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Different theoretical models have proposed cognitive and affective

components in empathy and moral judgments encompassing compassion.

Furthermore, gender differences in psychological and neural functions

involving empathic and moral processing, as well as compassionate

experiences, have been reported. However, the neurobiological function

regarding affective and cognitive integration underlying compassion and

gender-associated differences has not been investigated. In this study,

we aimed to examine the interaction between cognitive and emotional

components through functional connectivity analyzes and to explore gender

differences for the recruitment and interaction of these components. Thirty-

six healthy participants (21–56 years; 21 women) were exposed to social

images in an fMRI session to judge whether the stimuli elicited compassion.

The results showed a different connectivity pattern for women and men of the

insular cortex, the dorsomedial prefrontal cortex (dmPFC), the orbitofrontal

cortex (OFC), and the cingulate cortex. The integration of affective and

cognitive components follows a complex functional connectivity pattern

that is different for both genders. These differences may indicate that men

largely make compassionate judgments based on contextual information,

while women tend to notably take internal and introspective processes into

account. Women and men can use different affective and cognitive routes

that could converge in similar learning of moral values, empathic experiences

and compassionate acts.
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Introduction

Compassion can be described as a feeling of affliction
that is elicited by perceiving the pain or suffering of another
and that motivates to alleviate the suffering party (Haidt,
2003). Since this moral emotion has been related to prosocial
behaviors, such as altruism or caring, there has been a
growing scientific interest in understanding its complexity from
multiple perspectives. For example, its evolutionary origins, its
neurobiological substrates and its relations with emotional and
behavioral domains such as love, reconciliation, or cooperation
(Goetz et al., 2010; Kim et al., 2020; Novak et al., 2022).
Social and psychosocial perspectives have also contributed to
understanding the phenomenology behind compassion and the
sociocultural properties that influence variations in conceptual
understanding and/or behavioral expressions (Keltner et al.,
2010; Kariyawasam et al., 2021). As reasoned from the previous
lines, compassion implies empathic abilities that allow inferring
the suffering of others, as well as judgments, evaluation of social
signals and decision making to perform helping behaviors. Thus,
both affective and cognitive components shape and motivate
compassionate experiences and actions.

Empathy and compassion must not be confused. Empathic
inference about others states is not restricted to suffering but
includes a variety of feelings, whether positive or negative. Also,
compassion involves emotional and behavioral understandings,
expressions and actions framed on necessary socio-cultural
contexts (Preckel et al., 2018). So, empathy may be considered as
a crucial affective component of compassion. This component
may be phylogenetically recent and emerge early during
human development (Perner, 1992; Diamond, 2002). Its
neurobiological substrates involve a sensorimotor mirror system
particularly based on the anterior insula (AI) and on other
brain regions such as, the anterior cingulate cortex (ACC) and
the inferior frontal gyrus (IFG) engaged during the first-hand
experience of pain and disgust and when perceiving someone
else experiencing similar physical or emotional states (Singer
et al., 2006; Jabby and Keysers, 2008; Van Overwalle, 2009; Zaki
et al., 2009; Lamm et al., 2011).

The cognitive components that shape compassion may
have emerged later in evolution and allow humans to better
understand and speculate about the intentions and internal
states of others. Brain regions with social perception and
mentalizing-related functions are proposed as part of such
components: the superior temporal sulcus, the medial prefrontal
cortex, and the temporoparietal junction (Lamm et al., 2007;
Decety and Svetlova, 2012; Healey and Grossman, 2018). In
particular, the dorsomedial prefrontal cortex (dmPFC) has
been proposed as the critical region involving a network for
mentalizing and high-level constructional processes for social
stimuli, social learning, and decision-making that allow complex
social behaviors (Baetens et al., 2017; Alcalá-López et al., 2018;
Moll et al., 2018; de Kloet et al., 2021; Ni and Li, 2021).

The orbitofrontal cortex (OFC) and the anterior cingulate
cortex (ACC) have been proposed to play a critical role in
affective-cognitive integration (Decety and Svetlova, 2012). OFC
damage leads to antisocial behaviors and lack of empathy
(Bechara et al., 2000; Damasio, 2003; Decety et al., 2012).
As for ACC, its function is related to decision making and
convergent information integration (Allman and Atiyahakeem,
2001; Botvinck et al., 2004; Yu et al., 2011).

