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We present a computational cognitive model that incorporates and 

formalizes aspects of theories of individual-level behavior change and present 

simulations of COVID-19 behavioral response that modulates transmission 

rates. This formalization includes addressing the psychological constructs of 

attitudes, self-efficacy, and motivational intensity. The model yields signature 

phenomena that appear in the oscillating dynamics of mask wearing and 

the effective reproduction number, as well as the overall increase of rates of 

mask-wearing in response to awareness of an ongoing pandemic.
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1. Introduction

Public health response options to pandemics such as COVID-19 are greatly influenced 
by predictive epidemiological models (Adam, 2020; Pirolli et al., 2020, 2021; Cramer et al., 
2022). Non-pharmaceutical interventions, such as mask wearing, typically involve 
attempts to modify human behavior to reduce the routes by which a pathogen is 
transmitted (West et al., 2020; Harvey et al., 2021). Epidemiological models include little 
to no refined modeling of the psychology of the people who are being affected by the 
pandemic and who must decide whether and how to comply with public health guidance 
and mandates. The National Academies of Sciences, Engineering, and Medicine (Brossard 
et al., 2020) emphasized the importance of psychological science to the mitigation of the 
spread of COVID-19.

We argue that major advances in computational cognitive modeling are needed to serve 
as a foundation for predictive and causal-explanatory models of human behavior change in 
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response to pandemics. Such models are needed to shape the course 
of human behavior response in more precise and less burdensome 
ways. The COVID-19 pandemic has involved historically the most 
massive set of natural experiments aimed at changing human 
behavior along with staggering amounts of data relevant to 
understanding human behavioral response to the perceptions about 
the pandemic and related interventions. The availability of these data 
provides us with an opportunity to understand behavior-change 
with predictive, explanatory, computational cognitive models. Our 
preliminary research (Pirolli et al., 2020, 2021) on cognitive models 
of pandemic behavior response to COVID-19 focused on modeling 
beliefs, attitudes, intentions, and behavior that are assumed to 
influence the transmission of COVID-19. Our approach uses 
Psychologically Valid Agents (PVAs) implemented in the ACT-R 
(Adaptive Control of Thought-Rational) architecture (Anderson 
et al., 2004), with input drivers induced from heterogeneous sources 
including online media such as Twitter that provide indicators of 
pandemic awareness, beliefs, and attitudes (Pirolli et al., 2020).

In this paper, we present a computational cognitive model that 
incorporates and formalizes aspects of theories of individual-level 
behavior change (Fishbein and Ajzen, 1975; Ajzen, 1991, 1998; 
Brewer and Rimer, 2008; Michie et al., 2013, 2014, 2017; Ajzen and 
Kruglanski, 2019; West et al., 2020). Such formalization includes 
addressing the psychological constructs of attitudes (Hunter et al., 
1984; Lorenz et al., 2021), self-efficacy (Bandura, 1977; Bandura, 
1998), and motivational intensity (Kukla, 1972; Silvestrini et al., 
2022). In most cases, these psychological theories and constructs 
have been verbally specified, although some have been specified 
with a mathematical foundation (e.g., Hunter et al., 1984; Ajzen, 
1991) or in computational agent-based models (e.g., Silvestrini et al., 
2022). This paper is devoted to the development of a computational 
cognitive model that integrates these theories and constructs in way 
that is predictive of behavior, dynamical (i.e., changing with time 
and context), and grounded in established cognitive mechanisms. 
Such models could provide the foundation for understanding and 
predicting individual-level or aggregate behavior change and could 
serve as the basis for a variety of population-level modeling 
techniques, for example, by being embedded in agent-based models 
(Verelst et al., 2016) or other epidemiological models (Eubank et al., 
2004). In addition, their mechanistic underpinning could provide 
the basis of what-if counterfactual modeling of the effects of various 
public health actions to non-pharmaceutical interventions and the 
evaluations of alternative scenarios and strategies.

2. Computational modeling 
approaches to behavior change

2.1. The central role of human decision 
making and behavior in SARS-CoV-2 
transmission

In the early months of the COVID-19 pandemic, before the 
availability of vaccines when NPIs (non-pharmaceutical 

interventions) where the only available public health action West 
et al. (2020), pointed out that human behavior is central to the 
transmission of the SARS-CoV-2 virus. Although our 
understanding of the transmission routes from one person has 
become more refined since early 2020, it was understood that 
behaviors such as social distancing, hand washing, surface 
cleaning, mask wearing, and reduced touching of the face blocked 
these transmission routes.

