate the latent trait density more precisely, including

log-linear smoothing (LLS; Casabianca and Lewis, 2015), the

Davidian curve (Woods and Lin, 2009), and the Ramsay curve

(Woods, 2006; Woods and Thissen, 2006). When incorporated

with IRT, these methods simultaneously estimate the latent

trait density and the item parameters, but they use different

approaches to estimate the latent trait density g(θ). Specifically,

LLS matches M moments of the original distribution to

create a smoothed distribution of latent traits while making

fewer assumptions about its form and maintaining parsimony.

Davidian-curve IRT (DC-IRT; Woods and Lin, 2009) provides a

smooth representation of g(θ) using a unidimensional Davidian

curve, as described by Zhang and Davidian (2001). Ramsay-

curve IRT (RC-IRT; Woods, 2006; Woods and Thissen, 2006)

estimates the latent trait density using Ramsay curves based on

B-spline functions.

This paper focuses on RC-IRT because it is one of the most

flexible and easy-to-apply methods for estimating the latent-

ability density. Woods and Thissen (2006) first introduced RC-

IRT to detect and correct for the non-normality of g(θ), and

they estimated the item parameters of the two-parameter logistic

(2PL; Birnbaum, 1968) model using the marginal maximum

likelihood estimation with the EM (MML-EM; Baker and Kim,

2004) method. Newton–Raphson iteration was used to update

the shape parameter η. Woods (2008) extended this approach

to estimate an RC-IRT model for the three-parameter logistic

(3PL; Birnbaum, 1968) model. Subsequently, Monroe and

Cai (2014) proposed using a Metropolis–Hastings–Robbins–

Monro (MHRM; Cai, 2010) algorithm to estimate an RC-IRT

approach for the unidimensional graded response model (GRM;

Samejima, 1969). The major advantage of this approach is that

the covariance matrix estimates can be easily obtained as a

byproduct. However, in their study, the GRM was limited to the

logistic version.

To date, there have been no studies examining RC-IRT in

the context of the normal ogive model. The reason for this is

that the EM algorithm usually involves numerical integration

calculations, which is intractable for the normal ogive model

itself because it already includes an integral term. To fill

this knowledge gap, we propose to estimate the RC-3PNO

model using a stochastic approximation EM (SAEM; Delyon

et al., 1999) algorithm. Specifically, the integral calculation in

the E-step is replaced by a stochastic approximation method,

which greatly simplifies the calculation. After introducing latent

variables, the complete data likelihood can be transformed into

an exponential family distribution; thus, sufficient statistics can

be used to easily update the estimates of item parameters in

the M-step. This avoids the calculation of derivatives in the

original M-step in the EM algorithm and further improves the

computation efficiency. The latent density distribution g(θ) is

estimated using traditional Newton–Raphson iteration for the

proposed SAEM algorithm.

Note that for the estimation of shape parameter η and item

parameters, the Bayesian maximum a posteriori (MAP; Greig

et al., 1989) estimate is used (this will be interpreted further in

Section 3). The posterior simulationmethodsmake the posterior

distributions easier to obtain; that is, the algorithms for posterior

simulation can be used to obtain approximates of posterior

moments. Various Bayesian estimates can be obtained based on

the posterior samples obtained from the posterior distributions.

In this study, two Bayesian estimates are used. One method is

MAP estimate. In fact, the MAP estimate is an estimate of an

unknown quantity, which is equal to the mode of the posterior

distribution. The MAP can be used to obtain point estimates

of an unobserved quantities based on empirical data. It is

closely related to the maximum likelihood estimate, but employs

an augmented optimization objective that incorporates a prior

distribution (additional information available by quantifying

the prior knowledge of the interested events). Therefore, MAP

estimate can be seen as a regularization of maximum likelihood

estimate. Another method is marginal maximum a posteriori

(MMAP; Mislevy, 1986; Lee and Gauvain, 1996; Baker and Kim,

2004) estimate. MMAP estimate can be seen as an extension of

the MAP estimate by integrating out the latent variables as the

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.971126
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cui et al. 10.3389/fpsyg.2022.971126

nuisance parameters and then obtaining MAP estimates of the

interested parameters. More details for estimation forms of our

model can be found in Sections 3 and 4.

The remainder of this article is organized as follows. The

second section presents the 3PNO model incorporating a

Ramsay curve (denoted as the RC-3PNO model). The third

section gives the marginal maximum a posteriori (MMAP)

estimation of all the parameters to be estimated in the RC-3PNO

model. The fourth section introduces the SAEM procedure for

estimating the RC-3PNOmodel (hereafter referred to as the RC-

SAEM algorithm), which is the main contribution of this study.

The fifth section presents two simulation studies: one to select

the optimal number of knots and the appropriate degree of the

B-spline functions for the Ramsay curve and another to assess

the performance of the proposed algorithm. A real data set from

the PISA 2018 test is then used to demonstrate the application of

the proposed algorithm in the sixth section. Finally, conclusions

and directions for future research are provided.

2. The RC-3PNO model

Let Uij (with realization uij) denote the dichotomous

response variable of examinee i (i = 1, · · · ,N) to item j (j =

1, · · · , J); Uij = 1 denotes the correct response, and Uij = 0

otherwise. The 3PNO model is defined as

Pj(θi) = P(Uij = 1|�j, θi) = cj + (1− cj)8(ajθi + bj), (1)

where: 8(·) is the cumulative function of the standard normal

distribution; �j = (aj, bj, cj) denotes the characteristic

parameters of item j, in which aj ∈ [0,+∞) is the discrimination

parameter, bj ∈ (−∞,+∞) is the intercept parameter, and

cj ∈ [0, 1] is the guessing parameter; and θi ∈ (−∞,+∞) is

the latent-ability parameter of examinee i.

The latent trait distribution should be given in advance for

the use of the MML and MMAP estimations in IRT models. In

general, it is assumed that θi ∼ N(0, 1), which is convenient

for statistical computation. However, the normal-distribution

assumption is not likely to be tenable, and this will decrease the

accuracy of estimates from the MML and MMAP estimations.

To address this issue, Woods and Thissen (2006) proposed

the Ramsay-curve IRT, which is based on B-spline functions,

to describe the latent trait distribution. This provides greater

flexibility than the standard normal distribution of latent traits.

Following Woods and Thissen (2006), the latent trait

distribution is modeled by

g(xq|η) =
exp[B∗(xq)η]

C
, (2)

where

C =

Q
∑

q=1

exp[B∗(xq)] (3)

is the normalization constant ensuring that g(xq|η) (q =

1, 2, · · · ,Q) sums to 1. In this study, xq represents the 121

fixed points with equidistant distance along the interval [-6,6].

To avoid ambiguity with the latent variable with continuous

support, the discrete xq is used here.

In RC-IRT, the density of latent ability, g(θ), needs to

be estimated simultaneously with the item parameters. The

shape of the latent-ability density curve is determined by a

shape parameter η, which is a vector whose dimensionality is

controlled by the choice of knots and degree. The dimension

of η is m = degree + knots − 1. The support of the

Ramsay-curve density can be numerically represented over a

set of discrete points {xq : q = 1, 2, · · · ,Q} along the real

number line. In this study, the discrete points are fixed at 121

equidistant values from −6 to 6 separated by steps of 0.1. The

interval [−6, 6] is a range of latent traits often used in RC-

IRT (Woods and Thissen, 2006; Monroe and Cai, 2014), and

this can contain the great majority of the latent abilities being

tested. The knots are values at which the B-spline functions

are connected to each other. Typically, the knots are evenly

distributed over the range of θ . The number of knots in

RC-IRT is usually selected from the range 2 to 6 (Woods

and Thissen, 2006; Monroe and Cai, 2014). The parameter

degree refers to the degree of the basic B-spline function. To

some extent, although a larger number of knots may create

a more flexible estimated density curve and a higher degree

value could accommodate a sharper curve. However, sometimes

the increase of knots or degree will make the Ramsay curve

become overfitted, resulting in a more complex model than

the appropriate model. And this will increase the parameter

to be estimated in the model, which may deteriorate the

estimation.

