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The ability to accurately predict possible continuations of contexts leads to relatively

effortless processing of the predicted (i.e., pre-activated) item both in perceptual (Garrido

et al., 2009; Lieder et al., 2013; Grisoni et al., 2019a,b) and language tasks (Grisoni et al.,

2017, 2020; Pickering and Gambi, 2018; Grisoni and Pulvermüller, 2022).

In the most ideal case, preactivations concern one specific stimulus (e.g., a word),

so that, before its actual presentation, there is an increase of activation in the

circuit representing the expected stimulus (prediction). When the presented stimulus

matches the preactivations, it brings less novel, unprocessed, information as compared

to the case in which a stimulus was unexpected overall, a pattern reminiscent of

priming (McNamara, 2005; Grisoni et al., 2016). In its simplicity these considerations

open up some not-trivial problems, such as: is it possible to distinguish between

genuinely context-related (e.g., sentence fragment) and genuinely expected-stimulus-

related activations? Or, alternatively, which type of information is predicted? Here

the issue is: if a specific stimulus (e.g., the eagle) is expected in a specific context

(e.g., “The emblem of Germany is the . . . ”), it must be for some relevant context and

stimulus-related information. In other words, stimulus predictability is not only1 an

intrinsic feature of any stimulus, but rather it emerges from the specific relationship

that the stimulus entertains with the context constraining its expectation; in this

sense, any stimulus could be either predictable or unpredictable, depending on the

preceding context.

To possibly answer one of the aforementioned questions (i.e., which type of semantic

information is predicted?) one might start to investigate whether the entire distributed

circuit (distributed cell assemblies, see below, Pulvermüller, 1999; Pulvermüller and

Fadiga, 2010) representing a word (Whole-item hypothesis) is called into play during

semantic predictions, or, alternatively, whether it is limited to some specific sub-

components (Partial-item hypothesis). One possibility is that predictable sentence

fragments, but not unpredictable ones, somehow trigger the selection, and hence the pre-

activation, of a specific word from the lexicon, and therefore ignites the entire cortical

circuit representing the selected item (e.g., phonological, and semantic levels involved).

1 Absolute word frequency might be considered a measure of the intrinsic predictability of a word

in any context, however, co-occurrence frequency, or conditional probability, is what can explain the

expectation of a specific stimulus in a specific context.
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Alternatively, predictive processing might involve only those

semantic, perceptual features used to complete the preceding

sentence fragment. In this case, a word is predictable in a specific

context insofar as all the necessary semantic features (e.g.,

motor, sensory, etc.) used to continue the preceding fragment

belong to the distributed cell assembly (CA, Pulvermüller and

Preibl, 1991; Pulvermüller and Fadiga, 2010; Pulvermüller, 2018)

representing that word. These features are codified just by a

subset of all the neurons belonging to this specific CA, and they

form the Set of Belonging (SB), meaning the set containing

the nerve cells that codify the specific semantic information

necessary to complete the preceding context (e.g., sentence

fragment). Therefore, the SB of a specific word (e.g.,write) might

differentially overlap with the long-term memory trace of that

word (i.e., the whole CA), and the specific SB topography and

extension might crucially depend on the specific environment of

constraint preceding the final word. For example, a fragment like

“I go to the blackboard and I. . . ” might induce SB pre-activations

which (slightly) differ in topography from the SB preactivated by

another predictable context constraining the expectation of the

same word write, such as “I take the pen and I. . . .” To complete

the former fragment, specific features belonging to a specific

instantiation of the word write are foregrounded (e.g., writing

takes place on a vertical plane, while the agent stands in front

of the blackboard producing a specific sound etc. . . ); whereas in

the second case different features are foregrounded (e.g., writing

takes place on the horizontal plane, while the agent is seated

producing different, or no, sounds).