The affective and cognitive components involving
compassion are not the only interesting issue. Gender
differences remain a controversial field. For example, women
tend to express empathic concern (Reyes-Aguilar and Barrios,
2016) and care-oriented decisions to a greater extent when
they reason a sense of injustice, while men tend to express
duty-oriented thoughts when reasoning morally (Björklund,
2003; Edele et al., 2013). Likewise, activation in the posterior
cingulate cortex and the AI occurs in women while the inferior
parietal cortex occurs in men in response to moral stimuli;
these activations are related to the perceived severity of a moral
violation (Harenski and Hamann, 2006; Harenski et al., 2008).
Controversially, although women score higher than men on
self-reported dispositional empathy when viewing scenes of
induced physical pain, no gender differences are found in
brain-related activation of empathy involving the amygdala,
the prefrontal cortex, the IA and the ACC (Michalska et al.,
2013). Regarding compassion, two studies report that women
and men express similar compassionate experiences while
viewing compassion-evoking images, but women show greater
and more diverse activation than men in the ACC, the left
superior frontal gyrus, the thalamus, the insular cortex, and the
prefrontal cortex (Mercadillo et al., 2011, 2015a).

Research on the neural basis of compassion using
neuroimaging has included a variety of designs. For example,
listening to stories and imaginary about situations of suffering
(Kédia et al., 2008; Immordino-Yang et al., 2009), or reading
statements and observing visual stimuli (Moll et al., 2003; Kim
et al., 2009). Such experimental diversity shows a consequent
variety of neurobiological findings whose cognitive and affective
functions we are still discussing. By a meta-analysis derived
from 16 fMRI studies on compassion, Kim et al. (2020)
showed common activation in the inferior frontal gyri, the
substantia nigra/periaqueductal gray, the ACC, the AI, the
putamen, and the thalamus when experiencing compassion
elicited by different sensory modalities. Novak et al. (2022)
presented a systematic review of 35 neuroimaging studies
revealing that the IFG, the cerebellum, the middle temporal
gyrus, the insula, and the caudate nucleus are the most
recurrent brain regions associated with compassion. Although
these reports indicate neuroscientific interest in compassion,
analyzes focused on anatomical location and/or brain activation
elicited when performing tasks, but functional connectivity
and gender differences have not been assessed. It remains
unclear whether affective and cognitive components integrating
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compassion are anatomically and functionally dissociable or
may be independent and recruit overlapping brain functions.
Furthermore, it is imprecise whether compassion brain-related
functions are similarly or distinctively recruited by women and
men, even if similar compassionate experiences are expressed.

We present an exploratory study assessing gender
differences when watching compassion-evoking pictures
and indicating compassionate experiences motivating
helping behaviors. Our approach is based on functional
brain connectivity using Psychophysiological interaction (PPI)
analysis (O’Reilly et al., 2012) focused on four brain regions:
Right AI as a crucial affective component for compassion due
to its recurrent activation when perceiving suffering inflicted on
others (Singer et al., 2006; Lamm et al., 2011); right-dmPFC as a
cognitive component due to its role in high-level processes and
mentalization required for social learning and decision-making
that favor compassionate expressions (Baetens et al., 2017;
Ni and Li, 2021); left-ACC and OFC as brain integrators due
to their proposed role in the convergence of both affective
and cognitive information involving social situations (Allman
and Atiyahakeem, 2001; Decety and Svetlova, 2012). These
four brain regions were reported to be functionally active in a
previous study using the same experimental task as the one used
here (Mercadillo et al., 2011).

Method

Participants

Thirty-six participants (21 women, M age = 34 ± 9.9,
range: 21–56 years; 15 men, M age = 31 ± 9.2 years,
range: 20–52 years) were recruited through advertisements in
internet groups and through personal invitations in Mexico
City and Querétaro (Mexico). Since most studies on the
functional brain basis of compassion are limited to college-
educated youth, we aimed to recruit a more diverse sample
for this exploration. An inclusion criterion was 12 years of
education, which in Mexico is considered basic education
(9 years) and high school (3 years) to promote adequate
reading ability, as well as understanding of instructions and
information about the experiment. Criteria also included strong
right-handedness as measured by the Edinburgh Handedness
Inventory, good general health as verified by a clinical interview,
and the absence of current mental and neurological disorders
as assessed by the Mexican electronic version of the Symptom
Check List 90 (González-Santos et al., 2007) and a psychiatric
interview. Security restrictions for magnetic resonance imaging
studies were also considered. The protocol was designed in
accordance with the guidelines of the American Psychological
Association (2002) and the Declaration of Helsinki and was
approved by the Bioethics Committee of the Institute of
Neurobiology of the Universidad Nacional Autónoma de

México. No individual was paid for their participation. No
subject was taking any regular medication during any stage of
the study.