Given knots, degree, and the discrete points xq, the

corresponding basic B-spline functions B∗(xq) are determined.

The definition and derivation of B-spline function are beyond

the scope of this study, and the interested readers can

consult De Boor (1978) for details. Gathering Q discrete

points together, the basic B-spline functions can be expressed

as a Q × m matrix B∗. The matrix B∗ is assumed to

be known here, and the only parameter that needs to be

estimated is η. Equations (1) and (2) construct the RC-3PNO

model, which incorporates the Ramsay curve into the 3PNO

model.

3. MMAP estimation for the
RC-3PNO model

We denote 2 = (θ1, θ2, · · · , θN ) and let � = (a, b, c), where

(a, b, c) = (aj, bj, cj) (j = 1, 2, · · · , J). The parameters of the RC-

3PNO model that need to be estimated are � and η, denoted as

ζ = (�, η).
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The conditional distribution of Uij given � and 2 has a

binomial form:

f (uij|θi,�j) = Pj(θi)
uij [1− Pj(θi)]

1−uij , (4)

where Pj(θi) is equal to Equation (1). Based on the local

conditional independence assumption (Birnbaum, 1968), the

probability of examinee i’s conditional response pattern is

f (ui|θi,�j) =

J
∏

j=1

f (uij|θi,�j). (5)

The observed data is response matrix U, the person

parameter 2 = {θ1, θ2, · · · , θN} is viewed as the missing data,

and thus the complete data is (U,2). Conditional independence

of item responses is assumed, as well as the independence of

respondents, in accordance with practice. Thus, the complete

data likelihood of (U,2) is

L(ζ |U,2) =

N
∏

i=1

J
∏

j=1

Pj(θi)
uij [1− Pj(θi)]

1−uijg(θi|η), (6)

where Pj(θi) is equal to Equation (1). Taking the natural

logarithm of Equation (6), the log-likelihood of (U,2) can be

expressed as

log L(ζ |U,2) = log L(�|U,2)+ log L(η|2), (7)

where

log L(�|U,2) =

N
∑

i=1

J
∑

j=1

{uij log
Pj(θi)

1− Pj(θi)
+ log[1− Pj(θi)]} (8)

and

log L(η|2) =

N
∑

i=1

log g(θi|η). (9)

The complete data log-likelihood in Equation (7) can be

seen as the sum of two independent parts: the logarithm of

the likelihood of item parameters � and the logarithm of the

likelihood of η. Thus, the processes of estimating� and η can be

conducted separately (Monroe and Cai, 2014), which improves

the computational efficiency. Here, the MMAP estimation of

ζ = (�, η) is given in detail. The priors of � are given below.

The prior distribution for (aj, bj) is specified as

(aj, bj)
′ ∼ N2(µ,6)I(aj > 0) (10)

for j = 1, 2, · · · , J, where N2(·) denotes a bivariate normal

distribution. The prior distribution for cj is chosen to be,

cj ∼ Beta(α,β) (11)

for j = 1, 2, · · · , J. According to previous methods of estimating

η in RC-IRT (Woods and Thissen, 2006; Monroe and Cai, 2014),

a diffuse prior density of η is assumed:

η ∼ MVN(µη,6η). (12)

The estimation of η will be introduced in detail later.

From Equation (6), the marginalized likelihood of ζ is

L(ζ |U) =

N
∏

i=1







∫ J
∏

j=1

Pj(θi)
uij [1− Pj(θi)]

1−uijg(θi|η)dθi







(13)

Based on the priors in Equations (10)–(12) and the

marginalized likelihood in Equation (13), the marginalized

posterior distribution of ζ = (�, η) is

f (ζ |U) = f (�, η|U) (14)

=
L(�, η|U)f (�)f (η)

∫ ∫

L(�, η|U)f (�)f (η)d�dη
∝ L(�, η|U)f (�)f (η),

where

f (�) =

J
∏

j=1

f (aj, bj)f (cj)I(aj > 0) (15)

is the joint prior density function of �, and f (η) denotes the

density function of a multivariate normal distribution. Thus, the

MMAP estimation of ζ = (�, η) is

ζ̂ = argmax
ζζζ∈2ζ

log f (ζ |U)] = argmax[log L(ζ |U)

+ log f (�)+ log f (η)]. (16)

In the next section, an SAEM algorithm is developed to

compute the MMAP estimate of ζ in Equation (16), which

is the main contribution of this study. Note that the SAEM

algorithm includes a stochastic approximation step instead of

the integral step in the EM algorithm (please see the next

section for details); in other words, the SAEM algorithm does

not need to marginalize the latent abilities, and the estimate

of � in the SAEM algorithm thus belongs to the maximum

a posteriori (MAP) estimate. In addition, we use Newton–

Raphson iteration to obtain the MAP estimate of the shape

parameter η, which was also adopted by Woods and Thissen

(2006).

4. SAEM algorithm for the RC-3PNO
model

In this section, an SAEM algorithm for the RC-3PNO

model is developed to compute the MAP estimates for the

shape parameters of the Ramsay curve and the item parameters.

First, the relationship between the standard EM algorithm and
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the SAEM algorithm is given. Second, a data-augmentation

scheme for the 3PNO model is introduced, which means that

the complete data likelihood formulation of the 3PNO model

belongs to an exponential family form (Camilli and Geis,

2019; Geis, 2019). Sufficient statistics of the item parameters

are also computed. Third, the estimation of the density

curve of latent ability is depicted. Fourth, the estimation

procedure of the SAEM algorithm is given for the RC-3PNO

model.

4.1. Relationship between the EM
algorithm and SAEM algorithm

The EM algorithm is briefly reviewed first. It is widely used

in maximum likelihood or maximum a posteriori estimation

for the incomplete data. The EM algorithm uses an expectation

step (E-step) and a maximization step (M-step) to iteratively

maximize the conditional expectation of the complete log-

likelihood. In the E-step, the conditional expectation of the

logarithmic complete data likelihood is adopted considering

the observed data and the parameter values obtained in the

previous step. In the M-step, the MAP estimates of the

parameters are calculated based on the updated expectations

in the E-step. The procedure alternates between E-step and

M-step until convergence. In the case of exponential family

distribution, the E-step and M-step can be simplified to

update the expectation of the sufficient statistic and calculate

the MAP estimate using the updated sufficient statistic,

respectively.

However, in some cases, the EM algorithm is not applicable

when either E-step or M-step is intractable or even cannot

be performed in closed form. A possible solution for the

complex computation of M-step is to replace the global

optimization with a simpler conditional maximization chain,

leading to the so-called ECM algorithm (Meng and Rubin,

1993). In IRT, the number of quadrature points in the

numerical integral grows exponentially with the increasement

of latent trait dimension. Therefore, the E-step will become

very time-consuming as the latent trait dimension increases.

Wei and Tanner (1990) proposed Monte Carlo EM (MCEM)

to deal with this problem. The basic idea is to compute the

expectation in the E-step by the Monte Carlo method. Geyer

(1994) proved the convergence of the Monte Carlo maximum

likelihood calculations, which provided the theoretical basis

for MCEM. Delyon et al. (1999) proposed the SAEM

algorithm as an alternative to the MCEM algorithm, which

replaces the E-step of the EM algorithm with one iteration

of the stochastic approximation procedure. Thereafter, the

SAEM algorithm was widely used for its efficiency and

convenience.