Furthermore, according to the Partial-item hypothesis,

predictable fragments could be completable with features

belonging to either one or more CAs. If the SB overlaps with

just one CA, a fragment is predictable with low entropy (i.e.,

just one word is predicted); vice versa, if the SB overlaps with

two or more CAs, that is, if the set of features necessary to

complete a sentence fragment belong to more than one CA,

the context is predictable with a higher entropy. Fragments like

“I pet my. . . ” might constraint the expectation of at least two

possible continuations (“cat” and/or “dog”) because the relevant

features (i.e., the fact that it is a pet, with fur, etc. . . ) belong

equally to these two words and, therefore, the SB overlaps with

these two CAs. Finally, if no CA contains all the relevant features

to complete the sentence fragment, that is, if the SB is not entirely

a subset of any specific CA, then the fragment is, to some extent,

unpredictable. In this case, the completion relies on features

which are broadly distributed in the cortical tissue and weakly

interconnected with each other as they might belong to different

circuits. The result is thus weaker and more widespread brain

responses recorded on the scalp.

Recently, it has consistently been shown (Grisoni et al.,

2020) that when German participants are presented with

high-cloze (HC), predictable sentence fragments (e.g., “The

emblem of Germany is the . . . [eagle]”), a slow-wave known

as the Prediction Potential (PP, Pulvermüller and Grisoni,

2020) emerged before the final word presentation (Figure 1A);

whereas matched sentence fragments which do not strongly

predict a unique subsequent word (low-cloze, LC, sentences,

e.g., “The emblem of my family is the . . . [eagle]”) elicited

relatively smaller PPs prior to, but enlarged N400 responses

following the critical word (Figure 1A). The observation of

linear functional relationships between the PP mean amplitudes

and the co-occurrence frequencies of the final target word

(e.g., eagle) with the preceding context (e.g., “The emblem

of Germany is the . . . ”) suggest that anticipatory mechanisms

rely on the specific relationship between the final stimulus

and the preceding context, rather than on intrinsic features

of the expected stimulus (see above, and Figure 1B). The

observation of negative correlations, at different channel

locations, between the PP and the subsequent post-stimulus,

N400, brain responses (Figure 1C) is consistent with the idea

of a functional relationship between these two brain signals

and with both the Whole- and Partial-item hypotheses. Indeed,

both these hypotheses suggest that the inverse, functional,

relationship between the PP and the N400 could be explained as

a difference in the activity preceding word onset, a mechanism

reminiscent of priming (see above). It remains to ascertain

whether this priming-like effect operates on the whole cortical

representation of the word (i.e., full ignition of the circuit

representing the expected word) or just on a portion of the

circuit representing the expected item (i.e., partial ignition of the

circuit). One way of testing these two hypotheses against each

other is to look at the source estimations which, despite the well-

known limitations in relation to spatial resolution (Helmholtz,

1853; Hauk et al., 2011), might nevertheless return important

indications which would implicate either the Whole- or the

Partial-item hypotheses, as they are expected to differ in brain

areas further away from each other (see below).

The main PP and N400 cortical generators were observed

in inferior prefrontal (Figure 1D) and in posterior temporal

areas (Figure 1E), respectively, whereas semantic category-

specific cortical generators at both pre- and post-word latencies

emerged in posterior, visual brain areas for animal nouns

(e.g., eagle) but in prefrontal, motor regions for action-related,

tool, nouns (e.g., horn) (Figures 1F,G Region of Interest, ROI,

analysis). When a tool noun, such as “hammer,” was strongly

predicted by context, relatively enhanced activation in motor

and premotor areas was observed, whereas predicting an

animal word, such as “rabbit,” was associated with relatively

enhanced predictive activation in posterior, parieto-occipital

visual areas. A similar dissociation had already been reported

after word presentation (Martin et al., 1996; Kiefer, 2001;

Carota et al., 2012, 2017; Kiefer and Pulvermüller, 2012) and

could be replicated in this study also at the subsequent N400

latency. Overall, the observation of cluster of activations also in

specific modality preferential brain areas are in line with those

neurocognitive and neurolinguistic models for which words are

stored by means of cell assemblies (CAs) distributed in specific
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FIGURE 1

Event-related potentials (ERPs) and source analysis results. Top left (A) ERPs elicited by predictable (HC, magenta) and unpredictable (LC, green)

sentences at both the pre- (PP, gray window) and post-stimulus (N400, yellow window) latencies. Top central (B) significant correlation between

the corpus-based, co-occurrence frequency (x-axis) and the PP (y-axis) responses at left-frontal electrodes. Top right (C) negative correlation

between the PP (x-axis) and the N400 (y-axis) responses recorded at centro-occipital electrodes. Bottom left (D) and bottom central (E) sources

contrasts at the PP latency [HC > LC, (D)] and at the N400 latency [LC > HC, (E)]. Sub-panel (F) shows the contrasts of the source estimations

