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The random moderation model (RMM) was developed based on a two-level 
regression model to cope with heteroscedasticity in moderation analysis, and 
normal-distributed-based maximum likelihood (NML) estimation was developed 
to estimate the RMM. To present an alternative to the NML, this article discusses 
the effectiveness of Bayesian estimation for the RMM, aiming to explore a more 
practical method using the popular software Mplus. Through a simulation study, the 
RMM based on Bayesian estimation was investigated and compared to maximum 
likelihood (ML) estimations, including the NML and the default ML estimation in 
Mplus. The results indicated that the Bayesian approach outperformed the two ML 
estimations. It showed (a) higher accuracy for estimation of the effect size of the 
moderation effect; (b) higher 95% credibility interval coverage of the true value of 
the moderation effect; and (c) well-controlled and more stable type I error rates, 
while powers comparable to the ML estimations were provided.
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Introduction

A moderator is defined as a variable Z that affects the direction or strength of the relationship 
between independent variable X and dependent variable Y (e.g., MacKinnon, 2008; Hayes, 
2013). The moderation effect is traditionally evaluated by including product term XZ in the 
regression model of Y on X, which is called the moderated multiple regression model (MMRM) 
(e.g., Aiken and West, 1991). According to the estimate results of the MMRM, if the regression 
coefficient of XZ is statistically significant in terms of the p-value of the F- or t-tests, the 
moderation effect is approved (e.g., Laird and Ware, 1982; Demidenko, 2004). This statistical 
significance test relies on the assumption of homoscedasticity across different values of Z or X 
(Aguinis et al., 1999; Maronna et al., 2006). A violation of this assumption possibly results in an 
inflated type I error rate, as well as an inflated type II error rate, which could further exacerbate 
the low power of the moderation test (Alexander and DeShon, 1994; Aguinis and Pierce, 1998). 
However, it is difficult for this assumption to be true in practice because it is vulnerable to being 
affected by longer-than-normal tails, outliers, or unidentical populations (Aguinis et al., 1999; 
Yuan et  al., 2014). It is necessary to treat such samples as stemming from heterogeneous 
populations (Marcoulides and Trichera, 2019).
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As an extension of the MMRM, Yuan et al. (2014) argued for a 
two-level regression model to conduct the moderation analysis, 
denoted as random moderation model (RMM) in this article. 
Depending on the two-level structure, the RMM can cope with the 
problem of heterogeneous residuals and answer the question of how 
much moderator variable Z explains the effect of X on Y. The RMM 
can be  estimated using the normal-distribution-based maximum 
likelihood (NML), which can be conducted using a private R package, 
NML.R, developed by Yuan et  al. (2014).1 The NML should have 
properties similar to the maximum likelihood (ML) because both of 
them approximate estimations based on integral calculations of the 
likelihood function (Le Cam, 1990; Millar, 2011). However, utilization 
of ML in the two-level context has been indicated to be more difficult 
because the dimensions of numerical integration can increase rapidly 
(Marsh et  al., 2004; Asparouhov and Muthén, 2021). Therefore, 
further research is needed to discuss the efficiency of the NML in the 
application of the RMM in more detail.

The moderation effect in the RMM using the NML estimation is 
approved through a significance test for the fixed slope in the level-two 
model, which corresponds to the coefficient of XZ in the MMRM. As 
methodologists make a growing number of warnings about 
overreliance on the p-value (Bakan, 1966; American Statistical 
Association, 2016), alternative methods have become increasingly 
popular to avoid making inferences directly according to the 
significance test based on the null hypothesis. On one hand, various 
effect sizes, such as R-square, have been investigated to quantitatively 
report and interpret inferential results (Kelley and Preacher, 2012; 
Cumming, 2014) instead of simply categorizing the statistical results 
as Yes or No (e.g., Yuan and MacKinnon, 2009; Lee, 2016). On the 
other hand, Bayesian estimation provides a competitive alternative to 
traditional ML estimation because it can provide a more 
comprehensive interpretation of the results in terms of not only the 
statistical significance but also the probability that a given parameter 
is above a cut-off value or within a given interval (e.g., Yuan and 
MacKinnon, 2009; Lee, 2016). For example, the moderation effect in 
the Bayesian approach can be approved when the 95% credibility 
interval of the coefficient of XZ does not contain zero, which indicates 
that there is a 95% probability that the true value of the regression 
coefficient lies within the interval limits without zero. In addition, the 
Bayesian approach has the advantage of being flexible and feasible for 
use with various complex models, rendering it easily generalized in 
application. By contrast, NML estimation is less friendly to empirical 
researchers, as the private package NML.R is not officially certificated 
and, thus, a tutorial manual is not available. Further, application of 
NML estimation based on NML.R is limited because the given 
estimation process in the source code, such as the convergence 
criterion, is difficult to modify for different situations. Therefore, the 
present article aims to explore a more practical method for estimation 
of the RMM that can be  implemented in much more common 
software—Mplus (Muthén and Muthén, 1998–2012). In this study, 
utilization of Bayesian estimation in RMM is investigated and 
compared to NML estimation using NML.R package (denoted as 
NML.R). In addition, given that NML.R is implemented through the 

1 The R package of NML.R can be downloaded at http://www3.nd.edu/~kyuan/

moderation/NML.R

private R package, to ensure the accuracy of the study results, 
we additionally used the default ML estimation with robust standard 
errors via Mplus (denoted as MLR.M).2 The NML.R is the ML 
estimation based on the normal distribution with conventional 
standard errors, which assumes the data are normal distributed (Yuan 
et  al., 2014). By contrast, the MLR.M is the ML estimation with 
standard errors and a chi-square test statistic that are robust to 
non-normality and non-independence of observation. For normally 
distributed data, these two estimations would have the same 
estimation results theoretically.

