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Overfactoring in rating scale
data: A comparison between
factor analysis and item
response theory
Javier Revuelta *, Carmen Ximénez and
Noelia Minaya
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Educational and psychological measurement is typically based on

dichotomous variables or rating scales comprising a few ordered categories.

When the mean of the observed responses approaches the upper or the

lower bound of the scale, the distribution of the data becomes skewed and,

if a categorical factor model holds in the population, the Pearson correlation

between variables is attenuated. The consequence of this correlation

attenuation is that the traditional linear factor model renders an excessive

number of factors. This article presents the results of a simulation study

investigating the problem of overfactoring and some solutions. We compare

five widely known approaches: (1) The maximum-likelihood factor analysis

(FA) model for normal data, (2) the categorical factor analysis (FAC) model

based on polychoric correlations and maximum likelihood (ML) estimation,

(3) the FAC model estimated using a weighted least squares algorithm, (4)

the mean corrected chi-square statistic by Satorra–Bentler to handle the

lack of normality, and (5) the Samejima’s graded response model (GRM) from

item response theory (IRT). Likelihood-ratio chi-square, parallel analysis (PA),

and categorical parallel analysis (CPA) are used as goodness-of-fit criteria to

estimate the number of factors in the simulation study. Our results indicate

that the maximum-likelihood estimation led to overfactoring in the presence

of skewed variables both for the linear and categorical factor model. The

Satorra–Bentler and GRM constitute the most reliable alternatives to estimate

the number of factors.

KEYWORDS

factor analysis, categorical factor analysis, polychoric correlations, skewness, rating
scales, Monte Carlo simulation, item response theory, graded response model

Introduction

Ordinal data have an overwhelming presence in educational and psychological
measurement (Jöreskog and Moustaki, 2001; Flora and Curran, 2004; Lee et al., 2012).
Rating scales, Likert-type items, graded responses, and dichotomous data are the basis
for the measurement of attitudes, personality traits, and abilities. By definition, this
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type of data is bounded between a lower and an upper limit.
When the responses concentrate close to one of the boundaries,
the distribution of the data presents an extreme mean and either
positive or negative skewness. This may happen, for example,
when the individuals show a tendency to agree to an opinion
scale or when they easily pass the items of an ability test. In some
circumstances, the responses are skewed in opposite directions.
This pattern of mixed skewness may appear for instance in
balanced Likert-type scales containing an equal number of
items worded in opposite directions (positive or negative) to
control for acquiescence and other response biases (Ferrando
and Lorenzo-Seva, 2010; Savalei and Falk, 2014). Usually, a high
score in positively worded items is associated to a high factor
score whereas the reverse occurs for negatively worded items
(Lindwall et al., 2012). Positively and negatively worded items
typically have skewness with reversed signs. Another example
of mixed skewness occurs when an ability test contains items
of varying difficulty to evaluate individuals at different ability
levels. Easy items generally have a high mean and negative
skewness, and the contrary occurs for difficult items (Ho and
Yu, 2015). The same phenomenon may occur with binary data,
which is the particular case of rating scales in which responses
are scored in two categories.

From a theoretical standpoint, ordinal variables cannot be
normally distributed. This is at odds with the assumption of
multivariate normality implicit in the most popular methods
of statistical inference in the context of factor analysis (FA).
However, the assumption of normality is a convenient one
from a computational perspective and normal-based methods
are still in widespread use under the presupposition that they
are reasonable accounts of the data. Alternative methods have
been proposed in the psychometric literature to handle non-
normal variables (Flora and Curran, 2004). Robust methods are
still based on normality and introduce corrections to deal with
excess skewness and kurtosis. Models for ordinal data get rid
of the normality assumption of manifest variables and explicitly
assume a multinomial distribution of responses. There are still
no clear answers as to what point one must switch from a
normal model to a robust-normal model and to a model for
multinomial data.

This article aims to shed some light on this problem by
comparing the different inferential methods in a simulation
study under conditions of varied skewness. The purpose of the
article is to present recommendations to applied practitioners
who have rating data and must decide which method to
apply from the wide range of ready-to-use options that are
available in popular computer programs. The comparison is
largely based on Olsson (1979) study, which addressed these
effects in relation to the likelihood-ratio chi-square statistic
for normally distributed variables. Olsson (1979) investigated
several conditions, including sample size, the magnitude of
the factor loadings, the number of item response categories,
the number of items, and the pattern of skewness. He found

that mixed skewness is an important driver for the problem
of overfactoring in the context of exploratory FA. Other
relevant studies are those by Foldnes and Grønneberg (2022)
and Grønneberg and Foldnes (2022), who found that the
dissimilarity between the distribution of the latent responses
and the assumed normal distribution leads to a distortion in
the polychoric correlations and, ultimately, in the results of the
categorical factor model.

Olsson (1979) also found that overfactoring is associated
with the magnitude of the factor loadings, occurring that higher
factor loadings are associated with an increased chi-square value
and, consequentially, lead to a worse fit. This phenomenon has
been termed the reliability paradox (Hancock and Mueller, 2011;
McNeish et al., 2018), meaning that high loadings imply that the
measurement is more reliable but are associated with an inflated
chi-square value and overfactoring. One tentative solution is
to switch from FA for normal variables to categorical factor
analysis (FAC). Previous research has investigated categorical
factor models under different study conditions and estimation
methods. For example, Curran et al. (1996) investigated
alternative estimation methods and recommended the use of
ADF estimation (Browne, 1984) for models including skewed
variables. However, ADF is problematic when the sample size
includes only a few hundred observations (Hu et al., 1992),
which poses a problem for applied investigators in the field
of behavioral sciences who typically cannot afford samples of
thousands of individuals in their studies.

This article compares five approaches for the FA of ordinal
data. First, FA for normal data is considered because it is the first
method that was developed (Lawley and Maxwell, 1971) and it
is still in widespread use. The second approach is FAC estimated
from the polychoric correlation matrix and a maximum-
likelihood algorithm (Christoffersson, 1975; Muthén, 1978). The
third approach is weighted least squares estimation with mean
and variance correction (WLSMV) of the FA model, which
has proved to be appropriate for the analysis of ordinal data
(Flora and Curran, 2004; Li, 2016). The fourth approach is
the mean corrected chi-square by Satorra–Bentler (TM ; Satorra
and Bentler, 2001, 2010; see also Savalei, 2018), which is a
modification of the chi-square statistic of FA to correct for the
lack of normality in the data. The TM rescales the chi-square
statistic by an amount that reflects the degree of kurtosis, and it
is customarily used with ordinal data. Finally, the fifth approach
is the Samejima graded response model (GRM; Samejima, 1969,
2016) from the item response theory (IRT). The FAC and
GRM share the basic form of the model (the algebraic relation
between latent factors and manifest variables; Takane and de
Leeuw, 1987) but differ in the estimation method. The GRM
is not estimated from the polychoric correlations but from the
individual response patterns using a marginal-likelihood/EM
algorithm.

We have assumed that the population follows a FAC model
because this approach is possibly the most common in the
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analysis of ordinal data. However, there is also an active line
of research about populations that do not conform to FAC but
to a Pearson correlation model (Robitzsch, 2020, 2022). Our
simulations cannot help to decide what the population model
is. We investigate the performance of the different analytic
approaches under the assumption of population FAC.