4.2. Data-augmentation scheme for the
3PNO model

The 3PNO model in Equation (1) can be rewritten as

P(Uij = 1|aj, bj, cj, θi) = cj(1− 8(ajθi + bj))+ 8(ajθi + bj),(17)

and its form can be seen as a mixture of two Bernoulli

distributions with the categorical probability 8(ajθi + bj). A

dichotomous latent variableWij is defined, andWij = 1 denotes

examinee i knowing the answer of item j, andWij = 0 otherwise.

Because the 3PNOmodel does not contain a slipping parameter,

examinees can answer the item correctly with probability 1 if

they know the answer. The 3PNOmodel also includes a guessing

parameter, and examinees can guess the correct answer with

probability cj if they do not know it. Thus, the following two

equations hold:

P(Uij|Wij = 1) = 1Uij01−Uij , (18)

P(Uij|Wij = 0) = c
Uij

j (1− cj)
1−Uij . (19)

A continuous latent variable Zij is then introduced:

Wij = I(Zij > 0), (20)

where I(·) denotes the indicator function. The following

conditional distribution holds:

Zij|θi, aj, bj ∼ N(ajθi + bj, 1). (21)

The conditional probability ofWij is

P(Wij = 1|θi, aj, bj) = P(Zij > 0|θi, aj, bj) = 8(ajθi + bj).(22)

According to the total probability formula, the marginal

probability of Uij = 1 is

P(Uij = 1|�j) = 8(ajθi + bj)+ [1− 8(ajθi + bj)]× cj, (23)

which is exactly the 3PNO model in Equation (1).

4.2.1. Complete data likelihood of the 3PNO
model

According to Equations (18)–(21), the joint distribution of

(U ,W,Z) is

P(Uij,Wij,Zij|θi,�j) = P(Uij|Wij, θi,�j) · P(Wij,Zij|θi,�j),

(24)

where

P(Uij|Wij, θi,�j) = [1Wijcj
1−Wij ]Uij (25)

·[0Wij (1− cj)
1−Wij ]1−Uij ,
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P(Wij,Zij|θi,�j)

= [I(Wij = 1)I(Zij > 0)+ I(Wij = 0)I(Zij < 0)]

×φ(zij − ajθi − bj). (26)

Let z and w denote the observations of augmented variables

Z and W, respectively. 2 denotes the data set of 2 sampled

in the S1-step of SAEM (more details are given in a later

subsection). Note that 2 is also the augmented data sets

in SAEM, and the estimate of � is an MAP estimate. The

augmented data sets are 9 = (2,w, z), and the observed

responses are U. The complete data likelihood of � can then be

expressed as

L(�|U,9) =

N
∏

i=1

J
∏

j=1

P(Uij,Wij,Zij|θi,�j)g(θi), (27)

According to Equations (24)–(26), we have

L(�|U,9) ∝
∏J

j=1

{

c

∑N
i=1(1−wij)uij

j (1− cj)
∑N

i=1(1−wij)(1−uij)
}

×
∏N

i=1

∏J
j=1

{

φ(zij − ajθi − bj)g(θi)
}

. (28)

It can be proved that L(�|U,9) has a form of an exponential

family distribution.

Two advantages need to be mentioned here. First, after

introducing the augmented latent variables, the complete data

likelihood has a form of exponential family distribution.

Second, given complete data, the MAP estimates of item

parameter � can be expressed as several functions that are

only concerned with sufficient statistics. In this case, we can

directly implement the computation of the MAP estimates of

the item parameters that only need to update the sufficient

statistics, which greatly reduces the computational complexity

and improves the computational efficiency. In addition, the

SAEM algorithm converges to the local maximum (Delyon

et al., 1999). Note that, due to the data-augmentation scheme,

Equation (16) is not the objective function to be optimized in the

SAEM algorithm. Instead, 2 is viewed as augmented data in the

SAEM algorithm and is thus included in the objective function

to be optimized [see Equation (28)]. The augmented data of 2

can be used in the estimation of η (this is elaborated later).

4.3. Estimation of density curve of latent
ability

The estimation of the non-normal ability density curve

relies on the computation of the shape parameter η, which

involves an optimization algorithm using either Newton–

Raphson iterations (Woods and Thissen, 2006) or an MHRM

algorithm (Monroe and Cai, 2014). Once the estimates of η

have been obtained, these estimates can be used in Equation (2)

to calculate g(θi|η) for a particular examinee or to construct

the entire Ramsay-curve density. In this study, the Newton–

Raphson iteration method was used to estimate η, and the log-

likelihood of the Ramsay curve is the objective function to be

optimized. Its form is

log L(η|2) =

N
∑

i=1

log(g(θi|η)). (29)

In practice, theremay be some regions of the latent trait scale

over which little or no information about the RC parameters η is

available. As a result, the corresponding spline coefficients may

become empirically underidentified (Woods and Thissen, 2006;

Monroe and Cai, 2014). When this happens, the estimation

of the entire set of coefficients will fail. To prevent such an

estimation failure, a diffuse prior density is often assumed on

η (Woods and Thissen, 2006; Monroe and Cai, 2014). The

Bayesian MAP estimation can be used, and the Ramsay-curve

posterior (RCP) density is then the product of the Ramsay-

curve likelihood and an m-variate normal prior (Woods and

Thissen, 2006; Monroe and Cai, 2014), where m is the number

of coefficients. Since the normalization constant of the posterior

is omitted, the logarithm RCP of η is given by

lR(η|2) ∝ log L(η|2)−
1

2
(η − µη)

′
6−1

η (η − µη), (30)

where µη and 6η are the prior mean vector and the covariance

matrix of η, respectively.

4.4. SAEM algorithm for estimating �

and η

The SAEM algorithm was first proposed by Delyon et al.

(1999), and it replaces the integral calculation with a stochastic

approximation in the E-step, which significantly improves

computational efficiency, especially for exponential family

distributions. We assume that: the iteration has updated to step

k; �(k) = (a(k), b(k), c(k)) and η(k) are the current estimates of

the item parameters and the shape parameter of the Ramsay

curve, respectively; and 9(k) = (2(k),w(k), z(k)) is the current

augmented data. The detailed estimation steps of the SAEM

algorithm incorporating the Ramsay curve (the RC-SAEM

algorithm) at step k+ 1 are given as follows.

Simulation step (S-step). Sample 9(k+1):

S1-step: Sample θ
(k+1)
i

P(θ
(k+1)
i = xq|Ui,�

(k), η(k))

=

∏J
j=1

{

Pj(xq|�
(k))uij [1− Pj(xq|�

(k))]1−uijg(xq|η
(k))
}

∑Q
q=1

∏J
j=1

{

Pj(xq|�(k))uij [1− Pj(xq|�(k))]1−uijg(xq|η(k))
}
,

(31)
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S2-step: Sample w
(k+1)
ij

w
(k+1)
ij |�(k),U,2(k+1) ∼










Bernoulli

(

8(a
(k)
j θ

(k+1)
i +b

(k)
j )

c
(k)
j +(1−c

(k)
j )8(a

(k)
j θ

(k+1)
i +b

(k)
j )

)

, uij = 1

Bernoulli(0). uij = 0

(32)

S3-step: Sample z
(k+1)
ij

z
(k+1)
ij |�(k),2(k),w(k+1) ∼

N(akj θ
(k+1)
i + b

(k)
j , 1)[I(z

(k+1)
ij > 0)w

(k+1)
ij

+ I(z
(k+1)
ij ≤ 0)(1− w

(k+1)
ij )], (33)

Stochastic approximation step (SA-step). Update sufficient

statistics S
(k+1)
j (j = 1, · · · , J):

Based on the factorization theorem, the sufficient statistics

of the item parameters � are

Sj(U,9
(k+1)) = (S

(k+1)
j1 , S

(k+1)
j2 , S

(k+1)
j3 , S

(k+1)
j4 )

(j = 1, 2, · · · , J), (34)

and

S
(k+1)
j1 =S∗

′(k+1)S∗(k+1), (35)

S
(k+1)
j2 =S∗

′(k+1)z
(k+1)
j , (36)

S
(k+1)
j3 =

N
∑

i=1

(1− w
(k+1)
ij ), (37)

S
(k+1)
j4 =

N
∑

i=1

(1− w
(k+1)
ij )uij, (38)

where S∗(k+1) = (2(k+1),1N ), 1N is a unit column vector

with dimension N, and the vector z
(k+1)
j is the jth column of

augmented data set z(k+1) in the k+ 1th iteration.