Subsequent research corroborated the impact of social 
distancing (Gollwitzer et al., 2020) and mask wearing (Howard 
et al., 2021; Huang et al., 2022) on reducing COVID-19 cases. 
Because of the central role of behavior in controlling transmission, 
and the lack of solid empirical evidence for how to promote 
specific behaviors such as mask-wearing and social distancing, 
West et al. (2020) advocated for the application of behavior change 
theory and principles. Similar arguments have been put forth for 
applying habit formation theory and principles (Harvey 
et al., 2021).

As vaccines became widely available, the issue of vaccine 
hesitancy became a major problem for public health officials. 
Getting vaccinated can be viewed as the result of an individual-
level decision-making process (Peretti-Watel et  al., 2015) 
influenced by numerous factors. Empirical research suggests that 
theories of individual-level behavior change theories explain 43 to 
69% of the variance in vaccine hesitancy (Hossain et al., 2021; 
Wolff, 2021).

2.2. Individual behavior change theory

Individual-level health behavior theories (Brewer and Rimer, 
2008) include the Transtheoretical Model (Bridle et al., 2005), 
the Health Belief Model (Harrison et al., 1992), Goal Setting 
Theory (Locke and Latham, 2002), and the Theory of Planned 
Behavior (Ajzen, 1991; Ajzen, 1998). Michie et al. (2014) have 
performed an enormous survey of the behavior change literature 
and identified 83 theories, 26 mechanisms of action, 93 behavior 
change techniques, and 1,725 theoretical constructs. A recent 
meta-analysis (Samdal et al., 2017) of the literature on behavior 
change techniques identified in Michie et al. (2014) summarizes 
the evidence on which techniques produce reliable effects along 
with effect size estimates. As noted above, individual health 
behavior change theories are typically not formally specified as 
fine-grained predictive and dynamical models of behavior  
change.

Rather than provide a survey of these individual-level 
health behavior theories, we focus on the Theory of Planned 
Behavior (TPB, 9) as a canonical example of such theories to 
provide a framework for our discussion of our ACT-R 
cognitive model. TPB has been studied extensively (Brewer 
and Rimer, 2008) and meta-analyses support the efficacy of 
the approach in predicting behavior at a coarse-grained level 
(Armitage and Conner, 2001). It is implicated as being the 
most predictive of vaccine hesitancy (Hossain et  al., 2021; 
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Wolff, 2021). The TPB proposes that the predictors of a person 
engaging in a target behavior include the person’s intention to 
do the desired behavior and their perceived behavioral 
control—whether the person perceives themselves as being in 
control of doing the target behavior. We conceive of intention 
as specifically a goal intention: The person’s goal to perform a 
specific behavior. Perceived behavioral control encompasses 
the concept of self-efficacy (Ajzen, 2002), which we discuss in 
further detail below. In TPB, the predictors of intention are 
attitudes, subjective norms, and (again) perceived behavioral 
control. Attitudes are whether a person is in favor of doing the 
behavior. Subjective norms are how much the person perceives 
social pressure to do the behavior. Attitudes, subjective norms, 
and perceived behavioral control are all forms of expectancy-
value judgments deriving from beliefs about outcomes, 
significant referents, and specific facilitating/inhibiting 
factors, respectively.

Although our ACT-R models have been shaped by TPB, 
we claim that the ACT-R models themselves incorporate many 
more additional theoretical mechanisms and assumptions that 
derive from the ACT-R theory of cognition. There are many 
criticisms of TPB as a theory (e.g., Sniehotta et al., 2014). TPB is 
primarily a theory of volitional decision making, but ACT-R is a 
dual process theory (Kahneman, 2011) that includes unconscious 
as well as deliberative influences on decisions and behavior. TPB 
is primarily a static causal influence model, whereas ACT-R is 
inherently a continuous-time, dynamical model of cognition. 
The ACT-R models provide a way of capturing the evidenced 
effects of individual-level experiences and behaviors on future 
cognitions and future behavior. In sum, TPB has been as useful 
framework in shaping the ACT-R models presented here, but the 
models are much more than straightforward instantiations  
of TPB.