MMRM and RMM

The typical MMRM of the regression of Y on X with moderator 
variable Z can be written as

 y x z x z ei i i i i i= + + + +β β β β0 1 2 3 , (1)

where the product term XZ is also called the interaction term, and 
the moderation effect is quantified as the coefficient β3. β1 and β2 
describe the magnitude of the main effects of X and Z on Y, 
respectively. The error term ei  is assumed to be normally distributed 
with homogenous variance. Based on the MMRM, Yuan et al. (2014) 
allowed these regression coefficients to vary across individuals, where 
the variation can be partly explained by the moderator variable. The 
RMM corresponding to model (1) can be  written as a two-level 
regression model,

 Level1 0 1: ,y x ei i i i iy= + +β β  (2a)

 Level 2 0 00 01 0: ,β γ γ εi i iz= + +  (2b)

  β γ γ εi i iz1 10 11 1= + + , (2c)

where βi0 and βi1 vary as individuals. γ00, γ01, γ10, and γ11 are 
constant coefficients in the level-two model. eiy , εi0, and εi1 are 
assumed to be  normally distributed as N(0, δeiy

2 ), N(0, δε i 0

2 ), and 
N(0, δε i1

2 ), respectively, and eiy is independent of (εi0, εi1). Essentially, 
the RMM can be viewed as a special case of the multilevel model 
(Snijders and Bosker, 2011). According to Yuan et al. (2014), the RMM 
can be estimated using NML estimation, which is based on the normal 
distribution assumption.

To compare the RMM with the MMRM, replace βi0 and βi1 in 
Eq. 2a with Eqs 2b, 2c; then, the RMM can be written as

2 Noting that, in Mplus, there are three types of ML estimations for 

TYPE = TWOLEVEL RANDOM option, including ML, MLR, and MLF (maximum 

likelihood parameter estimates with standard errors approximated by first-order 

derivatives and a conventional chi-square test statistic). The MLR was used by 

default and denoted as the MLR.M in this study. In this study, consistent results 

were found for the MLR and the other two ML estimations (i.e., ML and MLF), 

because the simulated data were normally distributed and fully compliant with 

the model assumptions.
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 y x z x z e xi i i i i iy i i i= + + + + + +γ γ γ γ ε ε00 10 01 11 0 1, (3)

The residuals, consisting of e xiy i i i+ +ε ε0 1, vary across different 
groups or individuals characterized by X. It should be noted that Eq. 1 
is a special case of Eq. 3 when δε i1

2  equals zero. The coefficients γ00, γ10,  
γ01, and γ11 in Eq. 3 are equivalent to β0, β1, β2, and β3, respectively, 
in Eq. 1.

The RMM can answer the question of how much Z moderates the 
effect of X on Y. It can be assessed by effect size R-square, which is 
calculated as the percentage of the variation of random coefficient βi1 
explained by Z,

 
R Z

Z
i

2 11
2 2

11
2 2 2

1

=
+

γ σ

γ σ δε
,

 
(4)

where σZ
2  is the variance of the observed variable Z. In contrast to 

the RMM, the MMRM considers that the between-person variation 
of βi1 can be  completely explained by the moderator variable Z, 
ignoring the possible random errors of the moderation effect that can 
cause heteroscedasticity. Therefore, the value of R-square defined in 
Eq. 4 would always be equal to 1 in the MMRM. This ignores violation 
of the assumption of homoscedasticity and normality and may reduce 
the accuracy of hypothesis testing in moderation effect estimation 
(Alexander and DeShon, 1994; Aguinis and Pierce, 1998).

The homoscedasticity assumption of the MMRM implies that the 
individuals are sampled from one population; hence, the random 
error is normally distributed with a constant variance. However, a 
review of the literature by Aguinis et al. (1999) found that around 50% 
of studies using MMRM violated this assumption. By contrast, in 
RMM, the variance of the random error can be varied across different 
individual observations; the error term, e xiy i i i+ +ε ε0 1, describes the 
heterogeneous residuals, which vary across different individuals 
characterized by X. The variance of random error is 
var cove x x xiy i i i e i i i i

iy i i
+ +( ) = + + ( ) +ε ε δ δ ε ε δε ε0 1

2 2
0 1

2 2

0 1

2 , ; hence, 
the heteroscedasticity increased non-linearly with X.