Experimental task

The task was designed in E-Prime (Psychology Software
Tools, Inc., Pittsburg, PA, United States) and projected through
the visual system with googles placed on the head coil (Nordic
Neurolab, Bergen, Norway). It consisted of one series of 100
visual stimuli from the International Affective Picture System
(Lang et al., 2005) previously validated by our group for fMRI
studies on compassion in Mexican samples (see Mercadillo et al.,
2007, 2011, 2015a).

Two categories of stimuli in the series were contrasted
applying an event-related design. Fourteen compassion-evoking
pictures depicting suffering in different settings and situations
(e.g., war scenes, sad facial expressions, famine situations, or
people experiencing poverty or addiction) were alternated with
86 emotionally neutral social pictures (e.g., people walking or
waiting for the bus). Each picture was presented for 2,500 ms
followed by a fixation cross with 500 ms duration (Figure 1).

Participants were instructed to respond via a button box
(ResponseGrip, Nordic Neurolab, Bergen, Norway) if each
image elicited compassion (Response: Yes/No). Behavioral
responses were recorded to verify attention during the task
and to quantify stimuli reported as eliciting compassion.
Compassion was defined as feelings of affliction caused by the
perception of suffering in others that motivates helping the
suffering party. To neutralize the effect of lateralized finger
motor responses, half of the participants used their right index
finger while the rest used their left.

Imaging acquisition and data analysis

Participants were scanned in a GE Discovery MR750 3T
scanner (General Electric Medical Systems, Milwaukee, WI,
United States) at the Resonance Magnetic Unit, Institute of
Neurobiology, Universidad Nacional Autoìnoma de Meìxico.
Anatomical images were collected with a high-resolution
3D SPGR (spoiled gradient sequence); 140 slices, relaxation
time = 24 ms, echo time = 5 ms, flip angle = 30◦, voxel
size = 1 × 1 × 1 mm3. Functional images were acquired using
an EPI-GRE sequence (30 slices, 5 mm thick with no gap,
relaxation time = 3000 ms, echo time = 30 ms, flip angle = 90◦,
FOV = 24 cm, voxel size = 4 × 4 × 4 mm3).

All preprocessing and statistical analyses were conducted
using FSL 4.1.1 At the individual level, the first four data
points of the run were discarded. Preprocessing of images

1 www.fmrib.ox.ac.uk/fsl
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FIGURE 1

Event-related design used in the presentation of visual stimuli. The series consisted of 100 pictures: 14 compassion-eliciting pictures depicting
suffering in different contexts (stimuli of interest) and 86 neutral pictures representing common social scenes (base stimuli). Each stimulus was
presented for 2,500 ms followed by a fixation cross for 500 ms. Stimuli of interest were randomly presented at 12–25 s intervals.

included: time slice correction to synchronize for inter-slice
time difference; MCFLIRT realignment for head movement
(Jenkinson et al., 2002); spatial smoothing with a 6 mm
FWHM Gaussian kernel (Friston, 2007); BET extraction (Smith,
2002); and normalization to the standard Montreal Neurological
Institute (MNI) space.

Connectivity analyses were performed following a PPI
method according to the procedures described in O’Reilly et al.
(2012). Regions of interest (ROI) were defined on the basis of
the activated regions mean map. An isometric mask (3 voxels3)
at one of two possible locations (as some locations were not
suitable for each individual participants) was located in each
ROI for each participant: right AI (x, y, z = 42, 16, 0; 42, 22,
−2), left ACC (x, y, z = −2, 16, 32; −2, 14, 34), left OFC (x, y,
z = −44, 22, −4; −38, 28, −4), and right dmPFC (x, y, z = 4, 18,
48; 0, 18, 50).

Some participants with specific poor ROI structural co-
localization from the MNI standard, with more than one voxel
shift in the seed localization, were not used for that structure
PPI functional connectivity estimation. The final sample for
the functional connectivity analyses was: (r)AI: women = 17,
men = 13; (l) ACC: women = 18, men = 14; (l) OFC: women = 16,
men = 10; and (r) dmPFC: women = 19, men = 16.

