
TYPE Original Research

PUBLISHED 15 February 2023

DOI 10.3389/fpsyg.2023.1047694

OPEN ACCESS

EDITED BY

Dirk Bernhardt-Walther,

University of Toronto, Canada

REVIEWED BY

Shaode Yu,

Communication University of China, China

Ko Sakai,

University of Tsukuba, Japan

Mikio Inagaki,

National Institute of Information and

Communications Technology, Japan

Juan Chen,

South China Normal University, China

*CORRESPONDENCE

Shin’ya Nishida

shinyanishida@mac.com

SPECIALTY SECTION

This article was submitted to

Perception Science,

a section of the journal

Frontiers in Psychology

RECEIVED 18 September 2022

ACCEPTED 20 January 2023

PUBLISHED 15 February 2023

CITATION

Yoshihara S, Fukiage T and Nishida S (2023)

Does training with blurred images bring

convolutional neural networks closer to

humans with respect to robust object

recognition and internal representations?

Front. Psychol. 14:1047694.

doi: 10.3389/fpsyg.2023.1047694

COPYRIGHT

© 2023 Yoshihara, Fukiage and Nishida. This is

an open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Does training with blurred images
bring convolutional neural
networks closer to humans with
respect to robust object
recognition and internal
representations?

Sou Yoshihara1, Taiki Fukiage2 and Shin’ya Nishida1,2*

1Department of Intelligence Science and Technology, Graduate School of Informatics, Kyoto University,

Kyoto, Japan, 2NTT Communication Science Laboratories, Nippon Telegraph and Telephone Corporation,

Atsugi, Japan

It has been suggested that perceiving blurry images in addition to sharp

images contributes to the development of robust human visual processing. To

computationally investigate the e�ect of exposure to blurry images, we trained

convolutional neural networks (CNNs) on ImageNet object recognition with a variety

of combinations of sharp and blurred images. In agreement with recent reports, mixed

training on blurred and sharp images (B+S training) brings CNNs closer to humans

with respect to robust object recognition against a change in image blur. B+S training

also slightly reduces the texture bias of CNNs in recognition of shape-texture cue

conflict images, but the e�ect is not strong enough to achieve human-level shape

bias. Other tests also suggest that B+S training cannot produce robust human-like

object recognition based on global configuration features. Using representational

similarity analysis and zero-shot transfer learning, we also show that B+S-Net does not

facilitate blur-robust object recognition through separate specialized sub-networks,

one network for sharp images and another for blurry images, but through a single

network analyzing image features common across sharp and blurry images. However,

blur training alone does not automatically create a mechanism like the human brain in

which sub-band information is integrated into a common representation. Our analysis

suggests that experience with blurred images may help the human brain recognize

objects in blurred images, but that alone does not lead to robust, human-like object

recognition.

KEYWORDS

convolutional neural networks, object recognition, visual development, perceptual

organization, optical blur

1. Introduction

Human visual acuity, evaluated in terms of the minimum angle of resolution or the highest

discernable spatial frequency, is affected by a variety of processes including eye optics, retinal

sensor sampling, and the subsequent neural signal processing. In daily visual experiences, visual

acuity changes depending on, for example, the degree to which the current focal length of the eye

agrees with the distance to the target object, or whether the target is sensed at the fovea, where

image sampling is dense, or at far-peripheral vision, where sparse image sampling is followed by

spatial pooling. Visual acuity also changes progressively with each stage of development. Infants

who are born with low visual acuity gradually acquire near adult-level acuity within the first few
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years of life (Dobson and Teller, 1978; Banks and Salapatek, 1981).

Considering that the loss of visual acuity can be approximated by

blurring the image by low-pass (high-cut) filtering, one can say that

most humans have a rich experience seeing blurred visual images in

addition to sharp ones.

It has been suggested that the experience of blurred visual images

might be functionally beneficial, enabling the visual system to use

global configural structures in image recognition (Grand et al., 2001;

Le Grand et al., 2004; Vogelsang et al., 2018). Several recent studies

test this hypothesis computationally by machine learning using

artificial neural networks (Vogelsang et al., 2018; Katzhendler and

Weinshall, 2019; Avberšek et al., 2021; Geirhos et al., 2021; Jang and

Tong, 2021, 2022). Vogelsang et al. (2018) trained a convolutional

network (CNN) to recognize human faces. To simulate how visual

acuity gradually improves during the initial stage of life, they changed

the training images from blurred to sharp ones during training (B2S)

and found that the network achieves robust face recognition for a

wide range of image blur, as humans do. In contrast, the network

can only recognize sharp images when trained on sharp images.

The network can only recognize blurred images when trained using

blurred images or sequentially trained on images that change from

sharp to blurred. Jang and Tong (2021) found that the effect of

B2S training is task-specific. It leads to blur-robust recognition for

face recognition as Vogelsang et al. reported, but not for object

recognition. Avberšek et al. (2021) was also unable to obtain blur-

robust object recognition by means of B2S training. However, object

recognition achieves blur robustness when blurred and sharp images

are always mixed during training (B+S).

With a similar research motivation in mind, we examined

the effects of blur training on object recognition by CNNs. We

investigated which types of blur training make the CNNs sensitive

to coarse-scale global features as well as fine-scale local features,

and bring them closer to the human object recognition system. We

evaluated the object-recognition performance of the blur-trained

CNNs not only using low-pass filtered test images, but also for

other types of images including band-pass filtered images and shape-

texture cue conflict images (Geirhos et al., 2019) to ascertain whether

blur training affects global configurational processing in general.

In agreement with previous reports (Avberšek et al., 2021; Jang

and Tong, 2021), our results show that B+S training, but not

B2S training, leads to blur-robust object recognition comparable

to human performance. However, B+S training is not sufficient

to produce robust human-like object recognition based on global

configuration features. For example, it reduces the texture bias of

CNNs for shape-texture cue conflict images, but the effect is too small

to achieve a strong shape bias comparable to that of humans.

In the latter half of this report, using correlation analyses of

internal representations and zero-shot transfer learning, we examine

how B+S training makes CNN less affected by image blur. Our

results suggest that initial low-pass filtering contributes to the

blur robustness of B+S-Net, but only partially. Representational

similarities in the intermediate layers suggest that B+S-Net

processes sharp and blurry images not through separate specialized

sub-networks, but through a common blur-robust mechanism.

Furthermore, we found that B+S training for other object labels

transfers to another label trained only with blurred or sharp

images, which suggests that B+S training lets the network learn

general blur-robust features. However, blur training alone does not

automatically create a mechanism like the human brain where sub-

band information is integrated into a common representation.

Overall, our results suggest that experience with blurred images

may help the human brain develop neural networks that recognize

the surrounding objects regardless of image blurring, but that alone

does not lead to robust, human-like object recognition.