Thus, the stochastic approximation step is:

S
(k+1)
j = S

(k)
j + γk[Sj(U,9

(k+1))− S
(k)
j ], (39)

where9(k+1) = (2(k+1),w(k+1), z(k+1)) is the augmented data

sets that are simulated from the S-step, and {γk, k = 1, 2, · · · } is

a decreasing sequence of gain constants, as defined by Robbins

and Monro (1951), which satisfies

γkǫ(0, 1],

∞
∑

k=1

γk = ∞,

∞
∑

k=1

γ 2
k < ∞.

Maximization step (M-step). Update �(k+1) and η(k+1):

M1-step. Update �(k+1)

Based on L(�|U,9) and the prior distributions in

Equations (10) and (11), the posterior distributions of �j =

(aj, bj, cj) are

(aj, bj)
′|U,9(k+1) ∼ N2(µ

∗(k+1),6∗(k+1))I(aj > 0) (40)

and

cj|U,9
(k+1) ∼ Beta(α∗(k+1),β∗(k+1)), (41)

where

µ∗(k+1) = (S
(k+1)
j1 + 6)−1(S

(k+1)
j2 + 6−1µ),

6∗(k+1) = (S
(k+1)
j1 + 6−1)−1,

α∗(k+1) = α + S
(k+1)
j4 ,

β∗(k+1) = β + S
(k+1)
j3 − S

(k+1)
j4 .

µ,6,α,β are the hyper-parameters in prior distributions of

a, b, c, please refer to Equations (10) and (11).

Thus, the MAP estimates of aj, bj, and cj for the k + 1th

iteration are

â
(k+1)
j = µ∗(k+1)[1]I(µ∗(k+1)[1] > 0)+ δ

×I(µ∗(k+1)[1] ≤ 0), (42)

b̂
(k+1)
j = µ∗(k+1)[2], (43)

ĉ
(k+1)
j =

α∗(k+1) + S
(k+1)
j4 − 1

α∗(k+1) + β∗(k+1) + S
(k+1)
j3 − 2

, (44)

where δ is a tiny positive number to satisfy aj > 0, µ∗(k+1)[1]

denotes the first element of µ∗(k+1) in the k+ 1th iteration, and

µ∗(k+1)[2] denotes the second element ofµ∗(k+1) in the k+1th

iteration.

M2-step. Update η(k+1):

Update η(k+1) according to the Newton–Raphson iteration,

which satisfies

η(t+1) = η(t) −

(

∂2lR

∂η∂η
′

)−1
∂ lR

∂η
, (45)

where lR is the logarithm RCP of η in Equation (30). Note that

t is the number of iterations in the process of implementing

the Newton-Raphson iteration algorithm. Let η(k+1) = η(t+1)

whenNewton-Raphson iteration algorithm reaches convergence

after executing t + 1 iterations of inner loop and continue the

computations of SAEM algorithm.

Repeat the S-step, SA-step, andM-step until the convergence

criteria are satisfied. Here, the SAEM algorithm is considered
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to have converged when the maximum absolute difference of

the MAP estimates between two adjacent iterations (i.e., max |

ζ (k) − ζ (k+1) |) is less than 10−4 or the maximum number of

iterations (selected as 2500) is reached.

Note that the augmented data sets in the S-step can be

simulated mk sets in the original SAEM algorithm (Delyon

et al., 1999), that is, 9
(k+1)
p = (2

(k+1)
p ,w

(k+1)
p , z

(k+1)
p ) (p =

1, 2, · · · ,mk). In this case, Sj(U,9
(k+1)) in Equation (39) can

be replaced by the average value of the mk updated sufficient

statistics computed from these augmented data sets, that is,
∑mk

p=1 Sj(U,9
(k+1)
p )

mk
. According to previous studies of the SAEM

algorithm, the number of simulationsmk = 1 is suggested to be

set for all the iterations (Delyon et al., 1999; Kuhn and Lavielle,

2004), which makes the M-step straightforward to implement

and increases the computational efficiency. In most cases, the

increasing ofmk will not improve the accuracy of the algorithm.

For the Robbins–Monro gain coefficient, let γk = ( 1
k
)
α
, where

α > 0. A larger step size (that is, α = 0) can accelerate the rate of

convergence, but this will result in inflation of the Monte Carlo

error introducedwhen approximating the integral by the average

of a set of simulations in the SA-step (Jank, 2006). A smaller

step size (that is, α = 1) may allow the sequence of estimates to

approach the neighborhood of the solution with a small Monte

Carlo error, but it will also slow down the convergence rate (Jank,

2006; Geis, 2019). In this work, the step size γk was chosen to

be 1 in the first 1,000 iterations to ensure that enough steps

were used when quickly approaching the neighborhood of the

solution, but this also inflates the Monte Carlo error at the same

time (Jank, 2006). Then, we let γk = 1
k−1000

when k > 1, 000

to rapidly reduce the Monte Carlo error of the estimates, though

this slows down the convergence rate (Gu and Zhu, 2001; Kuhn

and Lavielle, 2004; Jank, 2006; Geis, 2019).

4.5. Evaluation criteria

In fact, researchers have conducted in-depth studies on

model selection methods based on evidence function (log-

likelihood function), such as likelihood ratio test (LR-test) and

chi-square difference test. However, these methods actually have

some drawbacks and limitations. As depicted in Woods (2006),

LR-test is not an ideal evaluation criterion for RC-IRT for two

reasons. One is its tendency to select large models. It tends to

select the largest model that is significantly better than the true

model. Another limitation is that, like all chi-square difference

tests, it requires the larger model to fit the data in an absolute

sense, which is difficult to establish. A chi-square test of absolute

fit is usually not appropriate in IRT because the number of

possible response patterns is large, and the probability of any

one of the patterns is small; thus, statistics like Pearson’s are

not chi-square distributed (Maydeu-Olivares and Cai, 2006). For

these reasons, LR tests alone should not be relied upon for model

selection. Thus, Woods (2006) considered the following three

model selection criteria.

Three model selection criteria—Akaike’s information

criterion (AIC; Akaike, 1973), Bayesian information criterion

(BIC; Schwarz, 1978), and Hannan–Quinn information

criterion (HQIC; Hannan, 1987; Woods, 2007, 2008)—are

considered:

AIC = −2 log L+ log(N), (46)

BIC = −2 log L+ n log(N), (47)

HQIC = −2 log L+ 2n log(log(N)), (48)

where log L is the log-likelihood of all the parameters � and η, n

is the number of parameters, and N is the sample size.

As the number of konts and degree increases, the number

of free parameters increases and the goodness of fitting is

improved. AIC (BIC and HQIC) encourages the goodness of

data fitting (information provided by the evidence function) but

tries to avoid overfitting (prevent the cases of too many free

parameters). The purpose of information criterion is to find the

balance between model fit and model complexity. The preferred

model should be the one with the lowest AIC (BIC and HQIC)

values.