The article is organized into four sections. Section “Factor
analysis models and the effect of categorization” presents
the theoretical description of the FA models and the effect
of skewness on manifest correlations and overfactoring. The
section “Simulation study” describes a simulation study to
compare the FA and IRT models under several conditions. A real
data example is presented in the section “Real data example”
to illustrate these problems in an applied setting. Finally, the
article concludes with a discussion and recommendations for
applied researchers.

Factor analysis models and the
effect of categorization

Factor analysis models for continuous
and categorical data

The linear factor model (FA) for a vector of variables y∗ of J
elements is

y∗ = 3ξ + e, (1)

where ξ is a vector of latent factor, e is a vector of random
measurement errors1, and 3 is the matrix of factor loadings.
Under the additional assumption of normality, the factors, ξ ,
follow a standard normal distribution, and the errors, e, are
distributed as normal (0, ϕ), where ϕ is the standard deviation.
In consequence, the distribution of y∗ is multivariate normal
with variance-covariance matrix:

6∗ = 3′3+9, (2)

where9 is the diagonal variance-covariance matrix of e.
The categorical factor analysis model (FAC) assumes that

y∗ is an unobservable variable and that the manifest responses
are obtained from y∗through a discretization process (Muthén,
1984; Ferrando and Lorenzo-Seva, 2013). For example, the
binary factor model assumes that the response to item j is 1 if
y∗j is sufficiently high and 0 otherwise. More specifically:

yj =

{
0, if y∗j ≤ τj
1, if y∗j > τj

, (3)

1 In the original formulation of the model, e splits into a unique
factor and a measurement error. However, such a distinction is mainly
of a theoretical interest as these two elements cannot be empirically
distinguished in most practical settings.

where τj is a threshold parameter. In general, a model for K
ordered response categories is based on a discretization process
for y∗ based on K-1 threshold parameters.

Mathematically, the skewness of the distribution of the
manifest variable, yj, depends on the placement of the
thresholds. In the case of dichotomous data, the distribution
will be skewed when the threshold parameters have an extreme
value. On the contrary, the distribution of responses will be
roughly symmetric when the threshold (the population mean
of ξ ) is close to zero. If the threshold is far away from zero,
one of the categories will be more probable than the other.
In the general case of an item with K response categories,
skewness is associated to an uneven location of thresholds
around the factor mean.

The attenuation of correlation

In general, the variance-covariance matrix of y, say 6, will
not conform to the structure implied by the linear model of
Equation (2). However, Muthén and Kaplan (1985) identified
some circumstances where the covariance structure of (2) holds
for both y∗ and y. In particular, when a single factor model holds
for y∗ and all the items have the same slope, error variance and
thresholds, all correlations between y∗ are equal. In this case, all
the pairs of yj have the same correlation, ρy = aρy∗ , where a is
the attenuation factor.

Figure 1 provides details about the effect of the skewness on
the Pearson correlation (Jorgensen and Johnson, 2022), showing
the correlation for two variables that measure a common factor.
Factor loadings are set to 0.71 and the correlation between y1

and y2 is computed as a function of the threshold.
The most evident result in Figure 1 is that the correlation

depends on the threshold and is higher for threshold values
close to zero. This is a noteworthy difference between FAC and
FA, because in the later model the correlation is mathematically
independent of the mean of the variables. A more subtle result
shown by Figure 1 is that when the variables are skewed in
opposite directions, the attenuation of the correlation is more
pronounced and the overfactoring will be potentially more
severe. This can be appreciated by comparing the correlations
in the corners of Figure 1. For example, the correlations in the
corner (−2, −2) are about 0.20 whereas, in the corner (−2, 2),
they are about 0.11.

The maximum-likelihood estimation of the FA model
consists of finding the values of the parameters that minimize
the discrepancy function (Browne and Cudeck, 1992).

F(6,6∗) = log |6∗| − log |6| + trace
(
66∗

)
+ p, (4)

where 6 is a variance-covariance matrix and p is the number
of manifest variables. The population value of the discrepancy
is computed by setting 6 to the true variance-covariance
matrix (for example, those reproduced by a FAC model) and
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FIGURE 1

Marginal correlation between the two dichotomous factor indicators as a function of the thresholds.

minimizing F with respect to 6∗. In estimation, 6 is set to
the sample variance-covariance matrix (6 = S). The likelihood-
ratio chi-square goodness of fit statistic is X2

= NF(S, 6∗), and
E(X2) = df (Cudeck and Browne, 1985).

Fitting a FA model to a population that conforms to
a FAC model has two unwilling consequences. First, in the
special circumstances where the FA fits the true variance-
covariance matrix [that is, F(6,6∗) = 0 in the population],
the FA contains the correct number of latent factors but the
slopes will be attenuated. Second, in most cases the FA do not
fit the population model [the population value is F(6,6∗) >
0]; in that circumstances, the FA cannot reproduce the true
variance-covariance matrix, the chi-square has an expectation of
E(X2) = δ + df (where δ is a positive non-centrality parameter),
and the probability of rejecting the FA model with the correct
number of factors will be inflated. The psychometric literature
has demonstrated that this bias may lead to distortions such as
overfactoring and the emergence of difficulty factors (McDonald
and Ahlawat, 1974).

This article compares several widely used approaches to
estimate the number of latent factors from ordinal data. These
approaches consist of comparing the chi-square associated

with a particular model (FA or FAC) and selecting the most
parsimonious model that obtains a non-significant statistic. The
alternatives are the likelihood-ratio chi-square for the FA model,
the modified chi-square statistics that compensate for the lack
of normality (Satorra and Bentler, 2010; Bryant and Satorra,
2012), the chi-square associated with FAC under two estimation
methods [maximum likelihood (ML) and WLSMV], and the
(GRM; Samejima, 1969) from IRT. The purpose is to evaluate
the precision of the different methods and the potential bias
associated with fitting a theoretically incorrect model (the FA).
The comparison is conducted via simulation studies.

Simulation study

The present simulation study compares the different
approaches for estimating the number of latent factors in
exploratory FA when an ordinal factor model with underlying
normality holds in the population. Parallel analysis (PA)
and categorical parallel analysis (CPA, which is PA applied
to polychoric correlations) are also included because of
their prominent current use as a method for estimating
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dimensionality (Lim and Jahng, 2019). Special attention is paid
to the differential effect of skewness and magnitude of factor
loadings because previous investigations have suggested that
these are key conditions in the assessment of model fit (Curran
et al., 1996; Ximénez, 2006; Forero and Maydeu-Olivares, 2009).

Simulated conditions and procedure

The simulated conditions include the sample size (N), the
number of observed variables (p), the number of thresholds
(τ ), the magnitude of the factor loadings (λ), and the skewness
as measured by the γ coefficient (Joanes and Gill, 1998).
The levels of these independent variables are summarized in
Table 1. In summary, the number of conditions examined was
120 = 2 (sample size levels) × 2 (number of observed variables
levels) × 3 (number of thresholds levels) × 2 (loading levels
in the factors) × 5 (skewness levels). The number of simulated
samples for each condition is 1000.

We have manipulated N because of its direct relation to chi-
square and the potential effect on the results. The number of
factors may have an impact on the results of FA given that a
model for continuous variables might better approximate the
data when the number of response categories increases. The
number of variables is manipulated because the size of the fitted
model is another condition that affects the population value
of the discrepancy function and might influence the results
of the chi-square.

The simulating model is a common-factor model (one latent
factor) for categorical variables that realistically represents data
from rating scales. We have simulated only the one-factor
model to keep the number of conditions at a manageable level.
Because the true model contains a single factor, we conclude that

TABLE 1 Conditions of the simulation study.