2. Methods

We investigated the performance of several training methods

with a mixture of blurred images. In the experiments, we mainly used

16-class-ImageNet (Geirhos et al., 2018) as a dataset, and the analysis

is based on 16-class-AlexNet, with 16 final layer units. However,

we also ran some of the experiments using a 1000-class-ImageNet

and tested other network architectures to ensure the generalizability

of our results. A list of the networks compared in this study is

summarized in Table 1.We trained all the models from scratch except

for SIN-trained-Net (Geirhos et al., 2019), for which we used the pre-

trained model provided by the authors. We did not fine-tune any of

the models for the test tasks. Further, we collected human behavior

data via Amazon Mechanical Turk (AMT) to compare human

performances with those of our blur-trained models. Below, we

provide in detail information about the dataset, model architecture,

training strategies, and a human behavior study.

2.1. Dataset: 16-class-ImageNet

In order to facilitate comparison with experimental data on

humans, we used the 16-class-ImageNet dataset. This dataset was

created by Geirhos et al. (2018), who grouped 1,000 ImageNet classes

into superior classes such as “dog" and “clock" and selected the

following 16 classes from them: airplane, bear, bicycle, bird, boat,

bottle, car, cat, chair, clock, dog, elephant, keyboard, knife, oven, and

truck. There are 40,517 training images and 1,600 test images. There

was no overlap between them. The image size is 224 × 224 × 3

(height, width, color). The performance of the model trained on the

regular 1000-class-ImageNet is also investigated in a later section

(section 3.3.3).

2.2. CNN model: 16-class-AlexNet

We chose AlexNet (Krizhevsky et al., 2012) as the CNN model

for our main analysis. We used the model architecture provided

in a popular deep learning framework, Pytorch, and trained the

model from scratch. To match the number of classes in the 16-class-

ImageNet, we changed the output number in the final layer from 1000

to 16.

We chose AlexNet because of its similarity to the hierarchical

information processing of the human visual cortex. For example,

the visualization of filters in the first layer of AlexNet trained with

ImageNet shows the formation of various Gabor-like filters with

different orientations and scales (Krizhevsky et al., 2012). The Gabor

functions are known to be good approximations of the spatial

properties of V1 simple cell receptive fields (Jones and Palmer, 1987).

In section 3.3.4, we also analyze a model that explicitly incorporated
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TABLE 1 CNNmodels used in this study.

Model name Architecture Number of units
in final layer

Training dataset Pre-training Fine-tuning

16-class-AlexNet AlexNet 16 16-class-ImageNet

(Geirhos et al., 2018)

No No

1000-class-AlexNet AlexNet 1,000 ImageNet(ILSVRC2012) No No

VOneNet VOneBlock (Dapello

et al., 2020) + AlexNet

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

16-class-VGG16 VGG16 (Simonyan and

Zisserman, 2015)

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

16-class-ResNet50 ResNet50 (He et al.,

2016)

16 16-class-ImageNet

(Geirhos et al., 2018)

No No

SIN-trained-Net

(Geirhos et al., 2019)

AlexNet 1,000 SIN-ImageNet (Geirhos

et al., 2019)

Yes No

the Gabor filters as the initial layer of AlexNet using VOneBlock

proposed by Dapello et al. (2020). A study of the brain hierarchy

(BH) score, which takes into account the hierarchical similarity

between the deep neural network (DNN) and the brain, shows that

AlexNet has a high BH score (Nonaka et al., 2021). The information

representation in the convolutional layer of AlexNet corresponds to

the lower visual cortex of the brain, while the fully connected layer

corresponds to the higher visual cortex of the brain. In addition,

AlexNet is an easy model to interpret in that it has a small number

of layers and does not contain complex operations such as Skip

Connection.

2.3. Training with blurred images: Blur
training

In this experiment, in addition to the regular training, we trained

CNNs with blurred images using three different strategies (Figure 1).

We used Gaussian kernel convolution to blur images. The blur size

was manipulated by changing the standard deviation (σ ) of the

Gaussian kernel as shown in Figure 1A. The spatial extent of the

Gaussian kernel (k) was determined depending on σ as follows: k =

Round(8σ+1).1 When kwas an even number, one was added tomake

it an odd number.

In the following, we refer to the trained models as S-Net, B-

Net, B+S-Net, and B2S-Net, respectively, depending on which image

blurring strategy was used in training (Figure 1B). Unless otherwise

stated, the architecture of each model is 16-class-AlexNet. We trained

all the models for 60 epochs (the number of training cycles through

the full training dataset), with a batch size of 64. The optimizer

was stochastic gradient descent (SGD) with momentum = 0.9 and

weight decay = 0.0005. The initial learning rate (lr) was set to 0.01

and decreased by a factor of ten at every 20 epochs. The number of

training images was 40,517, the same for all models, and we applied

random cropping and random horizontal flipping to all training

images. The image size was 224× 224× 3 (height, width, color). We

used PyTorch (version 1.2.0) and one of two GPU machines to train

1 The equation is implemented in OpenCV’s GaussianBlur function that we

used to apply Gaussian filtering. In this function, the kernel size was adaptively

determined from the size of sigma.

each model. The GPU environments were Quadro RTX 8000 (CUDA

Version: 10.2) and GeForce RTX 2080 (CUDA Version: 10.2).

• S-Net is a model trained on sharp (original, unblurred) images.

• B-Net In the training of B-Net, all the training images were

blurred throughout the entire training period. We mainly

discuss the performance of the model trained with a fixed blur

size of σ = 4 px.

• B+S-Net In the training of B+S-Net, we blurred half of the

samples randomly picked in each batch of training images

throughout the entire training period. We mainly discuss the

performance of the model trained with a fixed blur size of σ = 4

px. The performance of B+S-Net trained with randomly varied

σ is presented in section 3.3.2.

• B2S-Net In the training of B2S-Net, the training images were

progressively made sharper from a strongly blurred to the

original, non-blurred image. Specifically, we started with a

Gaussian kernel of σ = 4 px and decreased σ by one every

ten epochs so that only sharp images without any blur were fed

into the model in the last 20 epochs. This training method is

intended to simulate human visual development and to confirm

the effectiveness of starting training with blurred images, as

claimed by Vogelsang et al. (2018).

To ensure the reproducibility of the results, we trained

each network models with eight different initial weights, and

computed the mean and the 95% confidence intervals for

each condition.

2.4. Human image classification task

We collected human data using Amazon Mechanical Turk

(AMT).We asked participants to perform an image classification task

to investigate the difference between the models trained in this study

and human image recognition capabilities.