Bayesian parameter estimation

In Bayesian estimation, we combine beliefs about the parameters 
with evidence from an observed set of data to draw conclusions about 
unknown model parameters. A Bayesian model consists of two 
components: a prior distribution that specifies assumptions about the 
unknown parameters independent of the data, and a statistical model 
that defines the distribution of data—often a likelihood function. The 
Bayesian approach seeks the posterior distribution of the model 
parameter, which encompasses the complete topography of peaks, 
valleys, and plateaus, as opposed to the frequentist approach, which 
seeks a point estimate of each model parameter. The likelihood of the 
data given the parameters and the prior distribution of the parameters 
are multiplied to obtain the posterior distribution of parameters given 
the data. The posterior mean (or median, or mode) serves as a 
summary of central tendency, whereas the posterior standard 
deviation serves as a description of variability when describing the 
posterior distribution. Complex posterior distributions, however, may 
be  exceedingly difficult to manage in practical computing. The 
posterior distribution of Bayesian models’ means and standard 

deviations may be estimated via MCMC simulations. A large sample 
of representative random values from a posterior distribution should 
be used in order to evaluate its attributes. A simulation known as a 
Monte Carlo process samples a large number of random variables 
from an interesting posterior distribution. For further information on 
the Bayesian MCMC approach, readers might see Kruschke (2015) 
and Levy and Mislevy (2016).

Bayesian estimation has been gaining in popularity (Kruschke, 
2015; Van de Schoot et al., 2017), as it provides a flexible tool to fit 
various complex models, such as heterogeneous or nonnormal 
models (Rast et  al., 2012; Oravecz and Muth, 2018), which are 
difficult or inefficient to estimate using regular ML estimation (e.g., 
Wang and McArdle, 2008; Chow et al., 2011; Song et al., 2011; 
Muthen and Asparouhov, 2012). For example, Zhang et al. (2013) 
derived robust growth curve models using Student’s t distribution 
and used the Bayesian approach to estimate the model. Rast et al. 
(2012) applied the Bayesian approach to the estimation of a mixed-
effects location scale model (Hedeker et al., 2008, 2009), which 
allowed explanations of both between-person and within-person 
variations in a growth trajectory using explanatory variables in 
longitudinal analysis (e.g., Hoffman, 2007). Wang and Preacher 
(2015) indicated that their Bayesian approach yielded unbiased 
estimates and higher or comparable power to the ML estimation in 
moderated mediation analysis (e.g., Hayes, 2013; Hayes and 
Preacher, 2013).

More recently, the Bayesian approach was directly applied in the 
estimation of a two-level moderated mediation model (Liu et  al., 
2022), which was further developed based on the RMM to cope with 
situations where the strength of an indirect (mediation) effect depends 
on the moderator variable (e.g., Preacher et al., 2007). Liu et al. (2022) 
focused on the moderated mediation effect, while this study focuses 
on the moderation effect. In addition, the estimation of the Bayesian 
approach remains to be investigated because evidence is rare for the 
performance of Bayesian estimation in two-level models with an 
actual non-clustered data structure. In this study, Bayesian estimation 
for the RMM was explored to discuss the efficiency of different 
estimation methods. The Bayesian estimation was implemented using 
Mplus software under default settings in order to increase the 
practicality and operability of this approach. The code used for the 
estimation in Mplus is given in the appendix of this article for 
reference to interested empirical researchers.

Stimulation study

Data generation

A simulation study was conducted to explore the performance of 
the RMM based on Bayesian estimation via Mplus. Referring to 
previous simulations in relevant fields, four factors were manipulated 
at several representative levels interactively (e.g., Wang and Preacher, 
2015; Liu et al., 2022), including (a) sample size, N = 100 and 500; (b) 
magnitude of the error variance, δε i1

2 = 0, 0.50, and 1; (c) magnitude of 
the regression coefficients, γ  = 0.29 and 0.59; and (d) correlation 
coefficient between X and Z, ρ  = 0 and 0.50.

The observed independent variable X and moderator variable Z 
were generated from the bivariate normal distribution N(∝, Σ ) with 
zero means and unit variances, and the correlation coefficients 
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between the two variables are set as ρ . The error term was simulated 
as the combination of three separate residual errors e xiy i i i+ +ε ε0 1 
that were uncorrelated with each other and with X and Z. The eiy and 
εi0 were extracted from standard normal distribution N(0,1), and εi1 
was generated from normal distributions with consistent zero means 
and different values of variance δε i1

2 . The regression coefficients γ00, 
γ10, γ01, and γ11 were all fixed equal and set as γ , discussing the power 
for evaluation of the moderation effect. Then, based on the above 24 

2 3 2 2
1

2N
i

( )× ( )× ( )× ( )( )δ ρ γε  conditions, another 24 simulations 
that set γ11  as zero were correspondingly investigated, where the type 
I error rate of the moderation effect estimation was discussed. The 
dependent variable Y was generated according to Eq. 3. Finally, a total 
of 48 conditions were conducted, with 500 replications under each of 
these conditions.

Reparametrization of RMM

To estimate the RMM in Mplus with the essentially single-
level data, a cluster variable has been added to the data set. This 
variable consisted of a sequence of numbers without repeated 
values, indicating that each group had only one individual, which 
was used to “trick” the software into thinking that the data have 
two levels (Liu et  al., 2022). Considering that both eiy iand ε 0  
represent homogenous residuals according to Eq.  3, the 
estimation of the combined error variance (denoted as δε iy

2 ) is 
expected to perform better than the estimates of the two (δeiy

2  and 
δε i 0

2 ) separately (Yuan et al., 2014). Therefore, in Mplus, the RMM 
can be reparametrized as

 Level1 00 01 11: ,y s x z x zi i i i i i iy= + + + +γ γ γ ε  (5a)

 Level 2 10 1: ,si i= +γ ε  (5b)

where ε εiy iy ie= + 0 . And the corresponding path diagram is 
given in Figure 1. If estimating the RMM according to Eqs 2a–2c 
directly, an extra error term needs to be estimated under a redundant 
restriction that eiy  and εi0 are independent. This should reduce the 
estimation accuracy compared to Eqs 5a, 5b.