Code Variable Levels

N Sample size 100

500

p Number of variables 6

12

τ Number of thresholds 1 (2 response categories)

2 (3 response categories)

4 (5 response categories)

λ Magnitude of 0.6 (Medium)

factor loadings 0.9 (High)

γ skewness 0 (None)

2 (strong and positive: SP)

−1 and 1 (Mild and mixed: MM)

−2 and 2 (Strong and mixed: SM)

−2, 0 and 2 (None + Strong and
mixed: N + SM)

overfactoring occurs whenever the number of estimated factors
is more than one.

The following models were fitted to each sample:

(1) Factor analysis model fitted by ML. It was estimated using
the fa function of the psych package in R (Revelle, 2021).

(2) Categorical factor analysis model. It is the FAC model
estimated using a maximum-likelihood algorithm from the
polychoric correlation matrix. It was estimated using the fa
function of the psych package in R (Revelle, 2021).

(3) The FAC model estimated using a weighted least
squares estimation method (WLSMV) from the polychoric
correlation matrix. The WLSMV method has proved to
be appropriate for the analysis of ordinal data (Flora and
Curran, 2004; Forero et al., 2009; Li, 2016). This method
was applied using the lavaan package in R (Rosseel,
2012), which provides a normal-theory likelihood-ratio
chi-square statistic used to select the number of latent
factors in an exploratory analysis.

(4) The estimator WLSMV in lavaan provides two values of
chi-square, the likelihood-ratio chi-square and the scaled
chi-square statistic by Satorra and Bentler (2010). The idea
of scaling is to correct the distribution of the statistic
to match the mean and variance of the theoretical chi-
square distribution. The scaling correction applies to
differences between non-robust chi-square statistics. The
difference between the chi-square values of models with
one and two factors is another chi-square. The Satorra-
Bentler correction of the chi-square difference is the dTM

statistic, which is used to evaluate whether the difference
between the one- and two-factor models is significant
(Bandalos, 2014; DiStefano and Morgan, 2014). The dTM

was estimated in lavaan using the lavTestLRT function.
(5) The GRM model assumes the same relation between

manifest variables and latent factors as the FAC model. The
specificity of GRM is that it is estimated using a marginal
maximum-likelihood estimation algorithm implemented
in the mirt package of R (Chalmers, 2012). This package
uses a logit link to relate manifest variables and latent
factors. The logit link is a convenient mathematical
approximation to the normal ogive model, so it is based
on the same assumption of normally distributed errors as
the FAC model.

The R code for fitting these models appears in Appendix E
of the Supplementary materials.

The procedure for simulating categorical data with a
prescribed value of skewness is due to Olsson (1979). We are
working in the specific case of ordinal data with binomial
marginals. The binominal marginal has one free parameter, π ,
which can be chosen to get the desired skewness. Let γ be the
coefficient of skewness and r be the number of thresholds. Using
Equation (7) in Olsson (1979), the parameter π of the binomial
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TABLE 2 Threshold values for the conditions of the simulation study.

Number of thresholds

Gamma 1 threshold 2 thresholds 4 thresholds

τ 1 τ 1 τ 2 τ 1 τ 2 τ 3 τ 4

-2 −1.05 −2.39 −0.93 −4.32 −3.26 −2.16 −0.86

-1 −0.59 −1.70 −0.31 −3.31 2.28 −1.25 −0.08

0 0.00 −0.67 0.67 −1.53 −0.49 0.49 1.53

1 0.59 0.31 1.70 0.08 1.25 2.28 3.31

2 1.05 0.93 2.39 0.86 2.16 3.26 4.32

distribution with given values of r and γ is:

π =
1
2
−

√
γ 2r

16+ 4γ 2r
(5)

Once that π has been computed from Equation (5), the second
step of the procedure consists of computing the cumulative
probabilities of the binomial (r, π) distribution, say pr = [pr1,
pr2, . . ., pr(r+1)]. Finally, the thresholds τ 1, . . ., τ k are the
standard normal deviates associated to the probabilities given
by pr; that is, the thresholds are τt = F−1(prt) for t = 1, . . ., r.

Table 2 shows the threshold values associated with the
different values of γ and r manipulated in the simulation study.
The same thresholds were used for all the variables that have the
same value of γ . Notice that it is not guaranteed that the set of
thresholds associated with a given γ is unique. Other algorithms
may remove the assumption of binomial marginals and render
different thresholds, which could have an impact on the results
of the simulation. The R code for implementing this procedure
is given in Appendix E.

In all simulated conditions, the population model is FAC.
However, there are conditions where the FA is capable of
reproducing the true population variance-covariance matrix
and there are others where it is not. As explained in
Section “Simulation study,” the FA can reproduce the variance-
covariance matrix when all the items have the same parameters
(slopes, error variance, and thresholds; that is, in the conditions
with no mixed skewness because mixed skewness means
that the items have different thresholds). In the conditions
with no mixed skewness, the FA and the FAC models are
equivalent in the population, the two models have the same
number of factors, and attenuation coefficients for the Pearson
correlations (Muthén and Kaplan, 1985) take the values shown
in Supplementary Table 1. In these cases, any discrepancy
between the number of factors estimated by FA and FAC is
not attributable to the population model and the simulation
provides information about the relative performance of the
estimation methods.

In the conditions with mixed skewness (mild and mixed
skewness, strong and mixed, none + strong, and mixed), the

maximum-likelihood discrepancy function for the FA model
attains a nonzero value in the population. The population
value of the discrepancy and the RMSEA (Browne and Cudeck,
1992) appear in Supplementary Table 2. The consequence is
an inflated chi-square statistic and an increased probability of
rejecting a FA model that contains the correct number of factors.
In these cases, the simulations inform about the magnitude of
the overfactoring effect due to fitting an incorrect model (the
FA). Notice that the conditions of mixed skewness are more
realistic and representative of practical applications, where the
variables rarely are perfectly parallel measures.

The data were analyzed using the empirical proportion of
samples (EPS) in which the one-factor model is retained for each
condition. The logit of the p-value was analyzed as a function
of the independent variables manipulated in the study using an
ANOVA model to compute the effect size (partial-η2) associated
with each condition. Notice that the EPS is the proportion of
correct decisions, and 1—EPS is the proportion of samples in
which the latent dimensionality is overestimated. Thus, the EPS
can be interpreted as the statistical specificity of the testing
procedure and 1—EPS as the Type-I statistical error.

All the analyses were conducted using the R programming
language (R Core Team, 2021) and the aforementioned
packages. Some other R packages were used for the analysis
of the results: the skewness and kurtosis were estimated using
e1071 (Meyer et al., 2021), and the ANOVA table of the results of
the simulation was computed using sjstats (Lüdecke, 2021). All
the methods used in this article are included in the R language
and the indicated packages, so they are readily available and free
of charge for any practitioner.

Results of the simulation

Descriptive analysis of the empirical proportion
of samples

The EPS for the true one-factor model computed across
all simulated conditions is 0.33 for FA, 0.05 for FAC, 0.78 for
WLSMV, 0.80 for dTM , and 0.75 for GRM. Regarding parallel
analysis, the EPS mean is 0.51 for PA and 0.55 for CPA. This
overall result is congruent with the problems of the linear factor
model analyzing ordinal data and reflects the improvement with
the Satorra-Bentler chi-square and the GRM. These figures are
disaggregated now to analyze the effects of the independent
variables separately.