2.3. Previous work on cognitive models 
of COVID-19 behavior change

In previous research, we  performed PVA simulations 
(Pirolli et  al., 2020, 2021) to demonstrate the feasibility of 
mining online media to seed computational models of behavior-
change for NPIs (e.g., mask-wearing; social distancing), 
predicting the timeseries of behavior change for different US 
regions, and connecting that to epidemiological indicators such 
as Rt (effective reproduction number). That research developed 
a framework that integrates multi-level cognitive and social 
simulation with information networks analysis and 
epidemiological predictions. The PVAs were initialized and 
driven using techniques that extract indicators of pandemic 
awareness, beliefs, and attitudes from online media and 
available COVID-19 datasets (including polling and 
epidemiological data). Pirolli et  al. (2021) modeled mask-
wearing behavior in four states of United States (CA, FL, PA, 
and NY). Two analyses of COVID-19 Twitter datasets provided 

inputs to the PVA models. The first Twitter analysis concerned 
pro- vs. con-mask-wearing analyzed using hashtags. A second 
Twitter analysis provided a more refined analysis of cognitive 
content using Natural Language Processing (NLP) techniques. 
These analyses were input into PVA models of mask-wearing 
attitudes and behaviors and predictions were compared to 
mask-wearing behaviors in those four states over the 2020–2021 
time frame.

3. A computational cognitive 
model of behavior modulating 
COVID-19 transmission

3.1. Computational cognitive models 
using the ACT-R theory

ACT-R (Anderson and Lebiere, 1998; Anderson et al., 2004) 
is a cognitive architecture, i.e., a computational implementation 
of a unified theory of cognition (Newell, 1990). Unified theories 
of cognition specify how the structure and dynamics of the brain 
give rise to the functioning of the mind. Cognitive architectures 
include mechanisms and representations abstracted from human 
behavior, arranged as fine-grained interactions between 
functional modules that reflect the structure and operation of 
the human brain. A wide variety of cognitive architectures have 
been proposed over the last five decades since the concept was 
proposed as a unification of functionality-specific models to 
provide an integrated account of human cognition (Newell, 
1973). Recently, an attempt has been made to extract an 
emerging consensus regarding the central structures and 
processes of cognitive architectures in the form of a Common 
Model of Cognition (CMC), initially called the Standard Model 
of the Mind (Laird et al., 2017). ACT-R provides a computational 
implementation of the CMC informed by the rational analysis of 
cognition (Anderson, 1990) that assumes that our cognitive 
mechanisms and representations have adapted to the statistical 
structure of our environment. This assumption enables the 
development of models based on the cognitive architecture that 
abstract over details of our personal environment to generate 
behaviors that respond to the overall regularities of our 
information landscape.

The ACT-R theory (Anderson, 2007) has evolved since the 
1970s to address a wide variety of experimental results on 
problem solving, decision making, memory, learning, cognitive 
skill acquisition, perception, and attention, as well as the fine-
grained time course of neural processes. The theory has been 
applied to a variety of domains including computer tutoring 
systems, human-computer interaction, and language learning. 
ACT-R is implemented as a simulation environment with a 
number of software variants of that environment that can 
simplify application to a specific domain or problem. Practically, 
ACT-R is a computational cognitive architecture that supports 
the development of models. A scientific understanding of 
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behavior change in response to pandemics requires such unified 
models and toolkits. The literature on behavior change is 
extensive, lacks coherence, and needs mechanistic theory. 
Preliminary integrative models of behavior change have been 
developed in ACT-R (Pirolli, 2016a; Pirolli et al., 2018), which 
provide some promise of their utility to modeling behavior 
change during a pandemic.

ACT-R is composed of modules, processing different kinds of 
content, which are coordinated through a centralized procedural 
module. Each module corresponds to a brain region. Each module 
is assumed to access and deposit information into buffers 
associated with the module, and the central procedural module can 
only respond to the contents of the buffers. The procedural 
module matches the contents of other module buffers and 
coordinates their activity using production rules, which are pairs 
of conditions and associated actions. Neurally, a production rule 
is a formal specification of the flow of information from buffers in 
the cortex to the basal ganglia and back again. Productions have a 
utility property that is used to select the single rule that is executed 
at any point in time.