Analysis

In Mplus, default (noninformative) prior and convergence 
criterion were applied in the Bayesian estimation, which was denoted 
as Bs.M. The default priors were widely applicable to various models 
and data sets (Congdon, 2001). The default Gelman–Rubin 
convergence criterion determined convergence by assessing within- 
and between-chain variability for each parameter based on the 
potential scale reduction (PSR) factor (Gelman et  al., 2003), and 
convergence was considered achieved if the PSR statistic was less than 
1.05 (Brooks and Gelman, 1998).

For the Bs.M, three Markov chains were drawn for each 
estimation, and the replication would stop for each chain when the 
convergence criterion was reached or the given maximum of 10,000 
replications was produced. The code used to specify the Bs.M was 
shown in Appendix A. In addition, the ML estimation was discussed 
for a comparative perspective, including the NML.R and the 
MLR.M. The code used to conduct the MLR.M was shown in 
Appendix B. For additional details of the implementation of NML.R 
package, please see Yuan et al. (2014).

We explored estimation of the above three methods for estimation 
of the moderation effect, in terms of the accuracy of regression 
coefficients and effect size R-square. The estimation accuracy was 
evaluated through average of |bias| and mean square error (MSE). Let  
α and α  denote the true and estimated values, respectively, of a 
parameter; then, the average of |bias| and MSE could be calculated by.

 
Average of bias   =

−
=∑r r r1

500

500

α α

,

 
(6)

 
MSE =

−( )=∑r r r1

500 2

500

α α

.

 
(7)

The coverage, the power of test, and type I error were further 
computed based on the 95% credibility interval for the Bs.M and the 
95% confidence interval for two ML estimations (for simplicity, the 
95% credibility interval and 95% confidence interval are both denoted 
as 95% CI). Specifically, the coverage was calculated as the proportion 
of the 95% CI of γ11  contained the true value of γ11 in 500 replications; 
The power of test was calculated as the proportion of 95% CI of γ11  
did not contained zero in 500 replications when γ11 0≠ ; The type 
I error was calculated as the proportion of 95% CI of γ11  did not 
contained zero in 500 replications when γ11 0= .

Results

Estimation accuracy of coefficients

For the estimation of γ00 , γ01 , and γ10 , the three methods, 
Bs.M, MLR.M, and NML.R, had similar performance and very small 
MSEs that approached zero in most conditions (ranging from 0.000 
to 0.003 when N = 500 and from 0.000 to 0.016 when N = 100). Tables 1 
and 2 showed the accuracy of γ



11 under the conditions that γ11 ≠ 0 
and γ11 = 0, respectively. In addition, the accuracy of error variances 

FIGURE 1

The path diagram of the RMM estimated in the simulation study.
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were given in Appendix C for interested researchers (see Tables 
I–IV).

Results indicated that the accuracy of the estimations of the 
coefficients was hardly influenced by the magnitude of their true 
values, as the MSEs under the condition γ  = 0.29 were similar to those 
under the condition γ  = 0.59, whether the true value of γ11 was the 
same as the other coefficients (see Table 1) or was zero (see Table 2). 
The three methods performed better and more similarly to each other 
under a larger than a small sample size. As the true value of δε i1

2  
increased, the three methods showed decreases in accuracy. The 
influence from different true values of the correlation coefficient 
between X and Z was very small and could be ignored. In sum, the 
Bs.M, MLR.M, and NML.R showed little difference for the estimation 
of coefficient parameters according to MSEs, especially when the 
sample size was large.

However, the NML.R was prone to nonconvergent results. As 
NML.R package reported, the convergence rates of the NML.R under 
conditions with a small sample size (ranging from 57.2 to 97.6%) were 
lower than those under conditions with a large sample size (ranging 
from 90.6 to 100%). While the Bs.M had a few nonconvergent results 
only under the condition N = 100, the convergence rates of the Bs.M 
(ranging from 97.6 to 99.4% when N = 100) were much higher than 

those of the NML.R. Therefore, the present and subsequent results of 
the NML.R and Bs.M were calculated based on the convergent 
samples under the conditions with nonconvergent data sets. What’s 
more, it was found that the NML.R might provide a negative value for 
the estimation of δ ε i1

2
 in most cases (more than 60% in all conditons) 

over 500 replications. Those cases with a negative δ ε i1

2  have also been 
removed from the summarized table of the NML.R. The MLR.M 
could achieve convergence under all the conditions.

Coverage, power of test, and type І error of 
the moderation effect

The powers and type І error rates in all the conditions were 
presented in Table 3. According to the power, the three methods 
performed much better when the sample size and true value of γ  
were larger (N = 500, γ  = 0.59) than in the other conditions. The 
MLR.M and NML.R had very similar results in power, while the 
Bs.M showed slightly lower values under almost all the conditions 
and had no advantage over the MLR.M or NML.R. Nevertheless, 
the three methods showed little difference in terms of the criterion 
that good power should be  larger than 0.80, except for 2 of 24 

TABLE 1 Averages of |bias| and MSEs of γ11  under conditions that discuss the power (γ11 ≠ 0).