Table 3 summarizes the EPS as a function of the skewness
(which determines if the FA model is equivalent to the FAC
model or not) and the magnitude of the factor loadings in the
condition with 6 variables. The results show a strong decrease in
the EPS associated with FA and FAC in the conditions of high
factor loadings and mixed skewness. However, this decrease
does not occur for WLSMV and dTM , which generally provide
a good estimation of the number of factors. Interestingly, the
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TABLE 3 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
magnitude of the factor loadings, and the method.

Linear model Skew Factor loadings PA FA WLSMV dTM CPA FAC GRM

True None Medium 0.998 0.867 0.961 0.931 0.999 0.431 0.868

High 0.908 0.708 0.981 0.964 0.712 0.131 0.839

SP Medium 0.925 0.629 0.937 0.925 0.955 0.024 0.881

High 0.546 0.234 0.985 0.977 0.162 0.003 0.869

False MM Medium 0.074 0.807 0.954 0.934 0.814 0.160 0.876

High 0.787 0.004 0.979 0.970 0.447 0.009 0.881

SM Medium 0.000 0.545 0.971 0.967 0.818 0.005 0.897

High 0.143 0.000 0.961 0.961 0.045 0.000 0.998

None + SM Medium 0.009 0.760 0.966 0.955 0.731 0.025 0.883

High 0.582 0.007 0.994 0.994 0.132 0.002 0.916

Results for the conditions with 6 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong
positive skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix,
WLSMV is FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s
graded response model.

polychoric-based methods (CPA, FA, WLSMV, and dTM) do
not provide similar results, and the estimation method applied
in connection to polychoric correlations apparently is a quite
decisive element. The GRM is not as precise as WLSMV or dTM

but it is clearly superior to FA and FAC.
Table 4 shows the PA in relation to skewness and magnitude

of the factor loadings in the condition with 12 variables. The
results confirm the poor performance of the ML and tetrachoric
estimation methods. The WLSMV, dTM , and GRM are stable
across all conditions, although the EPS for GRM is not as
optimal as in the other two methods. This stability is a crucial
result since it means that, under the simulated conditions, the
performance of these methods remains constant no matter what
the skew of the factor indicators is.

Table 5 contains the PA in relation to skewness and sample
size for the conditions with 6 variables. The increase in sample
size has a small effect on PA except in the conditions of ML and
PA in connection to the FA model.

Table 6 contains the PA in relation to skewness and sample
size for the conditions with 12 variables. The pattern of results
is similar to Table 6 with a noticeable effect; the EPS for GRM
reduces with the increase of the number of variables. This
is because the GRM is fitted to the contingency table of the
response patterns, which is sparser as the number of variables
increases.

The results concerning skewness and the number of
thresholds appear in Tables 7, 8 for the conditions with
6 and 12 items, respectively. An increase in the number
of thresholds is associated with a mild increase in correct
estimations of dimensionality for the FA (in the conditions
without mixed skewness) and a reduction for the GRM. One
tentative explanation is that more response categories mean
that the normal distribution better represents the data and the
contingency table of the responses (used for GRM estimation) is

sparser. Once again, the WLSMV and dTM are the best methods,
and PA supersedes CPA.

ANOVA model and effect size for the logit of
p-value

An ANOVA model was fitted to the logit of the chi-square
p-value with the purpose of analyzing the interaction between
the conditions of the simulation and evaluating the importance
of the different independent variables manipulated in the study.
The magnitude of the effects was evaluated using the partial-
η2 as a measure of effect size. The statistical significance is
unimportant here as it depends on the number of simulated
samples and is easily manipulated.

Supplementary Tables 3–7 summarize the ANOVA results.
The tables are computed separately for each model and for the
conditions with 6 and 12-factor indicators. Regarding the FA
model (see Supplementary Table 3), the only interaction that
appears to have some importance is λ × γ , especially in the
condition with a smaller number of variables. The most relevant
main effects are those of factor loading and skewness. Plots of the
p-value for the FA model appear in Supplementary Figure 1.
The p-value is closer to zero for the model with 12 variables,
resulting in a decreased EPS and smaller interactions because
the lines in the plots are mostly flat. The effect of the increase of
the factor loadings consists of pulling the p-value toward zero as
skewness increases.

The same analysis in relation to FAC appears in
Supplementary Table 4 and Supplementary Figure 2. In
this case, the number of thresholds has a more important role
regarding the main effects and the interactions as compared
with the FA model, although the effect sizes are smaller because
the p-value is generally close to zero for all conditions.

The results for WLSMV and dTM are summarized in
Supplementary Tables 5, 6. No relevant effects appear for the
short number of variables, which is an excellent result because it
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TABLE 4 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
magnitude of the factor loadings, and the method.

Linear model Skew Factor loadings PA FA WLSMV dTM CPA FAC GRM

True None Medium 1.00 0.611 0.910 0.929 1.00 0.084 0.608

High 0.977 0.348 0.984 0.969 0.682 0.002 0.525

SP Medium 0.930 0.096 0.792 0.938 0.962 0.000 0.609

High 0.535 0.001 0.983 0.987 0.017 0.000 0.582

False MM Medium 0.017 0.431 0.863 0.915 0.836 0.002 0.612

High 0.823 0.000 0.960 0.967 0.334 0.000 0.580

SM Medium 0.000 0.167 0.875 0.942 0.720 0.000 0.620

High 0.292 0.000 0.733 0.948 0.000 0.000 0.798

None + SM Medium 0.000 0.323 0.875 0.937 0.707 0.000 0.610

High 0.578 0.000 0.844 0.997 0.015 0.000 0.640

Results for the conditions with 12 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong
positive skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix,
WLSMV is FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s
graded response model.

TABLE 5 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
sample size, and the method.

Linear model Skew N PA FA WLSMV dTM CPA FAC GRM

True None 100 0.948 0.788 0.971 0.962 0.852 0.276 0.863

500 0.959 0.787 0.971 0.933 0.859 0.286 0.845

SP 100 0.707 0.444 0.952 0.952 0.542 0.012 0.879

500 0.765 0.418 0.963 0.944 0.574 0.015 0.871

False MM 100 0.480 0.448 0.963 0.958 0.670 0.085 0.895

500 0.381 0.364 0.967 0.943 0.591 0.084 0.862

SM 100 0.126 0.393 0.955 0.955 0.494 0.002 0.968

500 0.017 0.152 0.975 0.971 0.369 0.004 0.927

None + SM 100 0.333 0.442 0.982 0.980 0.503 0.011 0.915

500 0.258 0.325 0.977 0.967 0.359 0.016 0.884

Results for the conditions with 6 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong
positive skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix,
WLSMV is FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s
graded response model.

TABLE 6 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
sample size, and the method.

Linear model Skew N PA FA WLSMV dTM CPA FAC GRM

True None 100 0.984 0.502 0.917 0.987 0.834 0.041 0.581

500 0.993 0.456 0.974 0.911 0.848 0.044 0.552

SP 100 0.704 0.052 0.782 0.974 0.477 0.000 0.594

500 0.762 0.045 0.926 0.948 0.502 0.000 0.597

False MM 100 0.484 0.303 0.849 0.974 0.644 0.001 0.608

500 0.356 0.128 0.938 0.910 0.526 0.001 0.584

SM 100 0.287 0.165 0.721 0.941 0.490 0.000 0.731

500 0.005 0.002 0.792 0.947 0.230 0.000 0.687

None + SM 100 0.432 0.272 0.757 0.979 0.489 0.000 0.653

500 0.146 0.051 0.939 0.949 0.233 0.000 0.598

Results for the conditions with 12 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong
positive skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix,
WLSMV is FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s
graded response model.
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TABLE 7 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
number of thresholds, and the method.