For the cognitive model presented in this paper, we rely 
on the declarative module, retrieval buffer, and blending 
buffer that are used to simulate how people retrieve knowledge 
and past experiences from long-term declarative memory. 
We use the ACT-UP simulation system (Reitter and Lebiere, 
2010) that implements this specific subset of 
ACT-R. Knowledge and experience in the declarative module 
are represented formally in terms of chunks (Miller, 1956; 
Simon, 1974). Chunks have activation levels that determine 
the probability and time course of chunk retrieval into a 
buffer. Chunk activations are real-valued quantities produced 
by subsymbolic mechanisms in ACT-R. These subsymbolic 
mechanisms reflect neural-like processes that determine the 
time course and probability of cognitive activity and 

behavioral performance. The dynamics of declarative memory 
retrieval and production selection are determined by these 
subsymbolic mechanisms.

Table  1 presents a subset of the ACT-R subsymbolic 
mechanisms relevant to the current model. The first three 
equations in Table 1 define how the level of activation of chunks 
in memory relates to the probability of their retrieval at any 
given time. The fourth equation defines how activation levels are 
increased by repeated experiences, or decay with time 
(forgetting). These first four subsymbolic mechanisms are crucial 
to the ACT-R model discussed below. A few general comments 
can be made about these mechanisms. The base-level learning 
equation and activation equation captures two key memory 
phenomena: activation increases with the frequency of 
experience (i.e., a practice effect) and decreases with time (i.e., 
forgetting). Level of activation dictates retrieval probability and 
weighs how blended retrievals produce aggregate values over 
past experiences.

3.2. Modeling attitudes as the expected 
value of behaviors

Attitudes are assumed by many (Ajzen, 1991) to be  an 
expectancy-value assessment, such than an attitude a towards a 
behavior is proportional a b ei i∝ ∑  to the strength of beliefs, b, 
about outcomes and their evaluated values, e. For instance, the 
Theory of Planned Behavior—discussed above—is historically 
related to seminal work on expectancy-value theory in psychology 
(Fishbein and Ajzen, 1975). The general idea is that people develop 
expectations about behavioral outcomes as well as subjective 
values about those outcomes.

Our model of expectancy-value judgments assumes that 
decisions and enacted behavior have values that reflect subjective 

TABLE 1 Core ACT-R mechanisms used in the simulations.

Mechanism Equation Description

Blended retrieval
( )( )1 , 2= −∑V argmin P Sim V Vi i

i

Pi: Probability of declarative retrieval

Sim (V,Vi): Similarity between compromise value V and 

retrieved value Vi

Retrieval probability /

/
i

j

eP
e

A s
i A s

j

=
∑

Pi: The probability that chunk i will be recalled

Ai: Activation strength of chunk i

∑Aj: Activation strength of all of eligible chunks j

s: Chunk activation noise

Activation A Bi i iε= + Bi: Base-level activation reflects the recency and 

frequency of use of chunk i

εi: Random noise value

Base level learning ( )n
j 1ln d

i j iB t β−
== +∑

n: The number of experiences for chunk i

tj: The time since the jth presentation

d: A decay rate

βi: A constant offset
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utility—e.g., a degree of satisfaction, reward, or degree of preference 
(Luce, 1959). That is, when a behavior occurs in some situation and 
produces an outcome, it may be  associated with a subjective 
assessment of its value. Based on ACT-R, we  assume those 
experienced associations of features as <situation context, behavior, 
outcome, value> associations that are stored in declarative memory 
as chunks. These instances of decision and behavioral experience 
are core to the theory of Instance Based Learning that has been 
developed within ACT-R (Gonzalez et  al., 2003). Over time, 
implicit knowledge about decision making is generated through 
the creation and storage of experiential instances.

Decision-makers retrieve and generalize from these instances 
to evaluate alternatives, make a decision, and execute a behavior. 
This is achieved through memory retrieval and blending. Memory 
retrieval in ACT-R is a request to retrieve a specific memory 
chunk when provided with a set of cues (features). For example, a 
set of features might in a situational context might be used to 
retrieve a memory of a behavior that occurred in a similar 
situation. A blended retrieval produces a memory that aggregates 
and generalizes over past experience based on inter-instance 
similarity and the activation of those memories. For instance, a 
blended retrieval of the subjective value of a behavioral outcome 
is an aggregate of instance values, weighted by the activation of 
those instances (see Table 1).