δε i1

2 Cor
Averages of |bias| MSEs

Bs.M MLR.M NML.R Bs.M MLR.M NML.R

γ  = 0.29

(N = 500)

1 0 0.063 0.062 0.063 0.006 0.006 0.006

1 0.50 0.062 0.062 0.062 0.006 0.006 0.006

0.50 0 0.059 0.059 0.059 0.005 0.005 0.006

0.50 0.50 0.058 0.058 0.058 0.005 0.005 0.005

0 0 0.052 0.052 0.057 0.004 0.004 0.005

0 0.50 0.046 0.046 0.046 0.003 0.003 0.003

γ  = 0.29

(N = 100)

1 0 0.155 0.150 0.154 0.037 0.035 0.037

1 0.50 0.138 0.137 0.137 0.030 0.030 0.030

0.50 0 0.139 0.135 0.137 0.029 0.029 0.030

0.50 0.50 0.128 0.128 0.132 0.026 0.026 0.028

0 0 0.119 0.116 0.113 0.022 0.022 0.022

0 0.50 0.109 0.104 0.110 0.019 0.017 0.019

γ  = 0.59

(N = 500)

1 0 0.065 0.064 0.064 0.007 0.006 0.006

1 0.50 0.063 0.062 0.062 0.006 0.006 0.006

0.50 0 0.061 0.060 0.060 0.006 0.006 0.006

0.50 0.50 0.054 0.054 0.054 0.005 0.005 0.005

0 0 0.053 0.053 0.050 0.004 0.004 0.004

0 0.50 0.045 0.044 0.044 0.003 0.003 0.003

γ  = 0.59

(N = 100)

1 0 0.150 0.147 0.147 0.035 0.034 0.034

1 0.50 0.146 0.144 0.147 0.033 0.032 0.034

0.50 0 0.141 0.134 0.141 0.032 0.029 0.032

0.50 0.50 0.128 0.127 0.131 0.025 0.025 0.026

0 0 0.124 0.118 0.126 0.024 0.022 0.026

0 0.50 0.116 0.111 0.111 0.021 0.019 0.020

γ  represents the true value of fixed coefficients γ γ γ00 01 10, , ,   and γ11. Cor represents the true value of the correlation coefficient between variables X and Y.

https://doi.org/10.3389/fpsyg.2023.1048842
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Wei and Zhan 10.3389/fpsyg.2023.1048842

Frontiers in Psychology 06 frontiersin.org

conditions (where N = 100, γ  = 0.59, and δε i1

2  = 1). Under a small 
sample size with γ  = 0.29, all the three methods showed extremely 
poor powers.

For type І error, the Bs.M avoided error inflation effectively 
and performed best among the three methods. The Bs.M showed 
relatively stable type І error rates under different conditions. By 
contrast, when the sample size or true value of δε i1

2  decreased, 
the type І error rates of the MLR.M and NML.R significantly 
increased and were even larger than 0.05. The correlation 
coefficient between X and Z had no significant influence on 
these results.

Table 4 showed the coverages of the moderation effect under the 
conditions γ11 ≠ 0. Under the condition γ11 = 0, the coverage was 
exactly 100% minus the type І errors, indicating that the coverage was 
larger when the type І error was smaller. In Table 4, the Bs.M showed 
higher coverage (ranging from 95.0% to 98.2%) than the MLR.M and 
NML.R (ranging from 91.9 to 97.4%) in almost all the conditions. The 
MLR.M and NML.R performed quite similarly to each other, except 
for conditions with a small sample size and δε i1

2  = 0. Under these 
conditions, the MLR.M exhibited the lowest coverages of the 
three methods.

Estimation accuracy of R-square

Tables 5, 6 showed the accuracy of the estimated R-squares for the 
three methods under conditions γ11  ≠ 0 and γ11  = 0, respectively. All 
three methods performed better under the conditions in which γ11  = 
0 (see Table 6) than under those in which γ11  ≠ 0 (see Table 5). 
Overall, the Bs.M performed best for the estimation of R-square 
among the three methods, except for the conditions where γ11  ≠ 0 
and δε i1

2  = 0. Under the condition δε i1

2  = 0, the specified model was 
equivalent to a traditional MMRM, where the R-square is meaningless. 
All the three method had higher accuracy under the conditions with 
larger sample size. And as the increase of the true value of δε i1

2 , the 
accuracy for the estimation of R-square was higher.

Discussion and conclusion

In this article, the Bayesian approach was investigated to estimate the 
RMM. We conducted the Bayesian estimation in Mplus and applied the 
default priors, which are far more common and practicable for empirical 
researchers. Through a simulation study, the Bayesian approach was 

TABLE 2 Averages of |bias| and MSEs of γ11  under conditions that discuss type I error (γ11 = 0).