As stimuli for the classification task, we used the same 16-

class-ImageNet test set that we used for evaluating CNN models

(1,600 images, 100 images per class). In addition to the original test

images, we tested the low-pass and band-pass versions of the 16-

class-ImageNet test images for stimuli. The low-pass images were

created by applying Gaussian kernel convolution while manipulating
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FIGURE 1

Blur training brings CNN closer to humans in recognizing low-pass filtered object images. (A) Sample blurred images. (B) Four blur training methods. (C)

Classification accuracy on low-pass filtered test images. Top-1 accuracy is the rate at which the model’s first choice matches the expected answer. Error

bars represent 95% confidence intervals estimated from the performances of eight models trained with di�erent random seeds.

FIGURE 2

Blur training does not bridge the gaps between CNN and humans in recognition of (A) band-pass filtered object images, (B) jumbled/occluded images

(Keshvari et al., 2021), and (C) shape-texture-cue-conflict images (Geirhos et al., 2019). The ordinate is the Top-1 accuracy of object classification. The

exception is (C), where shape bias is shown by bars, and classification accuracy on Stylized ImageNet (SIN) by crosses. Human accuracy for (B, C) are from

the original studies. Error bars represent 95% confidence intervals estimated from the performances of eight models trained with di�erent random seeds.

the standard deviation of the Gaussian kernel (σ ) in the same

manner as when we blurred the training images for CNN models.

The band-pass images were created by taking the difference between

two low-pass images obtained by blurring the same image with

different σ (Figure 2A). In total, there were six conditions as follows:

original image, low-pass image σ = 4 px, low-pass image σ = 8

px, low-pass image σ = 16 px, band-pass image σ1 − σ2 (i.e.,

band-pass image obtained by subtracting the lowpass image with
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σ = 2 px from that with σ = 1 px), and band-pass image

σ4− σ8.

For each task, one of the stimuli was presented and participants

chose the category of an object in the image from 16 options.

We had 170 subjects solve the tasks and obtained 6,817 pieces of

categorization data (Original image: 1,108, low-pass image σ = 4:

1,103, low-pass image σ = 8: 1,124, low-pass image σ = 16:

1,134, band-pass image σ1 − σ2: 1,188, band-pass image σ4 − σ8:

1,160). Participants could complete the task for an arbitrary number

of images. The consent form for the experiment was created using

a Google Form, and a link to it was placed on the AMT task

page. Each participant was asked to read the linked consent form

and fill in the required information to register his or her consent.

Experimental procedures were approved by the Research Ethics

Committee at Graduate School of Informatics, Kyoto University, and

were conducted in accordance with the Declaration of Helsinki.

3. Blur training: Results

We measure the model’s performance on various test images

and compare it to human performance to investigate what visual

functions are acquired via blur training. First, we examined the

classification accuracy for low spatial frequency images and analyzed

whether the models could recognize coarse-scale information.

Then, we examined whether the robustness to blurry images

acquired through blur training could generalize to other types of

robustness measured by using band-pass filtered images, images with

manipulated spatial configurations of local elements, and shape-

texture cue conflict images.

3.1. Recognition performance for low-pass
images

In this section, we compare the image recognition performance

for low spatial frequency images. Since the low-frequency

information can capture global image features to some extent,

the results of this task are expected to indicate, at least partially,

whether the model recognizes global information or not. For this

purpose, we examined the percentage of correct classifications for

each model when the test image was blurred at different intensities.

The test images are the test set of the 16-class-ImageNet containing

1,600 images. We also collected human classification task data using

the same test images. The details are described in section 2.4.

The results of the above experiments are shown in Figure 1C.

First, S-Net trained only on standard clear images shows a sharp

drop in the accuracy when the image is strongly blurred. The B-

Net’s performance is high only for the blur level used in training

(σ = 4) and blurs of similar strength. B2S-Net did not show much

improvement in blur tolerance.

On the other hand, in the low-frequency image recognition

test, B+S-Net, which was trained on both blurred and sharp images

simultaneously, was able to recognize a wide range of features

from sharp images to blurred images of various intensities (blur

robustness). The robustness of B+S-Net against blur is similar to that

indicated by human behavior data.

B2S-Net showed only a tiny improvement in terms of accuracy

over S-Net, and B+S-Net showed stronger blur robustness than

B2S-Net.

3.2. Recognition performance for other
types of image manipulations

In the previous section, we showed that the models trained on

both low-pass-filtered and sharp images acquire robustness to a broad

range of image blur strengths. To gain a more detailed insight into

what visual functions were acquired by blur training, we investigated

the behavior of blur-trained models for image manipulations that

were not used in the training procedure.

3.2.1. Recognition performance for band-pass
images

First, we used band-pass images to investigate the recognition

performance of the model in each frequency band. The band-pass

images were created by subtracting the two low-pass images of

different σ . Using these band-pass images, we were able to find out in

which frequency band blur training is influential. We also analyzed

whether there is a difference between CNNs and humans regarding

the frequency bands they can use for object recognition.

In our experiments, we performed a classification task on band-

pass images for CNNmodels and humans, respectively. In the human

experiments, we used AMT to conduct the image classification task

for band-pass images σ1−σ2 and σ4−σ8. The details are described

in section 2.4.

The results (Figure 2A) show that B+S-Net improves the accuracy

of image recognition over a broader frequency range than the other

models, and this indicates that training on blurred images is effective

in acquiring the ability to recognize a broader range of frequency

features. However, it did not show much effect on images in the

high-frequency band.

Next, we compared the accuracy of humans and CNNs. The

CNN model showed a lower recognition rate for band-pass stimuli,

especially in the high-frequency range. Blur training does not lead to

robust, human-like object recognition for bandpass images.

3.2.2. Recognition performance for global
configuration made of local patches

We further investigated whether blur training could change the

global information processing in CNN models by using the test

procedure proposed by Keshvari et al. (2021).

Keshvari et al. (2021) tested the difference in recognition

performance between humans and CNNs by manipulating local

patches. They divided the original image into several square tiles.

There were four partitioning scales: (4×4), (8×8), (16×16), (32×32).

A Jumbled image was one in which tiles were randomly replaced

horizontally, preserving local information but distorting global shape

and configural relationships. The Gray Occluder image, in which

tiles were alternately grayed out, preserved the global shape and

configural information but lost some local information. The Jumbled

with Gray Occluder image combined the operations of the Jumbled

and Gray Occluder images, and both local and global information

were destroyed.
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Keshvari et al. (2021) compared the difference in recognition

accuracy between a CNN (VGG16 pre-trained on ImageNet without

blur traning) and human observers using 640 images from eight

classes in ImageNet. They found the pretrained CNN showed a

significant decrease in accuracy for the Jumbled image, and the

larger decreases for the Gray Occluder image, and the Jumbled with

Gray Occluder image. Humans also showed a similar magnitude

of decrease in accuracy for the Jumbled image, but only a small

decrease for the Gray Occluder image. Their findings suggest that

humnans can, but the pretrained CNN cannot, make use of global

configural information preserved in the Gray Occluder image for

object recognition.