Figure 1 illustrates how instance-based learning mechanisms 
yield expectancy-value judgments. The data in Figure 1 come 
from a purely synthetic set of simulation runs. For each run, there 
is a training phase in which experience instances of <situation, 
behavior, value> are stored in memory, followed by a test in 
which a blended retrieval is made to judge the expected value of 
a behavior. The behavior is arbitrarily labelled as “mask wearing.” 
Each training run simulates a behavior producing a value = v with 
probability = p or a value = 0 with probability (1-p) for a total of 
100 experiences (instances). Note that there is no explicit 
representation of probability—just a set of experiences that 
produce subjective values with some probability. Following, a 
training run, a blended retrieval is performed to assess the 
expected value of “mask wearing.” The synthetic runs in Figure 1 
range over p = 0, 0.2, …1.0 and v = 0.25, 0.5, …1.0.

3.3. Modeling the time and frequency 
effects of messaging or experiences

Attitudes can be modified through messages and experiences, 
and the impact of messages can be modulated by evaluations of 
the credibility of the sources of those messages (Hunter et al., 
1984). Figures 2–4 illustrate the predicted dynamics of message 

FIGURE 1

Expectancy value assessments for multiple simulation runs of ACT-R in which subjective values associated with success range from 0.25 to 1.0, 
and the probability of success ranges from p = 0 to 1.0.
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FIGURE 2

Dynamics of subjective intentions that start a level of zero but messaging at t = 10, 20, 30, 40 promotes a higher level of intention.

effects on intentions in another series of ACT-R simulations. The 
simulations assume that the subject value of “mask wearing” is 
initially zero, and messages are delivered at specific points in time 
that ‘mask wearing’ has a higher value. Those messages are stored 
as additional instances in memory and affect subsequent 
judgments based on blended retrievals. In Figure  2, one can 
observe the effects of the base-level learning mechanism: (Adam, 
2020) As the cumulative frequency of messages increases, the 
activation of chunks representing a higher value for “mask 
wearing” increases, and that weights the expected value 
assessments to be larger (Pirolli et al., 2020), the effect of a message 
decays with time, again because of the decay in activation specified 
by base-level learning.

So far, we have simplified the discussion by only attending to 
one behavioral alternative (“mask wearing”), but decision making 
involves choice amongst multiple alternatives. Figure 3 presents 
data from simulation runs in with there are alternative behaviors 
(“wear mask,” “do not wear a mask”) in which the subjective value 
of “wear mask” is initially less than the alternative, but messages 
at specific points in time place a higher value on “wear mask” than 
“do not wear a mask.”

These competing behavior intentions are related to a decision 
to pursue a behavior using a variation of a Random Utility Model 
(McFadden, 1974) or Luce’s Choice Axiom (Luce, 1959) by which 
the probability of choosing an alternative with an intention of i 
from a set of alternatives having intentions J is given by:

 

( ) ( )
( )

exp
expj J

i
Pr i J

j
∈

=
∑

Using this choice probability model, the competing intentions 
in Figure  3 produce the choice to “wear mask” with the 
probabilities depicted in Figure 4.

3.4. Modeling self-efficacy and 
motivational intensity

Self-efficacy defined as an individual’s belief in their capacity 
to execute behaviors necessary to produce specific performance 
attainments. The Social Cognitive Theory of self-efficacy 
(Bandura, 1998) predicts that behavioral goals that are perceived 
as too difficult are unlikely to be attempted. In general, greater 
levels of self-efficacy lead to greater likelihoods of achieving a 
goal. Self-efficacy is often broken down into: (Adam, 2020) 
perceived general self-efficacy, which is an individual’s perception 
of their ability across many situations and (Pirolli et al., 2020) 
task-specific self-efficacy, which is an individual’s perception of 
their ability to perform a specific action or task in one or a 
variety of situations. ACT-R models of self-efficacy have focused 
on the task-specific self-efficacy. However, because of the way 
declarative memory blending works in ACT-R these models do 
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FIGURE 3

Dynamics of subjective intentions for mask wearing or not wearing masks with messaging promoting masks at t = 10, 20, 30, 40.

FIGURE 4

The impact of the changes of intentions in Figure 3 on mask choice probability.
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have the capability to transfer self-efficacy across similar 
behaviors and tasks or produce self-efficacy across a range of 
situation bs and or tasks. ACT-R models (Pirolli, 2016a,b) are 
based on self-efficacy from mastery experiences (i.e., personal 
experiences of success), but in principle can be  based on 
vicarious experience (e.g., witnessing similar others who have 
exhibited mastery).