δε i1

2 Cor
Averages of |bias| MSEs

Bs.M MLR.M NML.R Bs.M MLR.M NML.R

γ  = 0.29

(N = 500)

1 0 0.062 0.062 0.063 0.006 0.006 0.006

1 0.50 0.057 0.057 0.057 0.005 0.005 0.005

0.50 0 0.059 0.058 0.058 0.005 0.005 0.005

0.50 0.50 0.054 0.054 0.054 0.005 0.005 0.005

0 0 0.049 0.049 0.051 0.004 0.004 0.004

0 0.50 0.048 0.047 0.045 0.004 0.004 0.003

γ  = 0.29

(N = 100)

1 0 0.143 0.136 0.139 0.032 0.031 0.032

1 0.50 0.141 0.135 0.140 0.031 0.030 0.032

0.50 0 0.149 0.146 0.149 0.034 0.033 0.034

0.50 0.50 0.132 0.128 0.132 0.027 0.025 0.026

0 0 0.132 0.125 0.130 0.026 0.024 0.026

0 0.50 0.117 0.115 0.123 0.022 0.020 0.023

γ  = 0.59

(N = 500)

1 0 0.063 0.064 0.064 0.006 0.006 0.006

1 0.50 0.056 0.057 0.057 0.005 0.005 0.005

0.50 0 0.062 0.062 0.062 0.006 0.006 0.006

0.50 0.50 0.053 0.052 0.052 0.004 0.004 0.004

0 0 0.053 0.053 0.057 0.004 0.004 0.005

0 0.50 0.046 0.046 0.047 0.003 0.003 0.003

γ  = 0.59

(N = 100)

1 0 0.158 0.155 0.158 0.038 0.038 0.040

1 0.50 0.144 0.141 0.142 0.033 0.032 0.032

0.50 0 0.146 0.142 0.145 0.031 0.030 0.032

0.50 0.50 0.126 0.125 0.128 0.025 0.025 0.026

0 0 0.118 0.115 0.124 0.021 0.020 0.023

0 0.50 0.109 0.106 0.111 0.020 0.019 0.021

γ  represents the true value of fixed coefficients γ γ γ00 01 10, , ,   and γ11. Cor represents the true value of the correlation coefficient between variables X and Y.
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compared with the NML.R estimation using the NML.R package, as well 
as the default ML estimation in Mplus. Overall, the Bayesian estimation 
investigated in this study shows stability in controlling the type I error 
and outperforms the ML estimations in terms of the accuracy of the 
effect size R-square, as well as the coverage and type I  error of the 
moderation effect. The two ML estimations performed similarly to each 
other in most conditions except for estimation of the effect size R-square, 
where the NML.R showed extremely poor accuracy.

First, the Bayesian approach had more advantages than the 
MLR.M and NML.R due to the estimation of the moderation 
effect. Specifically, the Bayesian method showed higher coverages 
of the true value of the moderation effect than the other two 
methods. Moreover, the Bayesian approach had approximately 
equivalent powers to the MLR.M and NML.R for the estimation 
of the moderation effect, and its type І error rates were quite well 
controlled. By contrast, the MLR.M and NML.R had increasingly 
inflated type І error rates as the sample size and true value of δε i1

2  
decreased. These results confirmed that the ML estimation was 
more sensitive to sample size and the magnitude of the random 
effect of moderation than the Bayesian method. This is reasonable 
because ML estimation depends on large-sample approximation 
due to its asymptotic property (Le Cam, 1990; Millar, 2011; Yuan 

et  al., 2014). It is well known that the Bayesian method is 
appealing for studies with small sample sizes (e.g., Gelman et al., 
2003; Yuan and MacKinnon, 2009; Wang and Preacher, 2015). 
The present study also demonstrated that the Bayesian method 
was highly efficient even when the random error of the 
moderation effect was actually zero in the RMM. Nevertheless, if 
researchers specially pursue high power for estimation of the 
moderation effect, the two ML estimations remain the qualified 
methods and should have priority over the Bs.M.

Secondly, in addition to the moderation coefficient, R-square 
plays a crucial role in the RMM as an effect size to quantify the 
proportion of the given moderator accounting for the random effect 
in regression. Under the conditions where δε i1

2  is nonzero, the 
Bayesian approach showed highest accuracy among the three 
methods, and the NML.R performed better than the MLR.M. While 
Under the conditions where δε i1

2  is zero, the RMM is exactly 
equivalent to the MMRM, which assumes the random effect in 
regression can be completely explained by the moderator and, thus, 
R-square is meaningless. It is worth noting that the NML.R package 
probably provide a negative value for the estimation of error 
variance δ ε



i1

2

, which would seriously hamper the estimation of the 
R-square.

TABLE 3 Powers and type I error rates for evaluation of moderation effect.