In this study, we generated the jumbled/occluded images from the

test images of the 16-class ImageNet in the same way as in Keshvari

et al. (2021) and investigated whether the recognition performance of

CNNs becomes closer to that of humans by blur training (Figure 2B).

The results showed that training on blurred images did not change

the overall trend of recognition performance on this test set. B+S-Net

and B2S-Net did not improve the accuracy for Gray Occluder images

compared to S-Net. These results suggest that the CNNmodels failed

to utilize the global configural information preserved in the Gray

Occluder image even after blur training.

3.2.3. Recognition performance for texture-shape
cue conflict images

To investigate whether the blur-trainedmodels show a preference

for shape information or texture information, we tested the shape bias

proposed by the work of Geirhos et al. (2019).

Geirhos et al. (2019) created a texture-shape cue conflict image

dataset where the texture information of one image was replaced by

that of another image in a different class by using the style transfer

technique of Gatys et al. (2016).2 The dataset consists of the same

16 classes as in the 16-class-ImageNet while each image has two

correct labels based on its match to the shape or texture class. In total,

the dataset contains 1,200 images (75 images per class). The shape

bias measures how often the model answers the shape class when it

correctly classifies a cue conflict image into either the shape or texture

class, and is calculated by the following equation:

shape bias =
correct shape decisions

correct shape decisions+ correct texture decisions.

According to the results of Geirhos et al. (2019), while humans

showed strong shape bias, CNNmodels trained on ImageNet showed

weak shape bias (in other words, they showed texture bias). When the

CNN models were trained on the Stylized-ImageNet (SIN) dataset,

in which the texture information of an image was made irrelevant

to the correct label by replacing the original texture with that of

a randomly selected painting, the shape bias of the CNN models

(SIN-trained-Net) became closer to that of humans. Moreover, we

found SIN-trained-Net has a higher recognition rate for high-pass

and band-pass images as humans do (Supplementary Figure S2B).

However, training with SIN is biologically implausible and

2 Texture-shape cue conflict image: taken from the GitHub page of Geirhos

et al. (2019): https://github.com/rgeirhos/texture-vs-shape/tree/master/

stimuli/style-transfer-preprocessed-512, reference date: 2021/07/26.

therefore not helpful in modeling the development of the human

visual system.

Here, we calculated the shape bias of the models trained in our

study using the texture-shape cue conflict image dataset provided by

the authors of Geirhos et al. (2019) to see whether the blur training

could enhance the shape bias of CNNs. Figure 2C presents the shape

bias of the four models we trained as well as those of SIN-trained-

Net and human data taken from Geirhos et al. (2019). Compared to

S-Net, shape bias was increased most for B-Net, the second for B+S-

Net, and the least for B2S-Net. However, the classification accuracy

on the SIN dataset was significantly decreased for B-Net, only slightly

for B+S-Net, and not at all for B2S-Net. Overall, among the four

models, B+S-Net shows the most human-like performance. However,

neither B-Net nor B+S-Net shows strong shape bias comparable to

those of SIN-trained-Net and humans. These results indicate that

while training with blurred images slightly increases the shape bias in

comparison with training only with sharp images, blur training alone

is insufficient to bring the bias closer to the human level.

3.3. Supplemental analyses

3.3.1. Training schedule
We used the fixed schedule of learning rates as

shown in Figure 1B. We determined the learning rate

following a reference training script in torchvision library:

https://github.com/pytorch/vision/tree/main/references/classification.

To check the generality of our findings in particular about B2S-Net,

we have additionally run a supplemental experiment to examine the

effect of the training schedule. We trained B2S models while varying

the initial learning rate and the number of epochs with discrete step

sizes of [0.05, 0.01, 0.005, 0.001] and [60, 90, 120], respectively. The

initial learning rate was reduced by a factor of 10 for every third

of the total training epochs (as in the original experiment). The

timing to decrease the sigma of the Gaussian kernel applied to the

training images was also linearly extended (decreasing the sigma by

1 every 10, 15, and 20 epochs for the 60, 90, and 120 epoch training

conditions, respectively).

As a result, we have obtained qualitatively similar amounts of

blur robustness for all tested conditions except for a model with

the initial learning rate = 0.05 and with training epochs = 120, in

which the training diverged due to too large initial learning rate. All

the models trained with learning rates 0.01 and 0.005 showed blur

robustness/accuracy equivalent to the original B2S model regardless

of the training epochs. We did not find any model that significantly

outperformed the blur robustness of the original B2S model.

3.3.2. B+S-Net with randomly varying blur strength
Considering that B2S-Net simulates human visual experiences

during development, one can also consider that B+S-Net simulates

human visual experience in everyday life where blurred images are

occasionally mixed with sharp images due to image focusing errors.

In the analysis so far, we have fixed the strength of image blur applied

to training images for B+S-Net at σ = 4. Here, we trained a 16-class

B+S-Net while randomly varying σ (0 px–4 px) to simulate our daily

visual experience more realistically, and measured its performance

on the (A)low-pass images, (B) jumbled/occluded images, and (C)

shape-texture-cue-conflict images.
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The results (Supplementary Figure S1) showed no significant

changes in the performance on any of the test sets from the original

B+S-Net. Fixing the blur strength is not the reason why blur

learning is limited in its ability to reproduce human-like global object

recognition.

3.3.3. 1000-class-AlexNet
The analysis so far has been based on the 16-class-AlexNet.

One may consider that 16 object classes are unrealistically small to

simulate human object recognition. To address this concern, we also

trained our networks with a 1000-class classification task (1000-class-

AlexNet). For comparisonwith themain results, we used the 16-class-

ImageNet to test performances,3 by mapping the output of the 1000-

class-AlexNet into 16 classes based on WordNet hierarchy (Miller,

1995) using the mapping function described in Geirhos et al. (2018).

Concerning the accuracy for blurred images

(Supplementary Figure S2A), the 1000-class-AlexNet exhibited

an overall trend similar to that of the 16-class-AlexNet. However, we

also found that the generalization effect of blur training beyond the

blur strength used in training was smaller for the 1000-class-AlexNet

than that for the 16-class-AlexNet. B-Net was firmly tuned to the blur

strength used in training (σ = 4) and was barely able to recognize

clear images. B+S-Net also showed a narrower blur tuning. B2S-Net

showed no advantage over S-Net. Concerning the performances

on the band-pass-filtered test images (Supplementary Figure S2B),

the results of the 1000-class-AlexNet showed a similar trend to

the 16-class-AlexNet. The effective bandwidth was somewhat

narrower in the 1000-class version. It should be also noted that

the 1000-class-AlexNet trained on Stylyzed-ImageNet (Geirhos

et al., 2018) showed a human-like performance for band-pass test

images. The results of the shape bias using the cue conflict images

(Supplementary Figure S2D) show that there was little effect of

blur training on shape bias when the 1000-class dataset was used.