Related to assessments of self-efficacy is how motivated people 
are to engage in effortful behaviors (physical and or cognitive). As 
Vancouver (Vancouver, 2008; Vancouver et al., 2008) has noted, 
when self-efficacy is low relative to a difficult task, then it is likely 
to be judged as being more effortful, so high motivated effort can 
be  compensatory for low self-efficacy—up to a limit. This is 
because the general observation and Motivational Intensity 
Theory (Silvestrini et al., 2022) is that as the difficulty of a task or 
behavior exceeds some threshold, people will not be motivated to 
allocate effort, producing a saw-tooth relationship between effort 
and perceived task difficulty. Previous ACT-R research (Pirolli, 
2016b) combined self-efficacy theory with an implementation of 
the Attributional Theory of Performance (Kukla, 1972), which is 
a variant of Motivational Intensity Theory.

How ACT-R integrates self-efficacy and motivation intensity 
theories can be illustrated with another synthetic example about 
mask wearing. The ACT-R theory (Pirolli, 2016b) assumes that 
when mask wearing is judged as having a difficulty, δ, a self-
efficacy θ(t) at time t, and the individual engages with motivation 
intensity τ(t), then the probability of engaging in the behavior will 
be another variation of Luce’s Choice Axiom:

 
( )

( ) ( )( )
( ) ( )( )

exp
  

1 exp
t t

Pr engage in behavior
t t

δ θ τ
δ θ τ
− +

=
+ − +

As described by Pirolli (2016a) this ACT-R model assumes 
that self-efficacy and intended effort are fundamentally the result 
of memory processes. Past experiences of efficacy at behaviors 
similar to a target goal are retrieved and blended together to 
produce assessments of self-efficacy and intended effort for the 
new goal. The assumption is that given a decision to pursue a goal, 
an assessment is made of the difficulty, δ, of achieving that goal. A 
blended retrieval is performed to assess the self-efficacy, θ(t), 
based on memory of experiences on behaviors similar to the goal 
behavior. A judgment is made about the intentional level of effort 
required to achieve a behavior with desired probability p:

 
τ δ θt p

p
t( ) =

−








 − ( )ln

1

It is assumed that the individual will put in effort τ t( )  if it is 
less than a threshold ϕ.

If the behavior is performed, then a new instance is learned. 
That instance will be stored with a self-efficacy that includes the 
old self-efficacy value plus the additional intentional effort 
expended. New successful experiences on behaviors where the 

perceived difficulty was high relative to self-efficacy—but within 
the limits of what a person was motivated to put in the effort 
required—will tend to improve self-efficacy with repeated 
experience. Figure  5 depicts another synthetic simulation 
illustrating the dynamics of self-efficacy, intentional effort, and 
probability of performing the behavior. Figure 5 show the growth 
of self-efficacy and diminishment of intentional effort with 
successful experiences. Figure  5 shows how the probability of 
engaging with the behavior increases with self-efficacy.

3.5. Modeling norms affecting 
polarization

Compliance with NPIs (and vaccination decisions) involves 
decision making between safe and risky options. As has been 
shown empirically by Gollwitzer et al. (2020), the probability of 
engaging with an NPI behavior can differ initially between groups 
having different normative beliefs (as measured by political 
leaning), and those differences can be  amplified over time. 
Figure 6 illustrates this amplification process. The chunks in this 
model reflect the relative payoff values of the two options of 
wearing or not wearing mask, including both outcomes of the 
riskier option (basically usual, unencumbered life vs. illness and 
potentially death) as well as the single outcome of the safe option 
(the annoyance of wearing a mask). The relative activations of 
those options reflect the initial messaging propagated in social and 
mass media, gradually supplemented by personal experience. A 
key characteristic of this process of decision-making under risk is 
that later decisions are influenced by the sampling of options early 
in the process, itself driven by the initial presentation of the 
options (Lebiere et  al., 2007; Erev et  al., 2010). An important 
consequence is to amplify initial differences in messaging as found 
in Gollwitzer et al. (2020). The blue line represents counties with 
a higher proportion of messages (0.25) emphasizing the negative 
outcome of the risky option. This leads to an expectation of the 
risky option that is worse than that of the safer option, leading to 
that option being selected consistently, and the relative 
expectations being maintained, even when the original messaging 
is relaxed (period 20). The red line represents counties with a 
lower proportion of messages (0.15) warning about the negative 
outcome. This leads to an expectation of the risky option that is 
often better than the safer option, resulting in that risky option 
being selected with higher frequency. Because the probability of 
the negative outcome was relatively low, this led to a gradual 
improvement in expectation leading to lower adoption of the safer 
option. Once messaging is relaxed, the usual risky behavior then 
quickly returns as the default option.