δε i1

2 Cor
Power (%) ( γ11  ≠ 0) Type I error (%) ( γ11  = 0)

Bs.M MLR.M NML.R Bs.M MLR.M NML.R

γ  = 0.29 (N = 500) 1 0 89.2 92.4 91.6 2.0 1.8 1.0

1 0.50 91.4 93.8 93.8 2.4 2.2 2.0

0.50 0 94.0 96.4 96.6 2.0 2.0 2.8

0.50 0.50 94.6 96.8 97.0 2.8 4.2 3.8

0 0 98.0 99.8 99.5 2.6 4.4 4.5

0 0.50 99.0 99.8 100.0 3.8 7.8 5.8

γ  = 0.29 (N = 100) 1 0 18.0 28.6 27.3 1.8 4.0 3.2

1 0.50 21.3 33.4 31.3 2.4 5.8 6.0

0.50 0 25.9 38.6 35.0 3.4 7.2 6.3

0.50 0.50 28.8 43.6 39.9 2.5 5.8 4.5

0 0 32.7 46.6 45.3 3.4 11.8 5.3

0 0.50 38.2 52.8 49.5 3.9 12.0 7.8

γ  = 0.59 (N = 500) 1 0 98.4 100 100.0 3.4 3.4 3.4

1 0.50 98.8 100 100.0 1.8 1.8 1.4

0.50 0 99.2 100 100.0 3.2 3.8 3.4

0.50 0.50 98.2 100 100.0 1.8 3.6 3.0

0 0 99.0 99.8 100.0 5.0 7.0 7.3

0 0.50 98.2 100 100.0 4.0 6.2 6.5

γ  = 0.59 (N = 100) 1 0 73.5 83.8 83.9 2.4 6.0 5.8

1 0.50 78.0 86.4 87.6 2.6 3.8 4.4

0.50 0 82.7 87.8 88.1 2.6 5.2 4.1

0.50 0.50 87.9 94.8 94.5 3.6 6.4 6.3

0 0 92.3 92.2 95.3 1.0 10.6 3.0

0 0.50 97.4 94.8 98.9 3.3 10.6 6.1

γ  represents the true value of fixed coefficients γ γ γ00 01 10, ,  and . Cor represents the true value of the correlation coefficient between variables X and Y. Values of power lower than 80% 
and of type I error higher than 5% are indicated by bold type.
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TABLE 5 Accuracy of R-square for the RMM under the condition γ11 ≠ 0.

δε i1

2
Cor

Averages of |bias| MSEs

Bs.M MLR.M NML.R Bs.M MLR.M NML.R

γ  = 0.29 

(N = 500)

1 0 0.032 0.034 0.035 0.002 0.002 0.002

1 0.50 0.032 0.035 0.035 0.002 0.002 0.002

0.50 0 0.055 0.064 0.064 0.005 0.008 0.007

0.50 0.50 0.056 0.064 0.065 0.005 0.007 0.008

0 0 0.558 0.378 0.432 0.338 0.174 0.237

0 0.50 0.568 0.377 0.430 0.344 0.169 0.227

γ  = 0.29 

(N = 100)

1 0 0.061 0.106 0.095 0.007 0.029 0.021

1 0.50 0.064 0.114 0.090 0.009 0.039 0.018

0.50 0 0.107 0.210 0.152 0.019 0.091 0.047

0.50 0.50 0.097 0.188 0.142 0.014 0.072 0.043

0 0 0.770 0.440 0.659 0.624 0.277 0.486

0 0.50 0.769 0.438 0.603 0.620 0.273 0.441

γ  = 0.59 

(N = 500)

1 0 0.055 0.057 0.057 0.005 0.005 0.005

1 0.50 0.054 0.056 0.057 0.005 0.005 0.005

0.50 0 0.078 0.089 0.089 0.010 0.013 0.014

0.50 0.50 0.080 0.088 0.089 0.010 0.014 0.014

0 0 0.262 0.143 0.175 0.077 0.028 0.045

0 0.50 0.259 0.139 0.169 0.076 0.027 0.042

γ  = 0.59 

(N = 100)

1 0 0.112 0.152 0.139 0.018 0.043 0.035

1 0.50 0.113 0.153 0.129 0.018 0.047 0.031

0.50 0 0.173 0.218 0.177 0.041 0.073 0.046

0.50 0.50 0.158 0.211 0.170 0.034 0.070 0.046

0 0 0.492 0.191 0.334 0.277 0.072 0.163

0 0.50 0.483 0.187 0.344 0.263 0.067 0.161

γ  represents the true value of fixed coefficients γ γ γ γ00 01 10 11, , ,and . Cor represents the true value of the correlation coefficient between variables X and Y. True represents the true value of 
the R-square.

TABLE 4 Coverages of the moderation effect under conditions γ11 ≠ 0.

δε i1

2
Cor Bs.M MLR.M NML.R

γ  = 0.29 (N = 500)

1 0 96.0 96.4 99.0

1 0.50 97.6 97.2 98.0

0.50 0 97.2 96.4 97.2

0.50 0.50 97.0 95.0 96.2

0 0 95.4 93.4 95.5

0 0.50 96.6 94.8 94.2

γ  = 0.29 (N = 100)

1 0 96.6 95.8 96.8

1 0.50 97.2 95.2 94.0

0.50 0 96.9 93.6 93.7

0.50 0.50 97.8 94.6 95.5

0 0 97.6 90.6 94.7

0 0.50 98.2 90.2 92.2

γ  = 0.59 (N = 500)

1 0 97.8 97.0 96.6

1 0.50 97.4 97.0 98.6

0.50 0 96.4 96.8 96.6

0.50 0.50 96.8 95.6 97.0

0 0 95.0 93.6 92.7

0 0.50 97.8 95.4 93.5

γ  = 0.59 (N = 100)