A general linear model was used to analyze the interaction of
the time course in each ROI and the presentation time points of
compassion-evoking stimuli (PPI analysis) in the whole brain.
Since PPI analyses tend to lack statistical power, especially in
event related paradigms (O’Reilly et al., 2012), we decided to

consider those results with a P < 0.005 threshold level and
clusters shaped by seven contiguous voxels as minimum.

Results

As indicated by the finger-motor responses, we did
not observe gender differences regarding compassionate
experiences elicited by watching the pictures (n = 14;
men = 13 ± 1.37; women = 12.8 ± 1.08; T = 0.48, p = 0.92).

Psychophysiological interaction analyses for the ACC seed
revealed a significant effect for the full sample integrating
women and men in the frontal pole, the IFG, the precuneus,
the putamen, and the lateral occipital cortex. The analysis for
men showed a profuse connectivity with frontal and temporal
regions. In addition, neural coupling with the post-central gyrus,
the insular cortex, the central operculum, the putamen and
the cerebellum were found. In women, the ACC seed showed
to be functionally connected with the precuneus (Table 1 and
Figure 2).

When analyzing the functional connectivity for the OFC
seed no significant effects were found for the full sample. For
women, the OFC showed connectivity with the frontal pole.
For men, this region showed functional connectivity with the
middle temporal gyrus, the putamen, the parahippocampal and
fusiform gyri, and the amygdala (Table 1 and Figure 2).

Functional connectivity analyses for the AI in the full sample
revealed a profuse connectivity with a network involving the
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TABLE 1 Brain regions presenting significant functional connectivity
with four different seed regions: anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC), dorsomedial prefrontal cortex (dmPFC),
and anterior insula (AI).

MNI coordinates

Brain region Laterality x y z Z-value

Anterior cingulate cortex (seed)

Full sample

Frontal pole L/R −46 48 −2 3.4

14 54 −8 3.03

46 38 −8 2.8

Precuneus R 16 −60 26 3.3

Inferior frontal gyrus L/R −52 36 8 3.3

54 16 4 3.16

Putamen L/R −18 6 4 3.2

26 14 4 3.1

Lateral occipital cortex R 30 −48 −38 2.8

Orbital cortex R 42 26 −16 2.7

Women

Precuneus R 16 −62 28 2.5

Men

Temporal pole R 46 22 −30 3.3

Putamen R 26 14 4 3.3

Inferior frontal gyrus R 52 14 22 3.3

Post-central gyrus R 50 −24 44 3.2

Cerebellum R 32 −44 −42 3.2

Supramarginal gyrus–TPJ L −42 −32 40 3.1

64 −20 24 3.1

Precentral gyrus R 56 10 18 3.1

26 −6 46 2.7

Middle temporal gyrus L −48 −4 −30 3.09

Insular cortex R 38 0 10 3.08

Middle frontal gyrus R 32 12 40 3.03

Frontal pole L/R −22 56 4 2.9

50 40 10 2.9

−6 56 −4 2.8

Inferior temporal gyrus L −48 −52 −18 2.8

Central operculum L −50 −22 −18 2.8

Superior frontal gyrus R 24 14 50 2.7

Paracingulate cortex 0 54 4 2.7

Orbitofrontal cortex (seed)

Full sample

Null

Women

Frontal pole L −46 46 −6 2.8

Men

Middle temporal gyrus R 52 −14 −16 3.009

Putamen R 28 10 −8 2.84

Amygdala L −20 −6 −22 2.7

Parahippocampal gyrus L −24 −32 −20 2.6

Fusiform gyrus L −22 −6 −8 2.6

Anterior insula (seed)

Full sample

Middle temporal gyrus L −56 −6 −28 3.7

Lingual gyrus–TPJ L −24 −54 −8 3.1

Precuneus L −10 −66 16 3.08

(Continued)

TABLE 1 (Continued)