3.6. Modeling awareness-driven 
oscillations in behavior

It has generally been observed throughout the history of 
pandemics that people typically modulate their behavior in ways 
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that mitigate transmission rates before NPI mandates (Christakis, 
2020). This awareness-driven behavior modulates the shape of 
epidemiological curves such as case rates or effective transmission 

rates, Rt (Weitz et al., 2020). It has been argued (Weitz et al., 2020) 
that it is awareness-driven behavior that produces the signature 
temporal phenomenon observed in virtually all regions: the 

FIGURE 5

The dynamics of self-efficacy and intentional effort over time (left) and the impact on the probability of pursuing a behavior (right).

FIGURE 6

The evolving polarization of behavior adoption in response to messaging.
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FIGURE 7

The effective reproduction number for the first three waves of COVID-19 in the United States for the top five states that voted for the 2016 
Republican presidential candidate (bottom) and top five that voted for other candidates (top).

damped oscillation pattern of the effective transmission rate, Rt, 
such as those presented in Figure 7. That is, there is typically a 
rapid decline from Rt > 1 as people react to the initial spread of the 
virus, followed by an oscillation around Rt = 1. This oscillation 
phenomenon is reminiscent of a Proportional-Integral-Derivative 
control system in which a controlling intervention (e.g., mask-
wearing) occurs in proportional response to the state of the system 
(e.g., Rt), although there may be lags between awareness of the 
system state and the response, and between the response and 
effecting a change.

However, the observed oscillation pattern is not entirely 
simple. Figure 8 presents phase space plots for Rt (t + 1) by Rt (t) 
over the first three waves of COVID-19 in the United States for 
CA and WY (see the Supplementary material for description of 
the data sources and phase space diagrams for five states with the 
highest 2016 Republican Presidential vote and five states with the 
highest 2016 Democrat Presidential vote). In general, one can 
observe that there is oscillating pattern around the Rt = 1 mark, but 
in both cases the oscillation loops appear to shift over time.

Figure 9 plots the phase space relationship between Rt and 
mask-wearing for CA and WY for the first three waves of COVID-
19. As can be seen in Figure 9, the mask-wearing response in WY 
is initially far lower than CA, and the decline in mask-wearing as 
Rt declines is sharper in WY than in CA, where mask-wearing 

essentially stays flat as Rt values decrease. We hypothesize that this 
is the result of to the norm-driven polarization discussed above.

Figure 10 presents a model of this oscillation pattern that 
emerges from an integration of expectancy-values attitudes, self-
efficacy, intentional effort and the assumption that individual 
assigns value to mask wearing or not, based on their perceptions 
of whether the pandemic is increasing or abating. Again, this is a 
synthetic simulation of two hypothetical waves driven by variants 
with R0 = 4 and R0 = 5, corresponding to the values estimated for 
the first wave and delta-variant waves of COVID-19 (Liu and 
Rocklov, 2021; Yu et  al., 2021). High Rt values trigger strong 
behavior activation, leading to mask wearing, which leads to a 
decrease in infection. This in turn leads to a relaxation in behavior, 
triggering another increase and another cycle starts. One effect of 
the experience built up during the first wave of the simulation is 
that mask wearing response is more probable during the second 
wave (Figure 11). This is primarily the result of the build-up of 
self-efficacy (Figure 11).

So, the cognitive model predicts an increase in mask-wearing 
probability to perceived COVID-19 transmission rates. That is, for 
a given value of Rt, the proportion of people who choose to wear a 
mask should increase with successive waves. Figure 12 shows that 
the distribution of daily mask wearing per state increased from the 
first to third waves of the COVD-19 pandemic (first wave mean 

https://doi.org/10.3389/fpsyg.2022.981983
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Pirolli et al. 10.3389/fpsyg.2022.981983

Frontiers in Psychology 11 frontiersin.org

mask wearing = 58.22%, second wave mean = 71.62%, third 
wave = 76.46%). More specifically the percentage of people in a 
state on a given day at a given Rt on that day increased from the first 
wave to the third wave, as shown in the scatterplots in Figure 13.