(Region of Interest, ROIs, analysis; the ROIs are depicted at the bottom right of this sub-panel) HC: Tools > Animals (red) and HC: Animals >

Tools (blue) at the pre-stimulus, PP, latency; whereas sub-panel (G) shows the contrasts of the source estimations (Region of Interest, ROIs,

analysis; the ROIs are depicted at the bottom right of this sub-panel) Tools: LC > HC (red) and Animals: LC > HC (blue) at the post-stimulus,

N400, latency. Modified from (Grisoni et al., 2020).

modality preferential and multimodal cortical areas depending

on the meaning of the word (Pulvermüller and Fadiga, 2010).

According to these models, words are stored by means of

representation units distributed across perisylvian cortical areas

where neurons codify the specific auditory and articulatory

profile of the word (phonological level), and in modality

preferential and multimodal brain areas where semantic neurons

codify the semantic level (semantic neurons in, for example,

prefrontal, motor, or posterior-ventral, visual, regions, for action

or visually related concrete words, respectively). The source

estimations presented above are, therefore, more consistent

with the Partial-item hypothesis; indeed, if the Whole-item

hypothesis were correct, PP source estimations should have

shown clusters of activity also in word form, perisylvian, areas;

conversely, the observation of clusters of activity in lateral

prefrontal areas (for the contrast HC > LC) (Figure 1D) and

in specific modality preferential brain areas depending on

the semantic category of the expected noun (i.e., prefrontal,

motor, for tool nouns; but posterior, ventral for animal nouns)

(Figure 1F) but not in perisylvian (i.e., neither in articulatory,

motor ventral; nor in auditory, superior temporal) areas is

overall more consistent with the Partial-item hypothesis, which

assumes predictive activity in specific semantic sub-components

(i.e., SBs) of the distributed representation units. The Partial-

and Whole-item hypothesis also predicts different patterns of

activation at post-word, N400, latencies. Indeed, if the pre-

activations involved both the phonological and the semantic

levels (Whole-item hypothesis), then perisylvian activity should

be greater in LC than HC at these latencies due to a difference

of activity within these areas before a word appears. Instead,

the observation of clusters of activity in modality preferential

brain regions, but not in perisylvian areas, at the N400 latency

is consistent with the hypothesis that these areas were equally

(in)activated (before) after word presentation in the two contexts

(Figures 1E,G). Finally, the observation that the N400 was also

manifest in HC sentences, albeit smaller than the N400 elicited

by the LC fragments, is consistent with the assumption that

only a portion (i.e., the SB) of the relevant CA was preactivated

before word onset and, when the word is finally perceived,

the remaining portion of the CA (in perisylvian, multimodal,

and modality preferential brain areas) ignites thus eliciting yet

another reliable post stimulus response (Figure 1A).

The observation that lateral prefrontal areas are particularly

important in predictive processing (see Figure 1D and also,
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Fuster and Bressler, 2015; Grisoni et al., 2017; Leon-Cabrera

et al., 2019; Grisoni and Pulvermüller, 2022) has particular

significance within the Partial-item hypothesis. Indeed, it is

well-known that these regions are densely connected with

both sensory and motor associative areas (Fuster, 2001; Fuster

and Bressler, 2015) and, therefore, these regions could act

as a predictive hub targeting the relevant semantic neurons

which allow specific belongings of the expected word within

the preceding context; an interpretation which also matches

previous accounts according to which the core functions of

the lateral prefrontal cortex is the integration of linguistic

information at several levels (e.g., phonological, semantic)

of language processing (for example Hagoort, 2005). In this

framework, therefore, the SB might represent an attempt to

solve semantic integration, that is, how to integrate a word

within a previous context. However, although some preliminary

evidence seems to support the Partial-item hypothesis here

presented, I acknowledge that more research is necessary to test

this hypothesis and to come to a firm conclusion.

To conclude, predictive processing could help elucidate

how concepts are integrated into wider contexts (i.e., sentence,

discourse) and, in this sense, predictive processing might fulfill

one of the most of its crucial functions, namely, reducing much

of the ambiguity inherent in most linguistic utterances.
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