However, it should also be noted that the accuracy of the 1000-class

models for the cue conflict images themselves was very low, meaning

that the models were barely able to classify the test images to either

the correct shape or texture label in the first place.

To conclude, we found no evidence supporting the idea

that increasing the number of training categories makes blur

training more effective in reproducing human-like robust

object recognition.

3.3.4. VOneNet (16-class)
VOneNet is a model in which the first layer of the 16-class-

AlexNet is replaced with a VOneBlock (Dapello et al., 2020). The

VOneBlock is a computational model that simulates the visual

information processing in the V1 cortex of the brain, such as

the response properties of simple cells and complex cells. It also

simulates the stochasticity in neural responses by introducing noise.

Importantly, multiscale Gabor filters tuned to low to high spatial

frequencies are hard-coded in the VOneBlock.

One possible reason for the limited effect of blur training in

reproducing human-like robust object recognition is that the training

cannot produce human-like multi-scale filters in the early processing

3 The models trained on the 1000-class dataset were directly used in the

analysis. Fine-tuning the 16-class ImageNet may yield di�erent results.

stage. If this were the case, through blur training, the model with

VOneBlock would be able to achieve stronger robustness to low-

pass and band-pass filtered images and stronger sensitivity to global

configurations.

Contrary to this expectation, the introduction of the VOneBlock

did not change the performance significantly. As shown in Figure 3,

the results for each test set showed a remarkable degree of similarity

between the models with and without VOneBlock. Thus, changing

the lower-level layer to a model closer to the visual cortex did not

affect the effects of blur training in terms of frequency and shape

recognition.

3.3.5. VGG16, ResNet50
Finally, we examine the performance of different network

architectures other than AlexNet. The networks studied here are

VGG16 (Simonyan and Zisserman, 2015) and ResNet50 (He et al.,

2016). In general, the results were similar to those obtained with

AlexNet, while the performance tended to be more tuned to trained

blur strength (Supplementary Figures S3, S4).

4. Analysis of the internal
representation of B+S Net

Thus far, we have analyzed the effect of training with blurred

images on the basis of recognition performance, and found that the

recognition performance of B+S-Net for low spatial frequency images

is similar to that of humans. We have focused on the behavioral

similarity/dissimilarity between humans and neural nets, leaving the

internal processing of the B+S Net as a black box. In this section,

we attempt to understand how B+S-Net acquires blur robustness

similar to humans by analyzing internal representation analysis. The

question is whether B+S-Net processes sharp and blurry images in a

way computationally similar to the human visual system.

In general, when a visual processing mechanism is able to

recognize both sharp and blurry images, we believe the way the image

signals are processed inside the system can be roughly categorized

into two cases.

• Case 1: Sharp and blurry images are processed by a common

general process. Representations for sharp and blurry images

are integrated into a common feature representation in the early

to middle stage of visual processing. The following information

processing is shared (Figure 4, top).

• Case 2: The sharp and blurred image features are processed

separately by stimulus-specific processes until the outputs of the

separate processes are integrated at the last stage to recognize the

object (Figure 4, bottom).

Although we know no direct empirical evidence, it is likely that

the structure of the human visual system for blurry image recognition

is closer to Case 1 than to Case 2. This is because computational

resource is more efficiently used in Case 1 than in Case 2. Considering

that the human visual system has to cope with a wide range of image

deformation other than image blur, having an efficient processing

structure with a common higher stage must be a reasonable choice.

On the other hand, CNNs with powerful learning abilities may create

a specialized sub-network, each processing blurred images and sharp
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FIGURE 3

VOneNet with blur training. (A) Low-pass filtered object image recognition. (B) band-pass filtered object image recognition, (C) jumbled/occluded image

recognition, and (D) shape-texture-cue-conflict image recognition. Although VOneNet has fixed V1-like first-stage mechanisms, the e�ects of blur

training are similar to those of AlexNet. Error bars represent 95% confidence intervals estimated from the performances of eight models trained with

di�erent random seeds.

images separately, to optimize performance. B+S-Net could be a

hybrid of B-Net and S-Net with little interactions between them.

When using CNNs as a computational tool to understand human-like

robust processing, we should check whether the processing strategy

CNNs use to achieve blur robustness is not dissimilar to that of

humans. If it were found to be dissimilar, we could learn little about

the internal processing of the human visual system from this research

strategy.

4.1. Receptive fields in the first layer

First, we visualized the receptive field of the first convolutional

layer (Supplementary Figure S5) as was done in previous studies

(Vogelsang et al., 2018; Jang and Tong, 2021). Some receptive

fields look similar to those found in the early visual cortex.

It appears that training method slightly alters the receptive

fields. B+S-Net shows a shift of the spatial frequency tuning to

the lower frequency compared to S-Net. In other words, B+S-

Net is more sensitive to low-frequency information in the first

layer.

Low-pass filtering is one way to make the internal representations

similar between sharp and blurry images. How much the change in

the spatial frequency tuning affects the representational similarity

for sharp and blurry images in the first layer will be quantitatively

evaluated in the next section.

When 1000-class-AlexNet is compared with 16-class-AlexNet,

features with higher spatial frequencies are extracted. This may be

because 1000-class-AlexNet needed to extract finer local features to

perform more fine-grained classification. This tuning difference may

explain why 1000-class-AlexNet shows weaker blur robustness than

16-class-AlexNet.
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FIGURE 4

Two hypotheses about intermediate feature representation of B+S net. Case 1 is more e�cient and presumably close to human processing.

4.2. Correlation of activity in the
intermediate layers

To analyze how the sharp and blurred image features are

processed in each layer of the CNNmodels, we computed the average

correlations of unit activities in each intermediate layer between

the sharp and blurred image inputs (S-B correlation). The more

representations and processing shared between clear and blurred

images, the higher will be the activity correlation within the layer.

Here, we calculated the S-B correlations in the following three cases:

(1) the sharp and blurry image pair is generated from the same image,

(2) different images from the same class, and (3) different images

from different classes. For each case, we computed correlations for

all possible sharp-blurry image pairs from 1,600 test images of the 16-

class ImageNet. Then, the correlations were averaged across image

pairs. The unit activities after the ReLU activation function were used

to compute the correlations. (1) is for evaluating the representational

similarity at the image level, while (2) and (3) are for evaluating

the representational similarity at the category level. By comparing

these three, we can infer both representational similarities and the

corresponding processing stages.