To evaluate the accuracy of the item parameter recoveries,

the bias and root-mean-square error (RMSE) are calculated.

Supposing R is the number of replications, the bias of parameter

ω is

Bias =
1

R

R
∑

r=1

(ω̂r − ω), (49)

and the RMSE of ω is defined as

RMSE =

√

√

√

√

1

R

R
∑

r=1

(ω̂r − ω)2, (50)

where ω̂r is the parameter estimate at the rth replication and ω

is the true value of the parameter.

Since the scales of the true RC parameters are complicated

and difficult to handle, the bias and RMSE are less appropriate

measures of recovery accuracy. Instead, the integrated square

error (ISE),

ISE(ĝ) =

∫

[

g(θ |η̂)− g(θ |η)
]2

dθ , (51)

is used to measure the discrepancy between the true and

estimated RCs, as used by Woods and Lin (2009) and Monroe

and Cai (2014). The ISE was multiplied by 1,000 to facilitate

comparison. The values of ISE were computed across all

replications.
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TABLE 1 Model selection results under di�erent combinations of knots and degreewhen θ is normal, skewed, or bimodal.

Normal Skewed Bimodal

AIC BIC HQIC AIC BIC HQIC AIC BIC HQIC

2knots-degree3 34121.1 34582.5 34296.5 33954.3 34415.6 34129.6 32576.4 33037.7 32751.7

2knots-degree4 34099.8 34566.1 34277.0 33968.3 34434.5 34145.5 32639.4 33105.6 32816.6

3knots-degree3 34061.1 34531.7 34238.3 33815.8 34282.0 33993.0 32531.3 32997.6 32708.5

3knots-degree4 34089.8 34561.0 34268.9 33913.9 34385.0 34092.9 32499.8 32970.9 32678.8

4knots-degree3 34117.4 34588.5 34296.4 33762.6 34233.7 33941.7 32381.9 32853.0 32561.0

4knots-degree4 34055.6 34527.4 34236.5 33745.7 34221.8 33926.7 32456.2 32932.3 32637.2

5knots-degree3 34080.2 34556.3 34261.1 33715.4 34191.8 33896.4 32214.9 32690.9 32395.8

5knots-degree4 34119.7 34600.6 34302.5 33786.8 34267.8 33969.6 32268.4 32749.3 32451.1

6knots-degree3 34113.2 34594.1 34296.0 33710.9 34191.5 33893.7 32241.5 32722.5 32424.3

6knots-degree4 34068.5 34554.4 34253.2 33741.0 34226.9 33925.7 32317.9 32803.7 32502.5

The boldfaced values indicate the smallest AIC, BIC, and HQIC values in each column.

5. Simulation studies

5.1. Simulation study 1

The first simulation study was performed to select the

optimal numbers of knots and the degree of the B-spline

functions for the RC-3PNO model based on three model

selection criteria—the AIC, BIC, and HQIC—as well as to show

the item parameter recoveries when the true ability density is

normal, skewed, or bimodal.

5.1.1. Design

The true latent-ability densities were represented by

rectangular quadrature points, ranging from −6 to 6 in steps

of 0.1. For the skewed and bimodal cases, the true ability

density was generated by mixing two normal densities, that

is, p1N(µ1, σ
2
1 ) + p2N(µ2, σ

2
2 ), in which p1 + p2 = 1. For

the skewed density, the generating parameters were: µ1 =

−2.7, σ1
2 = 0.2, µ2 = 1.1, and σ2

2 = 1.1. The skewness

and kurtosis of θ were 2.46 and 8.45, respectively. For the

bimodal density, the generating parameters were: µ1 = −2,

σ1
2 = 0.25, µ2 = 2.5, and σ2

2 = 0.5. In this case, the

skewness and kurtosis of θ were 1.45 and 4.21, respectively. The

true item parameters were set to be consistent with common

practice in IRT. The discrimination parameters a were sampled

from U(1, 2.5), the intercept parameters b were simulated from

N(0, 1), and the guessing parameters c were generated from

Beta(5, 17).

For each of the three true latent-ability densities, 10 models

with different combinations of knots and degree were fitted to

the generated data. The degree values of the B-spline functions

were either 3 or 4, and the number of knots was chosen to be

between 2 and 6; these are the typical choices when estimating η

in RC-IRT (Woods and Thissen, 2006; Monroe and Cai, 2014).

The sample size was set to be 1,000, and the test length was fixed

at 30. Therefore, there were 30 simulation conditions, and each

simulation condition was conducted 100 times.

5.1.2. Results

Table 1 presents the model selection results when the true

latent-ability densities are normal, skewed, and bimodal. The

bold-faced values indicate the smallest AIC, BIC, and HQIC

values in each column. In addition, under each of the three

shapes of ability density, the AIC, BIC, and HQIC are consistent

to choose one common combination of the knots and degree.

When the true ability density is normal, all three model

selection criteria result in the RC-3PNOmodel with 4 knots and

a degree of 4 (denoted as the 4-4 RC-3PNOmodel) being chosen

as the best-fitting model. However, the differences in the model

selection results under each condition are slight overall. When

the true ability density is skewed, the values of AIC, BIC, and

HQIC are the smallest for the RC-3PNO model with 6 knots

and a degree of 3 (denoted as the 6-3 RC-3PNO model); the best

model chosen in the bimodal case is the RC-3PNOmodel with 5

knots and a degree of 3 (denoted as the 5-3 RC-3PNO model).

In addition, in the skewed and bimodal cases, the values of

AIC, BIC, and HQIC have obvious discrepancies across different

combinations of knots and degrees for the RC-3PNO model.

Specifically, for the skewed case, the model selection results for

the RC-3PNO model with knots and degree combinations 2-3,

2-4, and 3-4 show relatively large values compared with the best-

fitting model, i.e., the 6-3 RC-3PNO model, with discrepancies

over 200. The reason for this may be that a knots value of 2

or 3 is not sufficient to describe a skewed ability density. The

RC-3PNO models with knots and degree combinations of 4-

3, 4-4, 5-3, 5-4, 6-3, and 6-4 result in very little differences in

the AIC, BIC, and HQIC values when the true ability density
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TABLE 2 Bias and RMSE of item parameter estimates under di�erent combinations of knots and degree in normal case.

a b c

Bias RMSE Bias RMSE Bias RMSE

2knots-degree3 0.101 0.354 −0.023 0.366 −0.006 0.069

2knots-degree4 0.091 0.329 −0.004 0.357 −0.009 0.070

3knots-degree3 0.086 0.299 −0.006 0.333 −0.008 0.068

3knots-degree4 0.084 0.325 −0.012 0.342 −0.007 0.071

4knots-degree3 0.081 0.310 −0.025 0.346 −0.025 0.068

4knots-degree4 0.079 0.308 0.005 0.334 −0.011 0.067

5knots-degree3 0.094 0.349 −0.032 0.367 −0.009 0.067

5knots-degree4 0.081 0.321 −0.026 0.354 −0.008 0.068

6knots-degree3 0.083 0.299 −0.016 0.335 −0.009 0.067

6knots-degree4 0.078 0.298 −0.014 0.337 −0.008 0.068

TABLE 3 Bias and RMSE of item parameter estimates under di�erent combinations of knots and degree in skewed case.

a b c

Bias RMSE Bias RMSE Bias RMSE

2knots-degree3 0.046 0.276 −0.065 0.352 −0.007 0.080

2knots-degree4 0.039 0.261 −0.004 0.330 −0.015 0.078

3knots-degree3 0.041 0.251 0.034 0.329 −0.018 0.082

3knots-degree4 0.042 0.268 −0.046 0.339 −0.008 0.079

4knots-degree3 0.047 0.262 −0.028 0.363 −0.008 0.082

4knots-degree4 0.056 0.282 −0.024 0.370 −0.008 0.083

5knots-degree3 0.043 0.266 −0.017 0.381 −0.010 0.082

5knots-degree4 0.052 0.280 −0.042 0.367 −0.007 0.082

6knots-degree3 0.055 0.285 −0.043 0.377 −0.007 0.080

6knots-degree4 0.051 0.276 −0.060 0.393 −0.005 0.084

is skewed. For the bimodal case, the discrepancies in model

selection results between the RC-3PNO models with knots and

degree combinations of 2-3, 2-4, 3-3, 3-4, and 4-4 and the best-

fitting model, i.e., the 5-3 RC-3PNOmodel, are greater than 200.

