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Analyzing and supporting mental 
representations and strategies in 
solving Bayesian problems
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Solving Bayesian problems poses many challenges, such as identifying relevant 
numerical information, classifying, and translating it into mathematical formula 
language, and forming a mental representation. This triggers research on how 
to support the solving of Bayesian problems. The facilitating effect of using 
numerical data in frequency format instead of probabilities is well documented, as 
is the facilitating effect of given visualizations of statistical data. The present study 
not only compares the visualizations of the 2 × 2 table and the unit square, but 
also focuses on the results obtained from the self-creation of these visualizations 
by the participants. Since it has not yet been investigated whether the better 
correspondence between external and internal visualization also has an effect 
on cognitive load when solving Bayesian tasks, passive and active cognitive load 
are additionally measured. Due to the analog character and the proportional 
representation of the numerical information by the unit square, it is assumed that 
the passive cognitive load is lower when using the unit square as visualization 
than when using the 2 × 2 table. The opposite is true for active cognitive load.
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1. Introduction

Bayesian problems refer to situations of uncertainty where inferential judgment is needed. 
The belonging Bayes Theorem describes the probability of an event, based on prior knowledge 
of conditions that might be related to the event being of interest. One of the most popular 
examples is the Mammographie problem (Gigerenzer and Hoffrage, 1995, p. 685; adapted from 
Eddy, 1982):
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The probability of breast cancer is 1 % for a woman at age forty who participates in routine 
screening. If a woman has breast cancer, the probability is 80% that she will get a positive 
mammography. If a woman does not have breast cancer, the probability is 9.6% that she will also 
get a positive mammography. A woman in this age group had a positive mammography in a 
routine screening. What is the probability that she actually has breast cancer? ____%

In order to calculate the risk of having cancer for this woman, the Bayes Theorem is required. 
The probability of having cancer with a positive test result P C T| +( ) is:
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The result is counterintuitively low (Eddy, 1982) and research 
shows a miscalculation of probabilities as well as a lack of 
understanding the results (McDowell and Jacobs, 2017). Without any 
further help people only guess the correct answer or try to combine 
the given numbers in the text without a deeper understanding of 
the problem.

In this paper, we want to address the cognitive processes, which 
are necessary when solving Bayesian problems. Thus, based on 
theoretical models and empirical findings we  first analyze these 
processes and suggest different instructional approaches to foster 
them by using multiple representations. The goal of our study is first 
to substantiate whether these processes are actually crucial while 
solving Bayesian problems and second to examine the effects of the 
supporting approaches with regard to the correct solutions of the 
problems and to the experienced cognitive load.

1.1. Bayesian problems require to translate 
between the mathematical-model world 
and the real-model world

Central to Bayesian tasks is the translation process from problem 
statements in the real world into the formula language of the 
mathematical world, which fits the main aspects of modeling in school 
(cf. Eichler and Vogel, 2015).

Both, the process of identifying the relevant numerical 
information and the translation into the formula language is 
particularly difficult, when people cannot grasp the meaning of the 
numerics, because they are too abstract. One approach to overcome 
this difficulty is to substitute probabilities in the text with natural 
frequencies as demonstrated by e.g., Brase (2021), Johnson and Tubau 
(2015), and Gigerenzer and Hoffrage (1995). The Mammographie 
problem in terms of natural frequencies looks like the following:

100 out of 10,000 women who participate in routine screening 
have breast cancer. Out of 100 women who participate in routine 
screening and have breast cancer, 80 will have a positive result. 
Out of 9,900 women who participate in routine screening and 
have no breast cancer, 950 will also have a positive result. How 
many of the women who participate in routine screening and 
receive a positive test result have breast cancer? Answer: ____ 
out of ____

The substitution of probabilities by natural frequencies already 
represents a translation of the mathematical world into the real world. 
While probabilities induce a computation, natural frequencies can 
be observed directly. Via natural frequencies all numerical information 
are absolutely quantified to a single reference class (i.e., the 
superordinate set of 100 persons), where categories are naturally 
classified into expected values of the compounded events 
C T C T C T C T∩ + ∩ − ∩ + ∩ −, , , . In this case, the conditional 
distribution does not depend on the between-group (having cancer, 

not having cancer) base rates, but only on the within-group 
frequencies (true-positive-rate, false-positive rate). Accordingly, the 
base rates can be ignored, and the required computations are reduced 
to a simpler form of Bayes rule (cf. Johnson and Tubau, 2015). The 
solution via calculation with natural frequencies would be:

 
P C T| +( ) =

+
=

80

80 950
7 8, %

1.2. Bayesian problems use conditioned 
probabilities

The second challenge when solving Bayesian problems is due to 
its logical structure and to identify the crucial elements that constitute 
the problem. The problem structure is one of so-called nested sets, 
which represent one explanation for the facilitating effect of natural 
frequencies (Sloman et al., 2003, p. 297). For the above-mentioned 
example, there are four subsets of events, defined by the two subsets 
of each main criteria, i.e., being ill (yes/no) and having a positive test 
result (yes/no). From a representational perspective, one has to 
construct a relational mental framework of units that are on a higher 
level and which can be  subdivided into sub-ordinate units. The 
resulting mental representation thus has a spatial structure. In terms 
of current cognitive models of knowledge acquisition (e.g., Schnotz 
and Bannert, 2003) it would be called a depictive mental representation 
as it is analog to the nested structure of the problem.

According to multimedia principle of Mayer (2014), it could 
be helpful to provide a depictive representation, i.e., a visualization in 
addition to the textual problem statement, if learners need to construct 
a depictive mental representation. However, it is not sufficient to 
provide any kind of visualization, it should map to the structure of the 
mental representation (Gentner, 1983). Different studies indicate that 
visualizations could actually help solving Bayesian problems (Brase, 
2008; Khan et al., 2015; Eichler et al., 2020; Brase, 2021). Eichler et al. 
(2020) showed that particularly visualizations that illustrate the 
nested-sets structure of a Bayesian situation facilitate 
Bayesian Reasoning.

With the visualization by a 2 × 2 table for example, the given 
information is ordered and thus already pre-structured in columns 
and rows in such a way that the reader can see at a glance, for example, 
the positive test rates (Figure 1). It already contains all values relating 
to the base rate, number of positive and negative test results, and 
number of diseases and no diseases but not values such as the false-
positive rate. Therefore, it is still up to the reader to bring the elements 
into relations or to overview covariations.

The unit square is a statistical graph (Tufte, 2015), which means, 
that the sizes of the partitioned areas are proportional to the sizes of 
the represented data. Therefore, the proportions of incidences, like, 
e.g., the base-rate, in a population are represented numerically as well 
as geometrically (Figure  1). Thus, the numerical descriptively 
represented information gets an analogs depictive counterpart which 
according to the supplantation effect (Vogel et al., 2007) may lead to a 
deeper elaboration of the Bayesian situation’s mental model via mutual 
supplementation (cf. above; Schnotz and Bannert, 1999).

Both visualizations turned out to be effective for solving Bayesian 
problems in terms of an increase in performance (Binder et al., 2015; 

https://doi.org/10.3389/fpsyg.2023.1085470
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Sirock et al. 10.3389/fpsyg.2023.1085470

Frontiers in Psychology 03 frontiersin.org

Eichler et al., 2020). It would also be plausible that it should also 
be easier to construct the required knowledge representation when 
provided by an analog representation. However, up to now there is no 
analysis whether the better match of external and internal 
representation also affects cognitive load. Taking into account the 
different aspects of cognitive load (Paas and Van Merriënboer, 1994) 
one could assume that the visualizations unburden learners from 
searching for the relevant information and their inter-relation and 
should thus reduce extraneous load. It might also be possible that the 
visual ordering and clustering of information within the graph helps 
to reduce the perceived complexity and thus intrinsic load. Both types 
of load, extraneous and intrinsic are due to task affordances which 
learners experience passively. Thus, in a recent paper by Klepsch and 
Seufert (2021), the required resources are referred to as passive load. 
In contrast, learners can also decide to invest effort, i.e., they devote 
resources actively to deal with the task. Thus, these resources are 
referred to as active load. With regard to the visualizations of Bayesian 
problems, learners might be activated to use them and consequently, 
the active load might be increased.

1.3. Bayesian problems require to relate 
different probabilities

One additional requirement when solving Bayesian problems is 
to apply the Bayes formula. People need to understand what elements 
determine the denominator and the numerator of the Bayes ratio and 
what the underlying meaning of this ratio is. The required mental 
model does not only include single separated elements but their 
interplay (Schnotz and Bannert, 2003). A mental model is also 
characterized by its flexibility. Learners can “see” the problem structure 
and manipulate it mentally (“envisioning” and “running”; de Kleer 
and Brown, 1983, p. 156). With regard to solving Bayesian problems 
learners could thus be able to specify how the result would change 
with varying parameters of the problem.