MNI coordinates

Brain region Laterality x y z Z-value

Cerebellum L/R −24−48 −52 3.0

46 −56 −34 3.0

Orbitofrontal cortex L −52 32 −14 2.9

Parahippocampal gyrus L −26−28 −20 2.9

Fusiform cortex R 30 −38 −22 2.9

Occipital lateral cortex R 40 −66 12 2.8

26 −80 24 2.8

Inferior frontal gyrus R 52 22 4 2.7

Women

Frontal pole R 14 44 40 2.8

Inferior frontal gyrus L/R −56 18 10 2.5

60 14 2 2.5

Middle temporal gyrus L −48 −8 −26 2.5

Men

Orbitofrontal cortex L −34 24 −14 2.9

Anterior insula L −38 6 −12 2.8

Inferior temporal gyrus L −58 −8 −32 2.8

Precuneus L −6 −80 44 2.8

Intracalcarine fissure L −12−62 6 2.8

Cerebellum R 44 −52 −46 2.8

Temporal pole L −52 6 −32 2.7

Post-central gyrus R 38 −20 40 2.7

Fusiform cortex L −24−52 −18 2.7

Lateral occipital cortex R 28 −80 24 2.7

Superior parietal lobe R 26 −50 52 2.7

Dorsomedial prefrontal cortex (seed)
Full sample

Null

Women

Parahippocampal gyrus R/L 24 −20 −24 3.7

−30−28 −18 3.26

Inferior frontal gyrus L −52 10 14 3.46

Precentral gyrus L −62 2 12 3.46

Paracingulate gyrus R 10 44 30 3.43

Cerebellum R/L 26 −54 −54 3.4

−2 −46 −8 3.06

Posterior cingulate cortex L −6 −20 44 3.18

Amygdala R 30 −6 22 3.05

Hippocampus R/L 24 −26 −10 3.04

−32−18 −20 2.9

Insula R 30 12 8 3.03

Lingual gyrus R 12 −42 −4 3.01

Middle temporal gyrus R 58 −2 −24 2.9

Central operculum L −40 8 12 2.8

Putamen L −24 −4 16 2.7

Thalamus R/L 6 −32 4 2.7

−8 −32 10 2.6

Precuneus R 30 −50 66 2.5

Men

Cerebellum L/R −26−66 −48 3.04

14 −74 48 2.87

Results given for Full sample integrating women and men, for only Women and for
only Men.
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OFC, the IFG, the middle temporal gyrus, the fusiform gyri, the
precuneus, the lateral occipital cortex and the cerebellum. For
men, the AI showed to be connected with the OFC, the temporal
pole, the post-central gyrus, the precuneus, the fusiform cortex,
the lateral occipital cortex and the superior parietal lobe.
Conversely, analyses for women revealed connectivity with the
frontal pole, the IFG and the middle temporal gyrus (Table 1
and Figure 2).

In regard to the functional connectivity for the dmPFC seed,
no significant effects were observed for the full sample. For
women, the dmPFC displayed a wide-spread connectivity with
cortical and subcortical regions including the IFG, the middle
temporal gyrus, the insular cortex, the central operculum,
the parahippocampal gyrus, the posterior cingulate cortex, the
precuneus, the cerebellum, the putamen, the hippocampus, and
the amygdala. For men, the dmPFC presented a neural coupling
with different cerebellar clusters (Table 1 and Figure 2).

Discussion

In this exploratory study, we aimed to assess gender
differences in the affective and cognitive components underlying
compassion. We examined the functional connectivity
presented in four brain regions related to those components
(AI and dmPFC, respectively), as well as to affective-cognitive
integration (ACC and OFC). We did not find a solid pattern of
connectivity that supports the role of the ACC or the OFC as
the main affective-cognitive integrators. However, despite the
extensive overlap in brain activation reported for women and
men while experiencing compassion (Mercadillo et al., 2011,
2015a), we clearly found dissociable connectivity patterns for
both genders suggesting distinctive neurocognitive pathways
that allow compassionate experiences and decisions.

We expected that the OFC and/or the ACC could play
as integrators of affective and cognitive components. Our
results may support this assumption only for the ACC in
men for whom it was connected with the IA, the IFG
(affective component-associated brain regions), the dmPFC
(related to mentalizing), and with other regions related to
social and moral cognition, such as the frontal and temporal
poles. As previously suggested, that ACC connectivity may
allow regulation of empathic expressions (Kunz et al., 2011;
Olalde-Mathieu et al., 2022) and its connectivity with the
temporal pole may implicate autobiographical processes and
the attribution of social qualities in others (Mercadillo et al.,
2017). For women, the ACC was only coupled to the precuneus,
whose function involves self-awareness related to emotional
valuations, episodic memory (Ochsner et al., 2004; Atilano-
Barbosa et al., 2022), imagery about another’s mental states
(Schurz et al., 2014) and moral judgments (Bzdok et al.,
2012). The precuneus is also suggested as a central node
in fronto-parietal networks allowing connectivity between

different brain regions (Bullmore and Sporns, 2009). Thus, the
precuneus may function within a cascade-like mechanism that
gathers information from other brain functions and leads to
compassionate integration with salient introspective processes
in women.