The differences in model selection results between the models

with the combinations 5-4 and 6-3 and the best-fitting model

(5-3) are extremely small.

Tables 2–4 show the item parameter estimation results.

There are no distinct differences in the bias and RMSE values

of item parameters a, b, and c for the fitted models across all

the conditions; however, some subtle variations still exist. Thus,

the choices of knots and degree in this simulation study had

no noticeable influences on the bias and RMSE values of the

item parameters. The standard errors of item parameters are

presented in Figures 1–3. In the majority of cases, the standard

errors of item parameters a and b are below 0.08, and the

standard errors of parameter c are below 0.02, which are within

the tolerable ranges. It indicates that the RC-SAEM algorithm

performs well in estimation stability.

5.2. Simulation study 2

This simulation study was conducted to compare the

performance of the proposed RC-SAEM algorithm, the original

SAEM, and the MCMC algorithm in estimating the item

parameters of the 3PNO model.

5.2.1. Design

The shapes of the true ability density, g(θ), were set to

be normal, skewed, and bimodal distributions (Woods and

Thissen, 2006; Monroe and Cai, 2014). For the skewed case,

the skewness and kurtosis of θ were 1.72 and 9.16, respectively;

in the bimodal case, the skewness and kurtosis of θ were

0.95 and 2.74, respectively. The numbers of examinees were

set to be 500, 1,000, and 2,000 to represent small, medium,

and large sample sizes, respectively. The test lengths were set

as 15 and 30. Therefore, a total of 18 simulation conditions
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TABLE 4 Bias and RMSE of item parameter estimates under di�erent combinations of knots and degree in bimodal case.

a b c

Bias RMSE Bias RMSE Bias RMSE

2knots-degree3 0.078 0.304 −0.039 0.369 −0.011 0.080

2knots-degree4 0.084 0.311 −0.016 0.367 −0.015 0.081

3knots-degree3 0.095 0.324 0.048 0.363 −0.020 0.084

3knots-degree4 0.075 0.299 −0.016 0.374 −0.012 0.079

4knots-degree3 0.087 0.324 −0.039 0.429 −0.008 0.087

4knots-degree4 0.087 0.319 0.038 0.367 −0.017 0.084

5knots-degree3 0.071 0.303 −0.029 0.420 −0.011 0.087

5knots-degree4 0.076 0.304 −0.024 0.423 −0.008 0.086

6knots-degree3 0.073 0.310 −0.047 0.489 −0.010 0.087

6knots-degree4 0.082 0.310 −0.012 0.410 −0.013 0.084

were manipulated. Each simulation condition was replicated

100 times.

The data-generating model and the fitted model were the

same, that is, the 6-3 RC-3PNO model (6 knots with a degree

of 3). As noted in the description of the model, 121 discrete

points [i.e., xq (q = 1, 2, · · · ,Q), and Q = 121] from −6 to

6 in steps of 0.1 were used to describe the true ability density.

After the true value of η was selected, the true ability of θi

was manipulated according to grid sampling, similar to the S1

step of the RC-SAEM algorithm. That is, first, a true η value

was chosen corresponding to the given shape of g(xq|η). Then,

the probabilities of θi = xq in the grid sampling were set to

g(xq|η) (q = 1, 2, · · · ,Q). The values of θi (i = 1, 2, · · · , n)

were standardized to have a mean of 0 and a standard deviation

of 1. The values after standardization were chosen to be true

values of 2. The true item parameters were the same as those

in simulation study 1.

To avoid the effects of the choice of prior distribution on

the estimation results, the priors for a and b were chosen to be

non-informative priors. The prior for the c parameter was set to

be Beta(5, 17) (the mean is 5
5+17 = 0.227), which is consistent

with the common prior choice in IRT (Harwell and Baker,

1991; Béguin and Glas, 2001) because the nominal guessing

probability is around 0.25 for multiple-choice items with four

options. These priors for the item parameters were adopted in

the SAEM, RC-SAEM, and MCMC algorithms.

5.2.2. Results

Tables 5, 6 show the bias and RMSE values of the item

parameter estimates under different simulation conditions. For

simplicity, the average values of the bias and RMSE across J

items are presented. For the normal distribution of the ability

density, the bias and RMSE values of parameters a and b from

the RC-SAEM algorithm are smaller than those from the SAEM

algorithm. The bias values of the a parameter from the MCMC

algorithm are larger than those from the other two algorithms

under all of the three sample sizes.We can see that the estimation

results of the MCMC algorithm are not very satisfactory when

the sample size is 500 and the test length is 15; this indicates that

a sample size of 500 is not large enough for precise estimation

of the 3PNO model using MCMC with non-informative priors

on a and b. The poor performance of the MCMC algorithm for

the normal distribution case may be due to the choice of non-

informative priors on the parameters a and b. Therefore, the

RC-SAEM algorithm performs best when the true θ density is

normal. In addition, the RMSEs of parameters a and b show an

approximately decreasing trend as the sample size increases.

In the cases of the skewed and bimodal distributions, the

bias and RMSE values of a and b from the RC-SAEM algorithm

are noticeably lower than those from the SAEM and MCMC

algorithms, indicating that the proposed RC-SAEM algorithm

is effective for skewed and bimodal densities. It is worth noting

that the bias values of a from the MCMC algorithm are larger

than those from the RC-SAEM and SAEM algorithms, while

the corresponding RMSEs are smaller than those from the

SAEM algorithm in a few conditions, which demonstrates that

the estimation of a parameter under the MCMC algorithm

in skewed and bimodal cases is less accurate than the other

two algorithms. Although the RMSEs of a parameter from the

MCMC algorithm are slightly smaller than those from the RC-

SAEM algorithm in bimodal cases when the test length is 15

in Table 6, the bias of a under RC-SAEM still has an obvious

advantage over that of MCMC.

The advantage of RC-SAEM is most evident when

considering the bias and RMSE values of parameter b when

the true ability density is skewed or bimodal. Specifically, for

the skewed ability density, the bias and RMSE values of the

b parameter from the RC-SAEM algorithm are markedly less

than those from the SAEM and MCMC algorithms. In addition,
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FIGURE 1

The standard errors of item parameters using the RC-SAEM algorithm when the latent trait is bimodal in simulation study 1.

for the bimodal latent-ability density, although the RMSE of

b has no marked differences from the SAEM and RC-SAEM

algorithms, the bias of b from the RC-SAEM algorithm is still

lower than those from the other two. As can be seen from

Table 5, in the case of the skewed ability density with a sample

size 1,000, the SAEM and MCMC algorithms show obvious

biased values on b with the absolute values over 0.3; in contrast,

the RC-SAEM algorithm shows precise estimates of b, with a

bias of 0.001 and an RMSE of 0.187. In general, the proposed

RC-SAEM algorithm has a distinct advantage over the SAEM

and MCMC algorithms in terms of the biases of a and b. The

differences in the bias and RMSE of c from the RC-SAEM and

SAEM algorithms are very small. The RMSE of c from the

MCMC algorithm is slightly larger than those from the other two

algorithms in the skewed and bimodal cases.