Linear model Skew Thresholds PA FA WLSMV dTM CPA FAC GRM

True None 1 0.917 0.657 0.971 0.953 0.715 0.068 0.897

2 0.966 0.827 0.971 0.947 0.894 0.265 0.861

4 0.976 0.879 0.971 0.941 0.957 0.510 0.802

SP 1 0.667 0.400 0.970 0.964 0.503 0.006 0.898

2 0.753 0.432 0.953 0.942 0.568 0.014 0.868

4 0.787 0.462 0.948 0.933 0.603 0.021 0.859

False MM 1 0.357 0.416 0.979 0.971 0.336 0.020 0.921

2 0.433 0.397 0.963 0.944 0.728 0.082 0.864

4 0.501 0.405 0.951 0.930 0.828 0.153 0.850

SM 1 0.037 0.299 0.948 0.948 0.486 0.002 0.960

2 0.077 0.261 0.979 0.976 0.436 0.002 0.947

4 0.101 0.258 0.978 0.973 0.372 0.005 0.936

None + SM 1 0.220 0.400 0.979 0.977 0.302 0.005 0.925

2 0.318 0.377 0.983 0.974 0.486 0.011 0.909

4 0.347 0.373 0.975 0.967 0.504 0.024 0.865

Results for the conditions with 6 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong positive
skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix, WLSMV is
FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s graded
response model.

TABLE 8 Empirical proportion of samples where the one-factor model is retained depending on the status of the linear model, the skewness, the
number of thresholds, and the method.

Linear model Skew Thresholds PA FA WLSMV dTM CPA FAC GRM

True None 1 0.973 0.283 0.932 0.958 0.615 0.000 0.639

2 0.996 0.502 0.957 0.948 0.920 0.009 0.593

4 0.996 0.652 0.949 0.938 0.988 0.119 0.468

SP 1 0.659 0.047 0.897 0.979 0.462 0.000 0.627

2 0.754 0.051 0.852 0.944 0.496 0.000 0.592

4 0.785 0.048 0.841 0.933 0.510 0.000 0.567

False MM 1 0.407 0.229 0.914 0.963 0.271 0.000 0.666

2 0.400 0.206 0.886 0.918 0.656 0.000 0.565

4 0.454 0.212 0.902 0.912 0.829 0.002 0.556

SM 1 0.148 0.094 0.590 0.945 0.430 0.000 0.759

2 0.147 0.083 0.909 0.955 0.354 0.000 0.700

4 0.143 0.075 0.885 0.933 0.296 0.000 0.669

None + SM 1 0.307 0.188 0.795 0.982 0.306 0.000 0.689

2 0.283 0.152 0.914 0.955 0.394 0.000 0.626

4 0.277 0.144 0.900 0.939 0.384 0.000 0.561

Results for the conditions with 12 variables. The linear model is true when all the variables have the same slope, error variance and thresholds (conditions of no skewness and strong
positive skewness). PA is parallel analysis, CPA is Categorical parallel analysis, FA is normal factor analysis, FAC is categorical factor analysis from the tetrachoric correlation matrix,
WLSMV is FA estimated using a robust diagonally weighted least square estimation method, dTM is the Satorra-Bentler mean corrected chi-square difference, and GRM is the Samejima’s
graded response model.

means that the performance of these methods is good regardless
of the simulated conditions. Some relevant effect sizes appear in
conditions with a larger number of variables, but the methods
remain reliable also in these conditions.

The results for the GRM appear in Supplementary
Table 7 and Supplementary Figure 3. Only the skewness
and its interaction with factor loading have a relevant

effect size, and only in the condition of the short
number of variables. Supplementary Figure 3 shows
that the condition of strong and mixed skewness
pulls the p-value toward 1 but only in the condition
of high factor loadings. In any case, this result does
not alter the EPS because the p-values remain in the
acceptance region.
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TABLE 9 Descriptive statistics for the scale of attitudes about censorship.

Item Freq 1 Freq 2 Freq 3 Freq 4 Freq 5 Freq 6 Mean Std skewness Kurtosis

1 20 35 56 45 33 34 3.62 1.52 0.04 −0.98

2 4 2 12 40 52 113 5.12 1.12 −1.38 1.85

3 31 36 32 61 35 28 3.52 1.58 −0.10 −1.06

4 17 24 39 73 43 27 3.82 1.39 −0.32 −0.57

5 74 61 35 31 13 9 2.44 1.43 0.81 −0.27

6 38 52 57 32 26 18 3.04 1.50 0.40 −0.80

7 40 40 53 47 28 15 3.13 1.49 0.18 −0.91

8 7 8 31 58 56 63 4.51 1.30 −0.67 −0.09

9 92 43 40 25 15 8 2.34 1.45 0.85 −0.31

10 93 63 27 21 14 5 2.17 1.35 1.08 0.25

11 32 42 58 34 36 21 3.28 1.53 0.18 −0.99

12 20 32 39 39 47 46 3.89 1.61 −0.25 −1.12

13 25 29 37 62 44 26 3.67 1.50 −0.24 −0.88

14 10 17 17 75 60 44 4.30 1.33 −0.71 0.03

15 25 26 29 65 48 30 3.78 1.52 −0.37 −0.83

16 12 17 31 81 51 31 4.05 1.31 −0.51 −0.16

17 3 7 14 42 70 87 4.93 1.15 −1.13 0.99

18 40 40 27 69 32 15 3.26 1.53 −0.05 −1.09

19 24 15 21 96 44 23 3.85 1.39 −0.62 −0.18

20 4 5 16 52 65 81 4.85 1.16 −1.00 0.81

Recovery of the parameters

The success of a method cannot be based solely on
the estimation of the number of factors. A method that
correctly estimates the latent dimensionality whilst producing
wildly incorrect parameter estimates is of limited usefulness.
Parameter estimates under the different models were analyzed
to assess their relative merit. Recovery was evaluated by the
root mean squared error between the true and estimated
parameters (RMSE).

The estimated parameters for FA have two specific sources
of error that are not present in the other methods: Attenuation
and structural error. As explained previously, attenuation occurs
when a FA model is able to reproduce the true variance-
covariance parameters (which conform to a FAC model) but the
FA parameters have smaller values than the true FAC model.
Attenuation occurs in conditions with no skewness and strong
positive skewness, and its magnitude depends on the coefficients
shown in Supplementary Table 1. In the conditions where the
FA cannot reproduce the population variance-covariance matrix
of the FAC model (those that involve mixed skewness), the
FA estimates have the additional bias of structural error. These
are population biases that will not vanish no matter what the
sampling size is. The simulations are informative about the
magnitude of the three sources of error combined (sampling
error, attenuation, and structural error), and the increase of
error that is specific to FA in comparison to the other methods.

The mirt function estimates the GRM using the IRT
parameterization, whereas the true parameter values for the

simulation are in the FA parameterization. Previously to
computing the RMSE, the IRT parameters were converted to
the FA parameterization using the equations (A15) and (A16)
of Paek et al. (2018).