The OFC seed did not exhibit connectivity with neither
brain regions involving affective nor cognitive components
for the entire sample. However, for men, the coupling with
the amygdala, the parahippocampal cortex, the putamen, and
the middle temporal gyrus may suggest a role for the OFC
as an integrator of emotional and mnemonic elements, as
suggested when people feel anger or sadness while making moral
judgments on collective painful situations (Fourie et al., 2017).
In women, the OFC exhibited functional connectivity only with
the frontal pole, which was also connected to the IA in women
and to the ACC in the full sample. The frontal pole may play an
important role in moral cognition, values, and long-term goals;
furthermore, it exhibits structural and functional differences
between long-term loving-kindness meditation practitioners
(Greene and Haidt, 2002; Moll et al., 2005; Moll and Schulkin,
2009; Engen et al., 2018). The observed patterns of connectivity
may suggest the integration of long-term values that encompass
the affective component of compassion, as well as, moral
appraisals while experiencing compassion involving beliefs and
learned values.

Regarding the AI as an affective component, its connectivity
with the IFG for the full sample and for women may
imply a mirror system that allows mimicry of gestures and
emotional contagion (Jabby and Keysers, 2008). The profuse
connectivity between the AI and occipital regions, both for
the full sample and for men, may suggest visual input
influencing somatovisceral responses, presumably related to
pain. Only men showed functional connectivity between the
AI and the temporal pole, with functions proposed for the
understanding of social semantics (Moll et al., 2005) and
for the integration of higher order information that involves
emotional-visceral responses (Olson et al., 2007). For the
full sample, the IA presented connectivity with the middle
temporal gyrus. Interestingly, the ACC and OFC were also
connected to this region for men, while for women it was
connected to the dmPFC. Damage in the middle temporal
gyrus has been associated with decreased altruistic behaviors in
an experiment on real charitable decisions (Moll et al., 2018).
Further studies may investigate whether the strength of the
connectivity patterns of the middle temporal gyrus can predict
altruistic decision making.

In contrast with the profuse connectivity revealed for the
ACC and the AI as seed regions for men, women showed a more
spread connectivity from the dmPFC. The dmPFC connectivity
with the IFG and the central operculum is remarkable since
their role in mimicry and emotional contagion suggest a mirror
system directly intervening in the inference of other’s mental
states. In addition, the dmPFC showed connections with the
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FIGURE 2

Brain regions functionally connected with four seed regions of interest (ROI): ACC, anterior cingulate cortex; OFC, orbitofrontal cortex; AI,
anterior insula; dmPFC, dorsomedial prefrontal cortex. Displayed colors represent tree different groups: Green–Full sample, Blue–Women,
Yellow–Men. Results at p < 0.005.

parahippocampal gyrus and posterior cingulate with functions
related to scene recognition and emotional salience in episodic
memory (Epstein and Kanwisher, 1998; Maddock et al., 2003).
This connectivity pattern may exchange information among
different cognitive sources required for mentalizing.

It is suggested that the dmPFC together with the posterior
cingulate cortex modulated severity values in moral judgments;
modulation by the posterior cingulate cortex has been reported
to be significantly stronger in women than in men (Harenski and
Hamann, 2006; Harenski et al., 2008). Robertson et al. (2007)
report greater posterior cingulate activation when making care-
based judgments compared to fairness-based judgments. So,

women may perform compassionate judgments in a more
caring-based way that requires inner elements, such as self-
reflection or episodic memory. A notable finding is the dmPFC
connectivity with the hippocampus and the amygdala for
women. This connectivity may suggest a role for the dmPFC as
a Theory of Mind or mentalization node assembling mnemonic
and emotional information required for social decisions, such as
expressions of distress and aversive situations in social contexts
presented in the design of the task (Mercadillo et al., 2015a).