Figures 4, 5 show the true and estimated latent-ability

density curves when the true ability densities are normal,

skewed, or bimodal. The true and estimated latent-ability density

Frontiers in Psychology 12 frontiersin.org

https://doi.org/10.3389/fpsyg.2022.971126
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cui et al. 10.3389/fpsyg.2022.971126

FIGURE 2

The standard errors of item parameters using the RC-SAEM algorithm when the latent trait is normal in simulation study 1.

curves are almost coincident when the true ability density

is skewed, and the two curves show only slight differences

when the true latent-ability density is bimodal. In addition,

the estimation results of item parameters and the ISE values

for 15 items in Table 6 are generally similar to those of 30

items in Table 5. This shows that the accuracy and precision

of the RC parameters from the RC-SAEM algorithm are not

markedly influenced by the number of items. This result

indicates that 15 items is sufficient for the proposed RC-

SAEM algorithm to provide satisfactory estimation of the RC

parameters for the RC-3PNO model. In contrast to the previous

methods in RC-IRT (Woods, 2008), our proposed RC-SAEM

algorithm has obvious advantages in terms of estimating RC

parameters with relatively short test lengths. For the space

limitation, the standard errors of item parameters are presented

in Figures A1–A4 of the Appendix. As can be seen from the

figures, the standard errors of item parameters show a decreasing

trend as the sample size increases. Moreover, the standard

errors of the item parameters under all conditions are within

reasonable ranges.
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FIGURE 3

The standard errors of item parameters using the RC-SAEM algorithm when the latent trait is skew in simulation study 1.

6. Empirical study

A real data set from the computer-based mathematics

assessment of the Programme for International Student

Assessment (PISA 2018; OECD, 2019) in China was analyzed.

Binary responses from 872 subjects on 11 items in one test form

were selected. The SAEM algorithm was fitted to the RC-3PNO

and 3PNO models for the real data set. The specifications of

the priors of the model parameters were the same as those used

in simulation study 2. The same three model selection criteria

(AIC, BIC, and HQIC) were used to assess the fit of the model to

the real data.

Among the RC-3PNO models with different knots and

degree values (i.e., the 10 combinations used in simulation

study 1), that with 2 knots and a degree of 3 yielded the lowest

AIC, BIC, and HQIC values. Thus, this model was selected as

the best-fitting model in the subsequent analysis. Table 7 shows

the model selection results for this 2-3 RC-3PNOmodel and the

3PNO model. As shown, the values of all three model selection

criteria are smaller for the RC-3PNO model than the 3PNO
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TABLE 5 Bias and RMSE of the item parameter estimates and the values of ISE statistic under di�erent ability densities when the test length is 30.

a b c ISE

Bias RMSE Bias RMSE Bias RMSE

N = 500 Normal SAEM 0.044 0.322 -0.059 0.305 -0.010 0.069 -

RC-SAEM 0.031 0.261 −0.008 0.236 −0.014 0.067 0.061

MCMC 0.051 0.265 −0.082 0.294 0.012 0.057 -

Skewed SAEM 0.096 0.508 -0.387 0.584 0.016 0.084 -

RC-SAEM 0.030 0.261 −0.021 0.239 −0.017 0.071 −0.006

MCMC 0.112 0.433 −0.399 0.592 0.034 0.071 -

Bimodal SAEM 0.094 0.350 -0.059 0.405 −0.012 0.079 −

RC-SAEM 0.097 0.376 −0.024 0.471 -0.012 0.083 −0.143

MCMC 0.154 0.370 -0.191 0.383 0.038 0.070 −

N = 1, 000 Normal SAEM 0.017 0.202 −0.044 0.218 −0.011 0.060 -

RC-SAEM 0.015 0.186 0.001 0.185 −0.015 0.059 0.027

MCMC 0.023 0.170 -0.002 0.174 0.003 0.047 -

Skewed SAEM 0.043 0.334 −0.323 0.436 0.022 0.083 −

RC-SAEM 0.014 0.190 0.001 0.187 −0.018 0.072 −0.039

MCMC 0.056 0.286 −0.313 0.415 0.034 0.065 -

Bimodal SAEM 0.067 0.275 −0.072 0.342 -0.005 0.072 -

RC-SAEM 0.074 0.281 −0.025 0.385 −0.010 0.075 −0.035

MCMC 0.157 0.316 -0.240 0.370 0.047 0.072 −

N = 2, 000 Normal SAEM 0.012 0.152 −0.018 0.155 −0.012 0.057 -

RC-SAEM 0.009 0.136 0.012 0.139 -0.014 0.055 0.008

MCMC 0.015 0.137 −0.038 0.154 0.004 0.041 -

Skewed SAEM 0.024 0.256 -0.294 0.362 0.032 0.078 -

RC-SAEM 0.009 0.148 0.000 0.154 −0.015 0.066 −0.007

MCMC 0.026 0.203 -0.261 0.318 0.039 0.059 -

Bimodal SAEM 0.060 0.249 −0.075 0.314 −0.002 0.065 -

RC-SAEM 0.056 0.237 0.001 0.324 -0.006 0.073 0.087

MCMC 0.223 0.343 −0.315 0.460 0.067 0.080 -

N denotes the sample size, normal, skewed, and bimodal refers to the shape of the ability density. The SAEM refers to estimating 3PNOmodel using SAEM, RC-SAEM refers to estimating

RC-3PNO model using SAEM, and the MCMC refers to estimating 3PNO model using MCMC algorithm.

model. This indicates that the RC-3PNO model gives a better

model fit than the 3PNO model for this real data set.

The estimated latent-ability density curve of the RC-3PNO

model is presented in Figure 6. It can be seen that the estimated

latent trait density curve for this model has an obviously

negatively skewed trend, which indicates that the math ability of

these subjects is above the mean of the population. Therefore,

the conventional methods assuming a normal distribution of

latent abilities may result in negatively biased ability estimates.

Table 8 shows the item parameter estimates for the 11 items of

the PISA test form.

7. Discussion

In real testing, the assumption of a normal distribution

of latent abilities in IRT may be violated. For example, non-

normality could result from the sampling of one or more distinct

populations such as those with or without a “disorder.” In

this case, the use of traditional algorithms, such as MML-EM,

SAEM, and MCMC, in which the latent-ability distribution

is restricted to normality, leads to severely biased parameter

estimates (Woods, 2006, 2007; Azevedo et al., 2011; DeMars,

2012; Molenaar et al., 2012; Wall et al., 2015; Reise et al.,

2018). Several methods are used to relax the normal assumption

of latent trait distribution. For example, the EH method, log-

linear smoothing, Davidian-curve IRT, and Ramsay-curve IRT,

have been proposed to estimate the distribution of latent ability

simultaneously with the item parameters. The Ramsay curve

is flexible in that it can describe non-normal latent-ability

distributions (Ramsay, 2000). To date, several RC-IRT models

have been developed. For instance, the RC-2PL model (Woods

and Thissen, 2006), RC-3PL model (Woods, 2008), and the

logistic GRM incorporating a Ramsay curve (Monroe and

Cai, 2014). However, the normal ogive model incorporating a
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TABLE 6 Bias and RMSE of the item parameter estimates and the values of ISE statistic under di�erent ability densities when the test length is 15.