1 0 96.0 94.4 94.2

1 0.50 97.8 95.8 95.6

0.50 0 96.3 93.2 95.9

0.50 0.50 98.0 94.4 93.7

0 0 96.2 87.6 97.0

0 0.50 97.1 89.6 93.9

γ  represents the true value of fixed coefficients γ00, γ01, and γ10. Cor represents the true value of the correlation coefficient between variables X and Y.
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Thirdly, both the MLR.M and NML.R showed high accuracy for 
estimation of the regression coefficients, which was consistent with the 
Bayesian approach. Further, in most conditions, the two ML 
estimations performed quite similarly to each other in terms of the 
power, type I error, and coverage for estimation of the moderation 
effect. However, the NML.R had poor convergence rates, and provided 
negative value for the estimation of δ ε



i1

2

 in most cases. Asparouhov and 
Muthén (2021) found that ML estimation had a convergence problem 
for the estimation of the two-level model with latent interactions. The 
authors considered the reason to be  an increase in the numerical 
integration dimensions in the two-level model possibly exceeding 
what is computationally feasible (Marsh et al., 2004; Asparouhov and 
Muthén, 2021). However, the MLR.M is this study converged normally 
in all conditions. The present study differed from that of Asparouhov 
and Muthén (2021) in that the model investigated in their study is 
latent-centered and involves real two-level analysis, where the 
between-level effect is meaningful. In the current study, one reason for 
the convergence problem of the NML.R might be that the convergence 
criterion used in NML.R package is strict, in which convergence is 
considered to be achieved when the maximum update value of all 
parameters is less than 0.0001 before 300 iterations.

Limitations

The RMM contributes to moderation analysis with heterogenous 
residuals, which should violate the assumption of normality and 
homogeneity of error variance. This study provides a practical and 
efficient method for estimation of the RMM, making the RMM and 
its estimation much easier to be implemented. Based on the posterior 
distribution of the Bayesian estimation, researchers are also allowed 
to make inferences beyond statistical significance. Nevertheless, this 
study has limitations. First, only default noninformative priors in the 
Bayesian estimation were investigated in order to increase the 
generality of the findings. Alternatively, further research can 
be conducted to discuss the influence of different prior information, 
such as different hyper-parameters in the prior distribution (e.g., Lee, 
2007), on the estimation.

Second, the study was conducted under the assumption of 
normality in RMM. There is limited evidence showing how the 
Bayesian estimation would perform when the normal assumption is 
violated. Therefore, a further study should be conducted to evaluate 
Bayesian estimation under the condition that normality is violated and 
compare it with robust ML estimation.

TABLE 6 Accuracy of R-square for the RMM under the condition γ11 = 0.

δε i1

2
Cor

Averages of |bias| MSEs

Bs.M MLR.M NML.R Bs.M MLR.M NML.R

γ  = 0.29 

(N = 500)

1 0 0.006 0.006 0.006 0.000 0.000 0.000

1 0.50 0.005 0.005 0.005 0.000 0.000 0.000

0.50 0 0.011 0.012 0.013 0.000 0.001 0.001

0.50 0.50 0.010 0.012 0.012 0.000 0.001 0.001

0 0 0.034 0.085 0.098 0.003 0.023 0.032

0 0.50 0.035 0.078 0.090 0.004 0.021 0.038

γ  = 0.29 

(N = 100)

1 0 0.027 0.057 0.045 0.003 0.018 0.009

1 0.50 0.026 0.051 0.046 0.002 0.012 0.009

0.50 0 0.043 0.107 0.079 0.005 0.038 0.024

0.50 0.50 0.036 0.094 0.074 0.004 0.032 0.022

0 0 0.081 0.262 0.146 0.016 0.135 0.060

0 0.50 0.068 0.251 0.145 0.012 0.126 0.060

γ  = 0.59 

(N = 500)

1 0 0.006 0.007 0.007 0.000 0.000 0.000

1 0.50 0.005 0.005 0.005 0.000 0.000 0.000

0.50 0 0.012 0.015 0.015 0.000 0.001 0.001

0.50 0.50 0.009 0.010 0.010 0.000 0.000 0.000

0 0 0.038 0.087 0.104 0.004 0.022 0.035

0 0.50 0.033 0.082 0.088 0.004 0.024 0.029

γ  = 0.59 

(N = 100)

1 0 0.029 0.060 0.054 0.003 0.015 0.014

1 0.50 0.026 0.055 0.044 0.002 0.015 0.008

0.50 0 0.041 0.109 0.091 0.005 0.037 0.030

0.50 0.50 0.038 0.104 0.078 0.005 0.038 0.026

0 0 0.064 0.239 0.129 0.010 0.115 0.053

0 0.50 0.064 0.231 0.129 0.012 0.115 0.055

γ  represents the true value of fixed coefficients γ γ γ γ00 01 10 11, , ,and . Cor represents the true value of the correlation coefficient between variables X and Y. True represents the true value of 
the R-square.
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Third, the performances of the estimation methods are 
discussed mainly from the perspective of the estimation of 
moderation effect and effect size. The estimation accuracy with 
the random effects are also presented in the appendix of this 
paper. Nevertheless, in applications, researchers may also 
be concerned with the capability of the estimation method in 
evaluating the goodness of model fit and selecting between 
models. This remains to be explored.

Fourth, only the continuous moderator was considered in this 
study, and theoretically, the RMM is also applicable to the categorical 
moderator (e.g., Dahlke and Sackett, 2018). Bayesian estimation and 
ML estimation can be further compared in the context of moderation 
analysis with the categorical moderator.

Fifth, as in all simulations, data generation in this study could not 
vary all possible factors. Only the most concerned population 
parameters were manipulated at several common levels. However, the 
findings should be representative of what is most common in practice. 
For further concerns, more complex models, such as those containing 
several independent variables with multiple interactions or moderated 
mediation effects, and even a clustered data structure with meaningful 
between-level effects, could be developed to meet the needs of data 
analysis in complicated situations.
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