Figure 5 presents the S-B correlation in each layer of 16-class

S-AlexNet (left) and B+S-AlexNet (right).

In the initial layer (Conv1), while S-B correlations are close

to zero when different images of the same class (the broken

orange line) or different classes (the dotted green line) are

used, they are high when the sharp-blurry image pairs from

identical images are used (the solid blue line). When S-Net

and B+S-Net are compared, B-S correlations are slightly higher

for B+S-Net (0.84) than for S-Net (0.76). This agrees with

the change in spatial frequency characteristics of the receptive

filed we observed in the last section. If low-pass filtering in

the first layer were powerful enough to completely remove the

difference between sharp and blurry images, the correlation would

be one.

In the subsequent convolutional layers, S-B correlations remain

to be close to zero when different images of the same class or a

different class are used. In S-Net, S-B correlation for the same images

gradually drops as the layer goes. This suggests that these layers

reduce the representational similarity between sharp and blurry

images by extracting fine-scale image features only available in sharp

images. On the other hand, in B+S-Net, S-B correlation for the same

image remains high. This suggests that these layers extract robust

image features commonly available in sharp and blurry images,

supporting the idea that B+S-Net achieves blur-robust recognition

by forming a common internal processing structure consistent with

Case 1.

In the final full-connection layers, S-B correlations gradually

increase for the same image and for the same class, while increasing

and then dropping for the different class. The pattern of change

is similar for S-Net and B+S-Net, but the correlations for the

same image/class are higher for B+S-Net, in agreement with the

higher classification accuracy of B+S-Net for both sharp and blurry

images.

To see the generality of our finding, we also applied the same

analysis to 1000-class AlexNet (Supplementary Figure S6) and 16-

class VOneNet (Figure 6). In general, the patterns of B-S correlations

for both are similar to that we found for 16-class AlexNet, but

two issues are worth mentioning. First, S-B correlation in the first

convolutional layer is lower for 1000-class AlexNet than for 16-class

AlexNet (0.65 for S-Net and 0.69 for B+S-Net), in agreement with the

higher-frequency preference of the initial receptive fields for 1000-

class AlexNet (Supplementary Figure S5). Second, for VOneNet in

which the first layer is hard-coded as a Gabor filter bank, while S-

B correlation in the first convolutional layer is the same for S-Net

and B+S-Net, S-B correlation of B+S-Net elevates in the subsequent

layers. This indicates that B+S-Net forms the features common to

both sharp and blurred images from the multiband information

extracted in the first layer. The initial low-pass filtering is effective, but

not necessary for B+S-Net to achieve blur-robust object recognition.
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FIGURE 5

Representational similarity of sharp (unblurred) and blurred image inputs (S-B correlation) for S-Net (A) and B+S Net (B). Blue: Pearson correlation in unit

activity between sharp and blurred versions of the identical images. Orange: Correlation between sharp and blurred versions of di�erent images of the

same object class. Green: Correlation between sharp and blurred versions of di�erent images of di�erent object classes. The average correlation of the

units in the layer with the interquartile range (25%-75%) is shown. 16-Class AlexNet. The results are consistent with Case 1.

FIGURE 6

Representational similarity of sharp (unblurred) and blurred image inputs for S-Net (A) and B+S Net (B). VOneNet. The pattern of results is similar to

Figure 5.

4.3. Visualization of the internal
representations by t-SNE

To understand how the sharp and blurry images are represented

in the intermediate layers of the CNN models, we also attempted

to visualize them using the dimensionality reduction algorithm, t-

SNE (van der Maaten and Hinton, 2008). Specifically, we recorded

the activities of each layer obtained from sharp and blurry images

and compressed them into two dimensions for visualization. The two

input parameters of t-SNE, perplexity and iteration, were set to 30

and 1000, respectively. The results shown here are visualizations of

10 pairs of sharp and blurred images of the same image sampled for

each of the 16 classes.

The visualizations of the intermediate layer activities for the

sharp and blurred images are shown in Supplementary Figures S7,

S8. First, in early convolutional layers of S-Net, the representations

of the sharp and blurry images overlap, and those of the same

class are scattered. As the layer goes deeper, the representations

of the sharp and blurry are separated, and only sharp images of

the same class are clustered. Blurry images remain scattered and

separated from sharp images in the final output. Next, in early

convolutional layers of B+S-Net, the representations of the sharp and

blurry images overlap, and those of the same class are scattered, as

in S-Net. As the layer goes deeper, however, representations of the

sharp and blurry images do not separate, and both sharp and blurry

images of the same class are clustered. These results agree with the
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trends indicated by the representational similarity analysis in the last

section, providing further support of the idea that B+S-Net achieves

blur-robust recognition by forming a common internal processing

structure consistent with Case 1.

4.4. Generalization test using zero-shot
transfer learning

The results of the S-B correlation analysis in sections 4.2 and 4.3

suggested that the representations are shared between the sharp and

blurry versions of the same images in the intermediate layers of B+S-

Net. This suggests that the intermediate layers of B+S-Net may have

the ability to extract robust image features effective in recognizing

both sharp and blurry images. One way to test this idea is to see

whether the B+S training extends its effect beyond the image classes

used in training, since general robust features should be useful in

general.

Using zero-shot learning, we examined the generalizability of the

shared representation acquired by blur training to the unseen classes.

We trained a subset of object classes, either one or eight in 16 classes,

without using blurry images while training the remaining classes

using both blurry (σ = 4) and sharp images, and later evaluated the

classification accuracy for that subset of classes using blurry images.

Conversely, we also trained a subset of classes without using sharp

images while training the other classes using both blurry and sharp

images, and later evaluated the classification accuracy using sharp

images. Therefore, there were in total four conditions, i.e., training

without blurry or sharp images for one or eight classes (w/o 1/16B,

w/o 8/16B, w/o 1/16S, w/o 8/16S). We used the 16-class AlexNet for

this test.

The recognition accuracy for the unseen image types (either

blurry or sharp) in the four test conditions is shown in Table 2.

When either blurry or sharp images were excluded for half of the

training classes, the models were not able to recognize these classes

of images with the unseen image type. On the other hand, when

either blurry or sharp images were excluded for one training class,

the accuracy for the unseen class is about three times the chance level

( 1
16 = 0.0625). Therefore, although the effect of the generalization

of the sharp and blurry features to unseen categories was limited in

terms of the zero-shot transfer performance, some amount of transfer

was clearly observed at least when there was only one excluded class.