The recovery of lambda in relation to the manipulated
conditions appears in Supplementary Table 8 and
Supplementary Figures 4–6. WLSMV and FAC performed
similarly and obtained the higher RMSE in the conditions of a
large number of thresholds, small loadings, and strong positive
skewness. The results indicate that GRM outperforms these
methods and has a smaller RMSE that remains stable across
conditions. The FA is affected by attenuation and inconsistency
biases and is generally poorer than the other methods. The
results for ψ follow a similar pattern and are summarized in
Supplementary Table 9.

Recovery of τ is summarized in Supplementary Table 10
and Supplementary Figures 7–9. The results are similar to those
found for the recovery of λ. There are small differences between
WLSMV and FAC, and the two methods render an increased
RMSE in the conditions of a large number of thresholds and
strong positive skewness. The GRM obtains a smaller RMSE
than the other methods and is stable across conditions.

Conclusions of the simulation study

The results of our simulation have shown that, in the present
context, the chi-square statistic for FA leads to overfactoring.
However, there are remarkable differences between the models
and the study conditions. The magnitude of the factor loadings
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and the skewness of the factor indicators have the largest effect
size in relation to the logit of the p-value, but this effect varies
between the models. The empirical proportion of rejection
for the one-factor FA model is generally high and sharply
increases in the conditions where this model is wrong in the
population. The PA shows better performance than the chi-
square, but the overfactoring is still high in the presence of
skewness. Notice that the effect of skewness might depend on
the choice of thresholds values. We have used the algorithm
by Olsson (1979) to generate the threshold values associated
with the gamma coefficient. However, other algorithms may
render different thresholds associated with the same gamma
and might have a different effect on the performance of the
chi-square. One topic for further investigation would be the
development of other algorithms for generating thresholds and
the study of the differential impact of the choice of thresholds
while keeping gamma fixed to a constant value. The pattern
of the factor loadings also has a noticeable effect, and smaller
rejection rates are found for the tau-equivalent than for the
congeneric model.

Interestingly, dimensionality recovery for the FAC model is
tightly related to the estimation method, as recovery is poor for
ML and reliable for WLSMV and dTM .

The effect sizes of all independent variables are negligible
for the GRM, which indicates that the model is robust to
the manipulated conditions. The Type-I error is about 30%,
regardless of skewness, which is still far from the nominal levels,
but it improves the results of the other models. The number
of factor indicators also has an effect, and more rejections
of a correct model are found with a larger number of factor
indicators. This is an expected result because bigger samples
are necessary for the likelihood-ration statistic to approximate
its chi-square reference distribution when there are a large
number of factor indicators. On the counter side, the small
effect size associated with N means that the improvement in
EPS decreases as N increases. From a theoretical point of view,
the GRM is not exactly true in this simulation because data
were generated assuming a normal distribution for the error
(normal link) whereas the implementation of the GRM in the
mirt package assumes a logit link. The logit link was developed
as a convenient approximation to the normal link and the
difference between them is small. However, this difference does
not vanish as sample size increases, which converts the logit link
to an inconsistent procedure. One problem for future research is
to investigate if the results of the GRM improve when estimated
with a normal link.

Finally, the WLSMV and the Satorra-Bentler dTM are
the best alternatives to estimate dimensionality, with rejection
rates close to the nominal 5% level that remains relatively
constant across all the simulated conditions. The recovery of
parameters for GRM was better than for WLSML, and less
affected by those conditions in which the RMSE increases for
WLSMV. Thus, a good combination of methods could be to
estimate the dimensionality using a Satorra-Bentler fit statistic,

as in WLSMV, and estimate parameters using a marginal ML
algorithm as in the GRM once the dimensionality of the
model has been fixed.

Real data example

Data and procedure

A real data sample was analyzed to illustrate the different
approaches in an applied context. The data consists of responses
to the scale of attitudes toward censorship, originally published
by Rosander and Thurstone (1931), and reprinted by Shaw
and Wright (1967). The scale is composed of 20 Likert-type
items with six response alternatives. The responses are labeled:
Strongly Disagree, Disagree, Slightly Disagree, Slightly Agree,
Agree, and Strongly Agree. The sample size is 223 observations.
The items and the data are publicly available in the Georgia
Tech Psychometric Research and Development Lab2 and were
retrieved on 03/17/2022. We have applied the same methods
used in the simulation study (FA, FAC, WLSMV, dTM , and
GRM) and some new methods for completeness. The new
methods are:

• Descriptive statistics about the type-3 coefficient of
skewness and kurtosis are run using the e1071 package
(Meyer et al., 2021). Multivariate coefficients of skewness
and kurtosis were computed using the semTools package
(Jorgensen et al., 2022).
• Mean corrected chi-square, TM (Satorra and Bentler,

2001) and mean and variance corrected chi-square, TMV

(Asparouhov and Muthén, 2010) computed with the
maximum-likelihood estimator for the FA model. The
TM and the TMV are modified chi-square statistics that
evaluate the fit for a single model and correct for the
lack of normality in the data. The TM and the TMV can
be obtained in lavaan using the function cfa with the
arguments estimator = "MLM" and estimator = "MLMV,"
respectively.
• The TM and TMV statistics are also computed with

WLSMV estimator and FAC model using the arguments
estimator = "WLSMV" and ordered = TRUE to the cfa
function in lavaan. The TM and the TMV are not to be
confused with the correction of the chi-square difference,
dTM , used in the simulation study.
• The analysis of the normality of the latent responses

(variable y∗ in Equation 3) was evaluated using a bootstrap
test implemented in the bootTest function in the R package
discnorm (Foldnes and Grønneberg, 2020).
• The analysis of normality of the latent factor (that is,

testing that f (ξ)is a normal distribution) was run using

2 https://prdlab.gatech.edu/unfolding/data/
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TABLE 10 Chi-square and modified chi-square for the FA model.

Chi-square Mean corrected Mean and variance corrected

Factors G2 df p TM c p TMV a b p

1 466.2 170 0.00 405.5 1.15 0.00 301.4 2.06 75.18 0.00

2 269.3 151 0.00 241.0 1.12 0.00 206.8 1.80 57.42 0.00

3 194.76 133 0.00 174.5 1.12 0.01 160.5 1.69 45.03 0.05

4 151.9 116 0.01 133.5 1.14 0.13 127.8 1.69 38.08 0.21

G2 is the likelihood ratio chi-square statistic against a saturated model under the assumption of multivariate normality, df is the degrees of freedom, p is the p-value. TM is the mean
corrected G2 by Satorra and Bentler. TMV is the mean and variance corrected G2 by Asparouhov and Muthén. Boldface values indicate the simplest non-rejected model using a nominal
type-I error rate of 0.01.

TABLE 11 Chi-square and modified chi-square for the FAC model using WLSMV estimation.