4. Discussion

In public health practice, behavioral prevention and 
intervention efforts have relied on the notion that identifying 

risk-factors of individuals can provide a basis for whom to target, 
given a specific disease or outcome. This includes social factors 
(e.g., the position of an individual in a network) as well as 
individual-based factors (e.g., gender, race/ethnicity, and age). 
This perspective applies to both acute events (pandemic, 
environmental emergency) and chronic public health issues 
(smoking, obesity, etc.). For the latter there is an additional need. 
Mechanistic models that forecast key outcomes of interest (e.g., 
force of infection, how many people will accept vaccination) or 
provide what-if mitigation scenarios (what if we mandate masks) 

FIGURE 8

The oscillation of the effective reproduction number in two United States states.

FIGURE 9

The oscillation of mask wearing and effective reproduction number in two United States states.
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FIGURE 12

Distribution of effective transmission number over three waves of COVID-19 in the United States (top) and the shift of mask-wearing rates over the 
same three waves (bottom).

FIGURE 10

ACT-R simulation of the oscillation of reproduction number over 
two simulated waves of COVID-19 variants.

FIGURE 11

ACT-R simulation produces an overall increase in mask wearing 
as a function of Rt over two simulated waves of variants.
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for use by policy makers sometimes require assumptions about 
behavior change or behavioral compliance (Halloran et al., 2008). 
The use of social psychological theory is part-and-parcel of 
practice in public health, yet as it is used today we see several 
practical limitations: (i) little incorporation of dynamics of 
behavior, (ii) no affordance for testing an interventions efficacy on 
behavior change in silico (simulation), (iii) lack of a general and 
unifying model for application across behavioral domains and 
public health contexts, (iv) little feasibility for incorporation of the 
theory into mechanistic, real-time forecasting or what-if 
population models.

Computational cognitive modeling offers one approach to 
mitigate the limitations of current public health practice. Its 
foundational advantage is that it represents the detailed mental/
cognitive processes and representations that drive behavior. For 
example, one of our efforts presented above was a model of 
intention formation that was derived from a detailed specification 
of the human memory system. The latter was derived from the 
ACT-R cognitive architecture, a formal theory of the human 
mind that rests on decades of both experimental and 
neurophysiological human data. In a sense, our intention model 
is constrained in its structure and parameterization by decades of 
abduction between experimental data and psychological theory. 
This, we argue, is the foundation for the computational cognitive 
modeling approach in public health.

The computational cognitive modeling approach is extremely 
well suited to address each of the limitations listed above. First, it 
affords a clear understanding of the dynamics of behavior change 
precisely because the basis for ACT-R is theory about the 
dynamics of human memory, in general. Second, it provides a 
test-bed for the effects of intervention/prevention efforts (e.g., 
messaging, or temporal effects of mitigations) in silico. ACT-R is 
a computational theory, and, is naturally extendable to small-scale 
social simulations of groups for testing in social contexts (Morgan 
et al., 2021). Third, it is a general approach, unified by the ACT-R 
cognitive architecture (or even the Common Model of Cognition), 
that can span behavioral domains (e.g., chronic diseases such as 
cancer and obesity and infectious disease such as HIV or COVID-
19) and span social contexts and differences in built environments). 
Finally, it can form the basis for the behavior models for large or 
at-scale simulations of infectious disease and mitigation. Agent-
based modeling has been integrated with ACT-R in several 
contexts (Bhattacharya et al., 2019; Orr, 2019; Orr et al., 2021).

A final point we’d like to make is more general but important for 
future integration with the public health community. Computational 
cognitive modes provide a perspective on risk-factors (Orr and 
Plaut, 2014). Different risk groups have the same mental apparatus; 
the difference between groups amounts to what has been learned via 
social context and what are the affordances of the built-environment. 
Cognitive modeling forces one to think through what are the 

FIGURE 13

Scatter plot of mask wearing rates by Rt over three waves of COVD-19 in the United States.
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informational and contextual differences between groups and how 
this has effected the operation of the cognitive model. In short, from 
the cognitive modeling perspective, all people and groups are the 
same. Differences in risk behaviors stem from differences in 
experience. Although our focus here has been on behavioral 
responses, such as mask wearing, the underling processes are 
expected to generalize to other important pandemic-related health 
decisions, especially that of vaccination. This will be a challenge 
because of the causal role played by individual experiences, beliefs, 
and values in vaccination decisions (Reimer et al., 2022).
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