To further analyze the internal representations of the models

trained in the transfer experiment, we examined the S-B correlations

in the intermediate layers of each model. When either blurry or sharp

images were excluded for half of the training classes (Figures 7B,

D), the S-B correlation from identical images is significantly reduced

in the middle to high layers for the unseen category (orange line),

compared to that for the seen category (blue line). On the other

hand, when either blurry or sharp images were excluded for one

of the training classes (Figures 7A, C), the S-B correlation from

identical images for the unseen category (orange line) remains almost

as high, albeit slightly lower than that for the seen category (blue

line). Therefore, although the shared representation for the blurry

and sharp images did not seem to generalize well to the unseen

class in terms of the performance level, the similarity of the internal

representations appeared to be high between the seen and unseen

classes for the model with one excluded class. The reason for this

apparent discrepancy is presumably because the misclassification to

a class with a similar representation was induced by the imperfect

alignment of blur-sharp representations. In fact, a confusion matrix

(Supplementary Figure S9) indicates that the misclassifications in the

model with one excluded class were mostly from “No.15: truck" class

to “No:6 car" class.

Overall, the zero-shot transfer analysis suggested that the shared

representation acquired by blur training can be reused, at least

partially, to recognize an object class with an unseen image type

(either blurry or sharp) during training. This further supported the

view that common representations that are invariant to blurry and

sharp image inputs are formed in the early and middle stages of

visual processing by blur training (Case 1 in Figure 4). In a similar

way, humans might efficiently acquire blur robust representations to

general object categories just by being exposed to blurry images of a

limited number of objects.

4.5. Internal representations for high-pass
and low-pass images

We have analyzed the internal representation of B+S-Net for

sharp and blurry images, and found B+S-Net has an efficient human-

like processing mechanism at least for these images. However,

we have also shown in section 3 that B+S-Net does not behave

similarly to humans in object recognition for other modified images

including high-pass filtered images. To further evaluate B+S-Net as

a computational model of the human visual system, we analyzed its

internal representation for high-pass and low-pass (blurry) images. A

recent human fMRI study (Vaziri-Pashkam et al., 2019) suggests that

the representations for high-pass and low-pass images of the same

object category are segregated in V1, while integrated and clustered

in the higher visual areas.

To investigate how the high- and low-frequency information

is represented in S-Net and B+S-Net, we visualized the activity in

the intermediate layers for 10 pairs of high-pass (H, σ1 − σ2) and

low-pass (L, σ = 4) versions of the same image using the t-SNE

(van der Maaten and Hinton, 2008) (perplexity = 30, iteration =

1,000). The visualization results (Supplementary Figures S10, S11)

show that the representations of high-pass and low-pass images are

less segregated in B+S-Net than in S-Net. We cannot find class-based

clustering of high-pass and low-pass images in higher layers of either

S-Net or B+S-Net, in agreement with our finding in section 3 that

neither S-Net nor B+S-Net can recognize objects in high-pass images,

but in disagreement with the representation in human visual cortex

(Vaziri-Pashkam et al., 2019).

To further examine the representations for high-pass and low-

pass images, we computed the average activity correlation (H-L

correlation) of the middle layers of S-Net and B+S-Net between

the high- and low-frequency images (Figure 8). In the convolutional

layers, the H-L correlation was low even for the same image.

Slightly higher correlations for B+S-Net than for S-Net suggest that

early layers of B+S-Net have more broadband tuning. In the fully

connected layers, the H-L correlation gradually increased. Although

this is in line with class-based clustering of high-pass and low-pass

images, the increasing trend was weak, and was not enhanced by blur

training. The average same-class correlation did not exceed 0.3 for

the final output of B+S-Net. In sum, there are significant differences
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TABLE 2 The results of zero-short learning test.

Training method Unseen labels Seen labels

Training without B images for one class (w/o 1/16B) 0.19 0.78

Training without B images for half of the classes (w/o 8/16B) 0.05 0.87

Training without S images for one class (w/o 1/16S) 0.15 0.81

Training without S images for half of the classes (w/o 8/16S) 0.03 0.90

Classification accuracy for B+S-Net trained without using blurred or sharp images for specific object classes. Chance level accuracy = 0.0625(= 1
16 ).

FIGURE 7

Representational similarity analysis for zero-shot learning test when (A) one blurred-image label, (B) eight blurred-image labels, (C) one sharp-image

label, or (D) eight sharp-image labels is/are excluded from the training set. Test set was blurred images for (A, B), and sharp images for (C, D). The results

suggest the shared representation acquired by blur training can be reused, at least partially, to recognize an unseen object class.

in the internal representations for high-pass and low-pass images

between B+S-Net and the human cortex, and there is no evidence

that blur training facilitates high-level frequency integration.

To see the effect of initial layer on the representation of high-

pass and low-pass images, we also analyzed the H-L correlation of

VOneNet, which has fixed multi-scale Gabor filters in the first layer.

The H-L correlation for the same images in the convolutional layers is

low, and, again, there is no evidence of strong integration of low- and

high-frequency information in higher layers, unlike representation in

the human visual cortex (Vaziri-Pashkam et al., 2019).

5. General discussion

In this study, we investigated the effect of experiencing blurred

images on forming a robust visual system to the environment as

one of the factors for constructing an image-computable model of

the human visual system. To this end, we compared the recognition

performance of CNN models trained with a mixture of blurred

images using several different strategies (blur training). The results

show that B+S-Net trained with a mixture of sharp and blurred

images is the most tolerant of a range of blur and the most
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FIGURE 8

Representational similarity of low-pass and high-pass image inputs for S-Net (A, C) and B+S Net (B, D). 16-Class AlexNet (A, B) and VOneNet (C, D). There

is no evidence that blur training facilitates high-level frequency integration as found in human visual cortex.

human-like. In addition, training in the order from blurred to sharp

images was not very beneficial. Other evaluations of the model’s

performance with test stimuli showed that blur training did not

improve the recognition of global spatial shape information, or only

slightly. The analysis of the internal representation suggests that B+S-

Net extracts common features between sharp and blurred images.

However, it does not show integration of multi-scale (high and

low frequency) frequency information, unlike in the human visual

cortex.

In section 3, we compared the effect of training with blurred

images on the CNN models in terms of object recognition

performance. In all the CNN models we tested, the recognition

performance of low spatial frequency features was improved by blur

training. In particular, the model trained simultaneously on blurred

and sharp images (i.e., B+S-Net) showed blur robustness across a

wide range of image blur close to that of humans.