Factors G2 df p dif-G2 dif-df p TM p TMV p dTM p

1 642.6 170 0.00 1057.6 0.00 681.8 0.00

2 211.3 151 0.00 431.4 19 0.00 434.6 0.00 331.9 0.00 128.0 0.00

3 125.0 133 0.68 86.3 18 0.00 287.2 0.00 237.1 0.00 57.4 0.00

4 89.6 116 1.00 35.4 17 0.01 223.5 0.00 190.4 0.00 50.51 0.00

5 61.6 100 1.00 28.0 16 0.03 166.3 0.00 148.4 0.00 260.3 0.00

6 44.3 85 1.00 17.3 15 0.30 127.0 0.00 116.3 0.01 65.5 0.00

7 30.7 71 1.00 13.6 14 0.48 93.3 0.04 88.4 0.08 54.7 0.00

G2 is the likelihood ratio statistic against a saturated model, df is the degrees of freedom and p is the p-value. dif-G2 is the difference between any two consecutive values of G2 . TM is
the mean corrected chi-square by Satorra and Bentler. TMV is the mean and variance corrected chi-square by Asparouhov and Muthén. Td is the mean corrected Satorra-Bentler statistic
applied to the difference between two consecutive values of G2 . Boldface values indicate the simplest non-rejected model using a nominal type-I error rate of 0.01.

the empirical histogram method (Woods, 2007) and the
Davidian Curve method (Woods and Lin, 2009; Smits
et al., 2020). These methods are implemented in the mirt
function using the arguments dentype = "empiricalhist,”
and dentype = “Davidian-#” argument. We have estimated
the one-factor FAC model with a normal distribution for
f (ξ), a Davidian-curve estimate for f (ξ) with two smooth
parameters, and a Davidian curve with three smooth
parameters. The models were compared using the Hannan–
Quinn criterion (HQ; Woods, 2006) implemented in the
anova method of the mirt package.
• Multidimensional Nominal Categories Model (MNCN;

Revuelta, 2014; Revuelta et al., 2020, 2021). The MNCM is
a generalization of the GRM that removes the assumption
that the responses follow an ordinal scale. The comparison
between the MCNM and GRM provides a means to test
the assumption of equally spaced categories implicit in the
GRM.

The R codes for all the analyses appear in Appendix G.
In the simulation study, we have assumed that the

population model is an ordinal factor model and we have
manipulated the parameters of the model to investigate the
performance of several estimation methods, but the correctness
of the model has not been put into question. In a real data
analysis, the validity of an ordinal factor model cannot be
taken for granted as it might not be correct in the population,

TABLE 12 Chi-square for the FAC model estimated by
maximum likelihood.

Factors G2 df p dif-G2 df-dif p-dif

1 623.7 170 0.00

2 270.9 151 0.00 253.7 19 0.00

3 370.0 133 0.00 99.2 18 0.00

4 219.5 116 0.00 51.4 17 0.00

5 163.0 100 0.00 56.5 16 0.00

6 121.9 85 0.01 41.1 15 0.00

7 93.1 71 0.04 28.8 14 0.01

G2 is the likelihood ratio chi-square statistic against a saturated model, df is the degrees of
freedom, p is the p-value, dif-G2 is the likelihood-ratio chi-square for pairs of consecutive
models. Boldface values indicate the simplest non-rejected model using a nominal type-I
error rate of 0.01.

which introduces another source of bias in the analysis. Some of
the above analyses (normality of latent responses, normality of
latent factors, and the MNCM) evaluate part of the assumptions
of the ordinal factor model to determine if they may be
maintained for the present sample.

Results of the empirical study

Table 9 contains the descriptive statistics for the items,
including the response frequency of the categories, the mean,
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TABLE 13 Chi-square for the GRM and the MNCM models.

GRM MNCM GRM vs. MNCM

Factors pars. LK dif-G2 df p pars. LK dif-G2 df p dif-G2-M df p

1 120 −6688.7 200 −6658.1 61.3 80 0.94

2 139 −6573.7 230.1 19 0.00 219 −6529.2 257.7 19 0.00 88.9 80 0.23

3 157 −6530.5 86.3 18 0.00 237 −6500.8 56.7 18 0.00 59.3 80 0.96

4 174 −6514.1 32.9 17 0.01 254 −6482.3 37.1 17 0.00 63.5 80 0.91

5 190 −6508.4 11.2 16 0.79 270 −6482.2 0.2 16 1.00 52.5 80 0.99

pars. is the number of estimated parameters for each model, LK is the log likelihood, dif-G2 is the likelihood-ratio chi-square for pairs of consecutive models, df is the degrees of freedom,
p is the p-value. dif-G2-M is the likelihood ratio chi-square of the GRM against the MNCM with the same number of factors. Boldface values indicate the simplest non-rejected model
using a nominal type-I error rate of 0.01.

the standard deviation, and the kurtosis. The variables have
a pattern of mild and mixed skewness. Most of them have a
mean value close to the midpoint of the scale, and a skewness
value close to zero. However, there are also several variables
negatively skewed because of the mean being close to the higher
point of the response scale, and one of the variables has a low
mean and positive skew. The multivariate skewness and kurtosis
coefficient have a p-value smaller than 0.01 and the hypothesis of
normality is rejected.

The hypothesis of normality of the latent responses is
discarded (p-value < 0.01). This result threats the validity
of the methods based on polychoric correlations since these
correlations are highly sensitive to the validity of the normality
assumption for the latent responses (Foldnes and Grønneberg,
2020, 2022). However, as we do not have information about what
the distribution of the latent responses might be, we are not in a
position of estimating polychoric correlations under a different
distribution.

Regarding the analysis of normality for the latent factor,
the HQ for the normal, Davidian-2, Davidian-3, and empirical
histogram models are 13782.5, 13789.3, 13788.2, and 14175.1,
respectively. Similar to AIC and BIC, the HQ supports the model
that minimizes it. Since the normal distribution minimizes the
HQ, the Gaussian distribution can be retained.

The goodness-of-fit statistics for the FA models with one
to four factors appear in Table 10, including the chi-square
against a saturated model and the modified chi-squares: TM

and TMV . The chi-square estimates three factors whereas the
robust statistics estimates two factors. Since the data show
non-negligible skewness and kurtosis, these results point in
the direction of relying in robust statistics and retaining two
factors. Parallel analysis gives a similar result and the number
of estimated factors is two for PA and three for CPA.

Table 11 contains the goodness-of-fit statistics for FAC
with the WLSMV estimator, the chi-square statistics corrected
for non-normality (the TM , the TMV ), and the Satorra-Bentler
correction of the chi-square difference (dTM). The statistics
differ in their conclusions. The chi-square and the chi-square
difference give support to a three-factor model. On the other

hand, the modified chi-square statistics (TM , TMV , and dTM)
suggest models with higher dimensionality.

The FAC model under ML results in five or six estimated
factors, depending on the statistic used to test model fit (chi-
square of absolute model testing or chi-square between pairs of
nested models). The results appear in Table 12. However, the
FAC method based on ML apparently is questionable in light of
the simulation results.

The MNCM was estimated to evaluate the assumption that
responses follow an ordinal scale. The difference between an
ordinal and a nominal model is that there is only one slope for
each item in the former model and one slope for each response
category in the later model (except for one of the categories
of the item, which has a slope of zero for identifiability). The
results appear in Table 13 and indicate that the MNCM does
not significantly fit better than the GRM. Thus the ordinality
assumption involved in the GRM can be maintained in light of
this analysis.

This empirical example shows mixed results. The most
parsimonious results are those of FA and GRM, whereas the
modified chi-squares lead to models of higher dimensionality.
The large number of factors resulting from polychoric-based
methods (FAC in its different variants) may be due to an
unprecise estimation of polychoric correlations because of the
lack of normality of the latent responses. In the simulation,
we considered only the case in which latent normality holds.
This assumption is not tenable in the empirical application,
and the psychometric literature shows that this might be a
source of imprecision in the estimates of polychoric correlations
(Grønneberg and Foldnes, 2022). All in all, we would
recommend the solution with a small number of factors for
parsimony and the questionability of polychoric-based methods
in this sample.