a b c ISE

Bias RMSE Bias RMSE Bias RMSE

N = 500 Normal SAEM 0.111 0.586 −0.106 0.362 −0.007 0.074 −

RC-SAEM 0.052 0.385 -0.054 0.286 −0.008 0.068 0.061

MCMC 0.153 0.439 −0.110 0.414 0.011 0.066 -

Skewed SAEM 0.134 0.740 -0.423 0.652 0.017 0.093 −

RC-SAEM 0.038 0.345 −0.066 0.303 -0.006 0.071 -0.006

MCMC 0.191 0.473 −0.411 0.585 0.028 0.073 -

Bimodal SAEM 0.068 0.362 −0.104 0.292 −0.023 0.066 −

RC-SAEM 0.058 0.363 0.015 0.334 −0.034 0.073 −0.143

MCMC 0.131 0.350 −0.060 0.326 0.011 0.063 -

N = 1, 000 Normal SAEM 0.036 0.287 -0.053 0.259 −0.008 0.067 −

RC-SAEM 0.050 0.277 −0.013 0.227 −0.008 0.068 0.027

MCMC 0.106 0.299 0.011 0.229 0.001 0.056 -

Skewed SAEM 0.057 0.453 −0.366 0.502 0.014 0.083 −

RC-SAEM 0.020 0.247 −0.037 0.239 −0.011 0.072 −0.011

MCMC 0.134 0.327 −0.308 0.432 0.026 0.065 −

Bimodal SAEM 0.053 0.289 −0.128 0.255 −0.012 0.059 -

RC-SAEM 0.049 0.332 0.010 0.276 −0.032 0.076 -0.035

MCMC 0.107 0.284 −0.058 0.292 0.014 0.059 −

N = 2, 000 Normal SAEM 0.034 0.244 −0.027 0.207 −0.009 0.065 −

RC-SAEM 0.029 0.191 0.021 0.176 -0.009 0.062 0.008

MCMC 0.088 0.210 −0.043 0.179 0.003 0.049 -

Skewed SAEM 0.025 0.360 −0.306 0.400 0.025 0.082 -

RC-SAEM 0.010 0.188 −0.004 0.187 −0.013 0.071 −0.007

MCMC 0.108 0.272 −0.257 0.363 0.032 0.061 -

Bimodal SAEM 0.048 0.269 -0.161 0.249 -0.007 0.062 -

RC-SAEM 0.038 0.284 0.017 0.226 −0.030 0.075 0.087

MCMC 0.095 0.275 −0.081 0.314 0.021 0.061 −

N denotes the sample size, normal, skewed, and bimodal refers to the shape of the ability density. The SAEM refers to estimating 3PNOmodel using SAEM, RC-SAEM refers to estimating

RC-3PNO model using SAEM, and the MCMC refers to estimating 3PNO model using MCMC algorithm.

Ramsay curve is rarely used due to the constraints that the

normal ogive model itself requires for the integral calculation.

To fill the gap of estimating the normal ogive models in

RC-IRT, we propose here an SAEM algorithm to estimate the

RC-3PNO model with non-normal latent-ability distributions.

In contrast to the traditional EM algorithm, the stochastic

approximation step of the SAEM algorithm avoids the

need for complex integral computation, and the M-step is

straightforward to execute due to obtaining sufficient statistics of

theMAP estimates for the item parameters in exponential family

distributions, which greatly simplifies the computation and

improves its efficiency. Compared with the MHRM algorithm,

for exponential family distributions, the SAEM algorithm does

not need differential calculations when the standard errors

of estimates are not required; thus, the calculations of the

SAEM algorithm are easier to execute. The estimates of the

item parameters and the shape of the latent-ability density

can be simultaneously obtained from this new algorithm. By

introducing a Ramsay curve into the SAEM procedure, the new

algorithm can be applied not only to a normal distribution of

latent abilities but also to non-normal scenarios such as skewed

and bimodal distributions.

Simulation study 1 investigated three model selection

criteria to select the optimal knots and degree values in the B-

spline functions of Ramsay curves. The choice of knots and

degree had no noticeable influence on the bias and RMSE

values of the item parameters. The results of simulation study 2

indicated that the proposed RC-SAEM algorithm generally

performs better than the SAEM and MCMC algorithms when

the true ability density is skewed or bimodal. Specifically, the

RC-SAEM algorithm is obviously superior to the SAEM and

MCMC algorithms according to the bias of item parameters in

the RC-3PNO model when the true θ is skewed or bimodal.

Although the RMSE values of item parameter estimates from the
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FIGURE 4

True and estimated density curves using the RC-SAEM algorithm when test length is 30.

RC-SAEM algorithm are sometimes slightly larger than those

of the SAEM in bimodal cases, especially for the b parameter,

they are still within the acceptable range. Compared with the

suggested sample size of 1,000 for the 3PL model used in RC-

IRT (Woods, 2008), a sample size of 500 is large enough for the

estimation of parameters in RC-3PNO with a test length of 15.

For the empirical example, according to the model selection

criteria (AIC, BIC, and HQIC), the RC-3PNO model gives

a better model fit than the 3PNO model. The shape of the

estimated Ramsay curve indicates that the latent abilities of

these examinees are mainly distributed at the higher level of the

latent-ability continuum. In real testing, for binary responses

influenced by guessing, although both the RC-3PL and RC-

3PNO models serve as possible alternatives, the RC-3PNO

model is suggested because the proposed SAEM algorithm

avoids the need for calculations of the integral in the E-step

and the derivatives in the M-step of the original EM algorithm,

which greatly simplifies the computation. We suggest that the

RC-3PNO model can be used to detect a non-normal shape in

a latent trait distribution. In this case, our proposed RC-SAEM
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FIGURE 5

True and estimated density curves using the RC-SAEM algorithm when test length is 15.

TABLE 7 Model selection results for the real data set.

Model parameters −2log L AIC BIC HQIC

RC-3PNO 34 9664.3 9738.3 9914.9 9805.9

3PNO 30 10196.1 10262.1 10419.5 10322.3

algorithm can also be adopted to simultaneously estimate the

item parameters and the latent-ability density.

Several limitations and extensions of the proposed RC-

SAEM algorithm need to be mentioned. First, the proposed

RC-SAEM algorithm can be extended to other models, such

as the GRM and the four-parameter normal ogive (4PNO)

model (Culpepper, 2016). Second, a notable fact is that a

multidimensional generalization of RC-IRT has not yet been

developed. When such a development occurs, the proposed

RC-SAEM algorithm can be extended to multidimensional

models. Third, future research could compare the proposed RC-

SAEM algorithm with other algorithms involving methods that

relax the normality assumption of latent traits, such as DC-

IRT and LLS. Fourth, the proposed RC-3PNO model together

with the SAEM estimation algorithm could be investigated in
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FIGURE 6

Estimated Ramsay-curves for the real data set.

TABLE 8 Item parameter estimates under RC-3PNOmodel for the real

data set.

Item a b c

1 0.23 0.00 0.12

2 1.19 0.53 0.45

3 0.88 −0.83 0.66

4 0.39 0.76 0.92

5 1.22 −0.09 0.55

6 1.64 0.60 0.44

7 1.89 −0.72 0.12

8 1.17 −0.85 0.28

9 1.56 −0.04 0.37

10 1.24 −0.49 0.60

11 1.26 −0.72 0.62

other application domains, such as psychopathology measures

involving evidently non-normal latent traits (e.g., borderline

personality disorder and dark-triad traits) or medical fields (e.g.,

drug abuse). Finally, Kuhn and Lavielle (2004) have shown

that the SAEM algorithm can also be used for estimating

the asymptotic covariance matrix of the maximum-likelihood

estimate, and this could be adopted in the RC-SAEM algorithm

in the future.
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