Both women and men showed connectivity between the
dmPFC and the cerebellum, although more extensively for men.
In recent years, neuroimaging findings have highlighted the
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FIGURE 3

Functional connections from dorsomedial prefrontal cortex (dmPFC), anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and anterior
insula (AI) with brain regions related to empathic and moral processes underlying compassion. Prec, precuneus; FP, frontal pole; IFG, inferior
frontal gyrus; TPJ, temporoparietal junction, Amyg, amygdala; OFC, orbitofrontal cortex; TP, temporal pole; MTG, middle temporal gyrus. Green
line: Both-gender group; yellow line: Men, blue line: Women.

role of the cerebellum in affective processes and experiences
(Baumann and Mattingley, 2012). Furthermore, the reciprocal
connections of the cerebellum with the prefrontal and cingulate
cortices point to its relevance for moral cognition (Demirtas-
Tatlidede and Schmahmann, 2013). Clinical approaches
have reported that cerebellar damage causes alterations in
mentalization, empathy, and social cognition (Gerschcovich
et al., 2011; Mercadillo et al., 2015b). The relevance of the
cerebellum for compassion may depend on sensory input, and
how much it affects higher-order cognition remains unknown.
We suggest that the cerebellum modulates unconscious bodily
behaviors relevant to social or interpersonal dynamics and, in
turn, is modulated by information or emotional experiences.
Modulated behaviors may include gaze direction, posture, and
language needed to infer states of distress in others and express
compassion when caring or helping. Further connectivity
analyzes with cerebellar seed regions would be helpful in
exploring new neurobiological approaches to compassion.

The profuse functional connectivity of the ACC and the
IA for the full sample may suggest common neural processes
denoting affective components and the integration of affective-
cognitive elements for compassion based on said brain regions.
This cannot be said for the OFC and the dmPFC connectivity;
null effects for the full sample suggest that the patterns identified
separately for each gender are so different that they vanished
when analyzed together.

The differences in functional connectivity found for women
and men suggest a more complex system than the expected
affective-cognitive integration based on one or two brain
regions, such as the OFC or the ACC. The interpretation of
these gender differences must consider several anatomical and
behavioral elements. Women have been reported to exhibit
greater anatomical connectivity, resulting in more diversified
pathways that can make pattern identification more difficult
(Gong et al., 2009). Regarding behavior, previous findings
show that women’s empathy and moral judgments involving
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compassion predominantly recruit introspective and affective
resources, whereas men may primarily use attentional processes
and contextual information to define social cues involving
compassion (Björklund, 2003; Singer et al., 2006; Harenski et al.,
2008; Mercadillo et al., 2011; Moriguchi et al., 2014). It is
possible, then, that a more profuse connectivity of the IA and
the ACC for men underlies a modulating role of contextual
factors in affective response and deliberation of possible
helping behaviors. Importantly, these gender differences do
not necessarily imply different consciously communicated
compassionate experiences or prosocial motivated or performed
behaviors when experiencing compassion. The differences
may imply that women and men use different affective and
cognitive routes that could converge in similar learning of
moral values, empathic experiences and compassionate acts.
How human evolution has determined such differences and how
they depend on a particular gender-differentiated education
or social context influencing functional connectivity requires
further analytical research that can extend the neuroimaging
findings. For now, we provide a summary of our findings
in Figure 3 to be useful in further studies on affective and
cognitive hypotheses about compassion based on functional
connectivity.

Our study has several limitations. We cautiously expect that
the effects reported here are strong enough to be significant
despite the small sample size. However, large samples are
needed in functional connectivity studies to reduce the
effect of individual variability that can lead to false positives.
Therefore, a larger sample is necessary to confirm our results.
Our sample included a wide age range and flexible selection
criteria with the intention of exploring the neurobiology
of compassion not limited to young and highly educated
populations. However, certain conditions may have caused
unknown effects. For example, controversial age-related
differences in empathy have been reported (Lamm et al.,
2018; Wieck et al., 2021; Ziaei et al., 2021). Additionally,
a progressive decline in functional connectivity has been
reported for default mode, ventral attention, and sensorimotor
networks, while increased connectivity in the visual network
for individuals older than 50 years (Zonneveld et al., 2019).
Therefore, larger samples considering age groups can be used
for comparisons in future studies. Likewise, further research
could be done considering behavioral assessments, such as
empathic dispositions, cooperative attitudes, moral reasoning,
or educational level to relate them to functional connectivity
patterns.
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