Discussion and conclusion

The purpose of this article was to investigate the behavior
of the chi-square value of the FA when the data are categorical.
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We compare different approaches to deal with this problem
and examine their performance to determine the number
of factors under several design conditions in a simulation
study. The article is oriented to investigators analyzing ordinal
data, for example from Likert-type items, rating scales, etc.
In this respect, we assume that an ordinal factor model is
correct in the population and analyze the data using the most
common methods available nowadays. It is important to notice
that the FA (based on the normality assumption) cannot be
generally correct in this situation, and it is included here
mainly because of its popularity in the applied field and to
illustrate some of the biases that it might produce. Appropriate
alternatives to normal-FA that can be easily implemented are
the FAC based on WLSMV estimation, the modified chi-square
statistics, and the GRM.

Our results concur with those of the psychometric literature,
pointing out two important drivers for overfactoring related to
FA: the magnitude of factor loadings and the data skewness.
We have stressed the importance of skewness because this
phenomenon is inherent to ordinal data and perhaps has not
received as much attention in the literature as the issue of factor
loadings. More specifically, mixed skewness is of particular
importance due to its effect on attenuating the correlation
between factor indicators and the subsequent increase in the
number of estimated factors. The results of our simulation
study are congruent with Olsson (1979)’s study and provide new
insights into the performance of the robust methods and the FA
for categorical variables.

Ordinal data generally present skewness because these data
come from bounded response formats, such as Likert and
rating scales, which are the response formats most commonly
used in educational and psychological responses. Bounded
scales generate asymmetric distributions when the mean of
the variable approaches the lower or the upper bound. The
FA model based on the normality assumption is often applied
routinely to these data albeit being incorrect, which results
in overfactoring and inconsistent parameter estimates. Our
results show that mixed skewness and high factor loadings are
especially associated to overfactoring in connection with this
method. The other conditions manipulated in the simulation
(including sample size, number of factor indicators, and number
of response categories) were of secondary importance given the
simulated conditions.

The problems with the FA model are not surprising since
they have been documented for quite some time in the
psychometric literature (Muthén and Kaplan, 1985). However,
our results showed that the factor model based on polychoric
correlations (the FAC model) can be problematic if the
estimation algorithm is not selected carefully. In general, the
estimation operates in two stages: (1) Estimate the polychoric
correlations from the categorical responses, and (2) estimate
factor parameters from the polychoric correlations (using either
maximum-likelihood or WLSMV in our simulations). The

results show that the choice of an estimation method in stage
2 has important consequences, and WLSMV is far superior to
any other method. However, the conclusions of the simulation
depend on the conditions used in our study, which are ordinal
data with binomial marginals and exact underlying normality.
Some aspects in which our simulations can be extended are
to consider other estimation methods, larger sample sizes,
and different patterns of item thresholds. Apart from this,
the estimation of polychoric correlations is sensitive to the
normality assumption of the latent responses (Foldnes and
Grønneberg, 2020), which is another area of active investigation.

The GRM model from IRT has shown better performance
than FAC albeit being based on similar assumptions. One
important advantage of GRM over FAC is that it avoids
the use of polychoric correlations by relying on a marginal
ML estimation procedure (MMLE; Bock and Aitkin, 1981).
However, the Type-I error rate for the GRM is about 30%,
still far from the nominal 5% level. GRM has two inherent
limitations, the numerical integration procedure involved in
estimation (the so-called curse of dimensionality) and the
sparseness of the contingency table of manifest responses when
the number of variables increases. MMLE cannot be applied
with more than five or six factors. However, some recent
advances (Cai, 2010) have opened the way to apply it with a
larger number of factors, and constitute a viable alternative to
factor-analyzing ordinal data.

All in all, our results suggest that the most tenable method
for estimating dimensionality is the family of modified chi-
square statistics (TM , TMV , and Td) in connection with the
WLSMV estimation method, as long as the assumption of
underlying normality can be maintained. The Type-I error rate
is about the nominal level for all conditions, which is also a
very convenient property because researchers do not have to
worry about which statistic to use and in which circumstances.
However, the simulation also shows that recovery of the
parameters is more precise for GRM than for the other methods.
One possible explanation for this phenomenon is that GRM is
estimated by a full-information marginal ML procedure that
fits the model to the individual response patterns, whereas the
polychoric-based methods use a limited information estimation
method that fits the model to the second-order moments.

Parallel analysis is nowadays widely used to estimate the
number of factors due to the problems associated with chi-
square. The results of our simulation show that PA (based on
Pearson correlations) performs better than FA but not better
than GRM or Td. The parallel analysis for categorical data
inherited the problems associated with polychoric correlations
and overfactoring persisted.

Apart from the aforementioned extensions of our simulated
conditions, there are other directions in which this research can
be expanded. One is to investigate other goodness-of-fit indices
not considered here. Drawing on recent research by Ximénez
et al. (2022), future research could be directed to assess the
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performance of the RMSEA and the unbiased SRMR index,
which are consistent and asymptotically unbiased estimators
of the parameter of interest and have shown good statistical
properties and efficiency to provide interpretation guidelines to
assess the goodness-of-fit (Shi et al., 2018; Ximénez et al., 2022).

Future studies may also examine the consequences of
distributional assumptions at different levels (Zygmont and
Smith, 2014), which is currently a field of active psychometric
research. Regarding manifest variables, the present article
focuses on raking data because of the widespread use of Likert-
type items in psychological and educational measurement.
However, other types of variables may require a specific model.
For example, continuous bounded variables may be analyzed
with a factor model based on the beta distribution (Revuelta
et al., 2022). A FA model can also be based on manifest
indicators measured on a nominal scale (Revuelta et al., 2020,
2021).

The methods for categorical data evaluated in this article
are based on the assumption that manifest responses are the
result of a discretization process for a latent response, where
both latent factors and errors follow a normal distribution.
This currently is the common setup in applied psychometrics,
and this article is oriented to practitioners that analyze ordinal
data with the common methods. However, there is also an
active line of research that questions the normality of factors
and errors (Grønneberg and Foldnes, 2022; Jobst et al., 2022;
Manapat and Edwards, 2022). The validity of the conclusion
from our simulations is contingent upon the normality and
the other assumptions involved in the categorical factor model.
While the literature has shown that tetrachoric correlations are
distorted by violations of normality (Grønneberg et al., 2020),
more investigation is needed to determine the consequences of
this violation in the other methods, as well as the estimation of
the distribution of latent responses (Foldnes and Grønneberg,
2020, 2022). In the meantime, if the investigator insists on using
polychoric-based methods, normality tests for latent responses
shall be run before applying these methods.

Another generalization of the proposed methods consists
of estimating the distribution of the latent factor instead of
assuming a Gaussian variable. The present article has applied
several options for the one-dimensional latent space (Woods,
2006; Woods and Lin, 2009), but extensions of these methods
for multiple-factor models do not exist yet. One final area of
investigation is the nominal factor model, which assumes that
latent variables are Gaussian although it includes one latent
response for each category instead of one response for the
complete item as in the FAC model (Revuelta, 2014; Revuelta
et al., 2021). The nominal factor model is more flexible and
can fit the data in some circumstances where the FAC cannot.
The development of intermediate models between the full
nominal model and the FAC is another way of defining models
that better represent the data and achieve an acceptable fit
(Thissen et al., 2010).
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