On the other hand, the blur robustness of B2S-Net was weaker

than that of B+S-Net. The models showed better performance when

trained on blurred and sharp images simultaneously, rather than on

a schedule that simulated human visual development. This result

apparently disagrees with the study of Vogelsang et al. (2018), which

showed that training in the order of low resolution to high resolution

improved blur robustness of a CNN model in face recognition. This

difference can be attributed to the difference in the task adopted in

our study and Vogelsang et al.’s (i.e., general object classification vs

face classification) (Jang and Tong, 2021). A recent study using object

recognition (Avberšek et al., 2021) reports that the effect of training

schedule is consistent with ours. The task difference may be related to

the fact that the optimal discriminative features for object recognition

are biased toward high frequencies while only low-frequency features

are sufficient for good face classification accuracy (Jang and Tong,

2021).

The failure of B2S-Net to recognize blurry images indicates that

simply simulating the development of visual acuity during training

cannot account for the blur robustness of human vision in general

object recognition. However, even after the completion of visual

development, we still experience blurred retinal images on a daily

basis due to defocus as well as motion blur, and scattering caused

by climatic conditions such as rain and fog and by the transmission

of translucent objects. In this sense, B+S Net, trained simultaneously
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with both blurry and sharp images, can be regarded as reproducing

biologically plausible situations to some extent. In addition, the

CNNs we tested do not include a mechanism that prevents the

forgetting of previously learned representations. B2S-Net may have

forgotten the processing for low-frequency components because it

was trained only on sharp images in the last 20 epochs. Therefore,

B2S-Net may be able to recognize blurred images as well as B+S-

Net by adding a mechanism that prevents the model from forgetting

the representations tuned for blurred images learned in the early

phase of training. Machine learning literature has suggested a few

methods to prevent so-called catastrophic forgetting in continual

learning (de Melo et al., 2022). One is to protect the weights relevant

to the stimuli learned in the early phases of training (Kirkpatrick

et al., 2017). This is reminiscent of the critical period of biological

neural networks, which strengthens the impact of early childhood

experiences on development of the human visual system. Another

method is to use the memory of relevant prior information to

retrain the network with new information (Aljundi et al., 2019). This

mechanism will make the effect of B2S training similar to that of

B+S training. With such an additional mechanism against forgetting,

B2S-Net may be able to show performance comparable to B+S-Net.

Our results also show that B+SNet has acquired human-level blur

robustness but has not acquired human-like global visual processing.

The performance test using band-pass filtered images showed that

all CNN models, including B+S Net, were not good at utilizing

band-limited features while humans retained good accuracy in the

mid to high-frequency range. Although the shape bias of the blur-

trained models was slightly enhanced, it was not enough to reach

the human level. The test using the images with local occlusions

revealed that all the models relied primarily on local features, did

not utilize the global configuration, and were critically vulnerable

to local occlusions. All these results are in stark contrast to human

visual processing, which is known to rely more on global configural

relationships and shape information and is less sensitive to partial

occlusions in object recognition tasks. Therefore, our results indicate

that the information processing learned in B+S-Net is still markedly

different from that of the human visual system (Geirhos et al., 2021;

Baker and Elder, 2022).

Our results reveal that what the networks cannot acquire from

blur training is human-recognizable global configuration features

present not only in sharp and blurry images but also in high-pass

images and texture-shape cue conflict images. Note that the similarity

of these classes of images is supported by a finding that the SIN-

trained Net shows good recognition for high-pass images as well.

In high-pass images, local edge features defined by high-frequency

luminance modulations produce global configurations at a scale

much larger than a fine-scale edge detector. For detection of these

global features, second-order processing such as those modeled by

an FRF (filter-rectify-filter) model for human vision [e.g., Graham

and Landy (2004)] may be necessary. It seems that object recognition

training with sharp and blurred images alone does not provide neural

networks with the ability to process second-order features.

According to the comparison of the model architectures,

there was no qualitative difference in the effect of blur training.

Importantly, we found that VOneNet, which hard-coded the

computational processes in the primary visual area (V1) in the front

end of AlexNet, did not show improvement in any of the tasks tested

in this study. This indicates the limited impact of the initial layer

on the frequency tuning at the task performance level and on the

mid to high-level information processing related to the shape bias

and the configural effect. On the other hand, we also found a few

notable differences in the frequency tuning patterns between the

architectures. For example, the loss of blur robustness observed in

B2S-Net was more prominent in 1000-class AlexNet as well as in 16-

class VGG16 and 16-class ResNet50 than in 16-class AlexNet. B+S-

Net and B-Net in these architectures were also more narrowly tuned

to the blur strength used during training. For the 1000-class AlexNet,

the reason for this may be attributed to the fact that the models

were exposed to a higher number of images (and thus went through

a higher number of weight updates) when using the 1000-class

dataset than the 16-class dataset. For the 16-class VGG16 and 16-

class ResNet50, differences in model architecture such as increased

depth, reduced kernel size, and residual connections (in the case of

ResNet) may have resulted in improved learning efficiency, thereby

making them more likely to specialize in features that are optimal

for the current blur strength. In addition, we also found that VGG16

demonstrated higher accuracy for the band-pass filtered images with

high spatial frequency than the other architectures, though we have

not yet been able to ascertain why.

In section 4, we analyzed how B+S-Net, which performed

similarly to humans in a low spatial frequency image classification

task, processed sharp and blurred images. The activity correlation

between sharp and blurred images increased in B+S-Net. The results

suggest that B+S-Net extracts more common features from sharp and

blurred images than S-Net.

The results of zero-shot transfer learning support this view.While

the generalization accuracy is not very high, the confusionmatrix and

the internal activity correlation suggest that B+S training produces

a certain degree of common representation between blur and sharp

features, which can be used even for unlearned categories.

These results suggest that B+S-Net recognizes sharp or blurred

images using common representations, rather than using separate

representations. The results also suggest that it is not only linear

low-pass filtering in the first layer, but also a series of non-linear

processing in the subsequent layers, that produces the common

representations. In this respect, we may be able to get useful

computational insights into human processing from the analysis of

B+S-Net.

Whereas we found B+S training facilitates the development

of common processing for sharp (broadband) and blurred (low-

pass) images, we found little evidence for B+S training facilitating

the development of common processing for low-pass and high-

pass images, nor integration of sub-band information. These results

suggest that the frequency processing by B+S-Net is critically

different from that by the human visual cortex. How can we

make the frequency processing more closely resemble that of

the human visual system? Several machine learning techniques

including data augmentation and contrastive learning may be used

to force the network to integrate sub-band information. Note,

however, that as a tool to understand human visual computation,

it is important that the model training is natural and plausible

for the development of the human visual system, like blur

training.

In conclusion, training with blurred images provides

performance and internal representation comparable to that of

humans in recognizing low spatial frequency images. It does narrow,
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but only slightly, the gap with the human visual system in terms

of global shape information processing and multi-scale frequency

information integration.
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