One essential issue of the unit square is that the numerically 
represented products of conditioning probabilities and conditioned 
probabilities [e.g., 𝑃  (T + |C) · 𝑃  (C)] which determine the denominator 

and the numerator of the Bayes formula correspond to the calculation 
of the rectangular subareas (length multiplied by width) of the unit 
square. With this kind of calculation, the students are usually very 
familiar when learning about conditional probabilities and Bayesian 
situations. Thus, the in the novices’ eyes complex looking Bayesian 
formula gets potentially better accessible for students because its parts 
are based on well-known mathematical subroutines. Therefore, the 
benefit in a mathematical regard is that the unit square can be used to 
calculate the numerical value of probabilities and to determine the 
Bayes ratio (cf. Oldford, 2003, p. 1).

1.4. Bayesian problems require to deal with 
multiple representations

Beside the supportive effects of additional visualizations, they also 
need to be processed. From a multi-representational point of view, like 
in this case the textual problem statement, the visualization and the 
formula, dealing with it requires to mentally link the individual 
representations and build a coherent mental representation; a process 
called coherence formation (Seufert, 2003).

With regard to the promotion of coherence formation 
processes, there is a variety of empirical work (see Seufert and 
Brünken, 2006 for a summary). They show that different 
approaches are possible to successfully support knowledge 
acquisition with multiple representations. On the one hand, the 
improved and deepened processing of individual representations 
(local coherence formation) is promoted and on the other hand, 
the actual linking of multiple representations (global coherence 
formation). Empirical studies show positive effects of prompting 
learners to find corresponding elements or relations (Bodemer and 
Faust, 2006; Schnaubert and Bodemer, 2017). However, to support 
learners in finding these corresponding elements and relations, it 
also turned out to be effective to highlight the correspondences by, 
e.g., color coding (Vogt et al., 2020) or by explicitly explaining 
relations between representations on a deeper level of 
understanding (Seufert, 2003). Particularly, the combination of 
highlighting and deep-level help turned out to be supportive in 

FIGURE 1

2 × 2 table (left) and unit square (right) belonging to the mammographie problem.
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terms of increased learning outcomes and decreased overall 
cognitive load (Seufert and Brünken, 2006).

2. Present study

2.1. Hypothesis

The focus of this study is on the comparison of information-
equivalent visualizations to support the solution of Bayesian problems, 
which differ qualitatively with respect to analog and non-analog 
representation formats. Specifically, the Bayesian formula, the 2 × 2 
table and the unit square are examined. The formula itself does not 
provide any visualized help. The 2 × 2 table, on the other hand, presents 
the important information from the text in a spatially structured way. 
Studies already show that the 2 × 2 table supports performance (Binder 
et al., 2015; Eichler et al., 2020). Based on the additional analogous 
character of the unit square, the second hypothesis would lead to the 
assumption that the unit square outperforms the 2 × 2 table. However, 
Böcherer-Linder and Eichler (2019) found the unexpected effect that 
it was the other way round. In their discussion, they assume that this 
unexpected result was partially influenced by the context of a certain 
item with the most extreme distribution as well as by the unfamiliarity 
of the unit square, and they argued for further investigations. Using 
other items in another setting of data collection (within-subject 
design) including a training how to construct a visualization (cf. below 
section 2) we  argue for the unit square on the theoretical 
considerations and state:

Hypothesis 1: Performance will be the highest in tasks that show 
the unit square for support, followed by tasks that use the 2 × 2 
table while in tasks that use the formula the performance is lower.

Beyond performance, the cognitive load associated with the 
different visualizations is investigated. Since the 2 × 2 table already has 
a spatial structure and thus a better correspondence between the 
external and internal representation, it is assumed that the passive 
cognitive load is lower compared to the Bayesian formula. Consistent 
with this, because of the additional analogous nature of the unit 
square, it is reasonable to assume that passive cognitive load is 
even lower.

Hypothesis 2: In tasks that show the unit square for support, 
passive cognitive load will be lower than in tasks that use the 2 × 2 
table and tasks that use the Bayesian formula have the highest 
passive cognitive load.

With regard to active cognitive load, it is the other way around—
the lower the passive cognitive load, the more focus can be placed on 
active cognitive load. This leads to the hypothesis:

Hypothesis 3: In tasks that use the unit square for support, active 
cognitive load is higher than in tasks that use the 2 × 2 table. The 
active cognitive load is higher with the 2 × 2 table than with tasks 
that use Bayes’ formula.

It is also expected that learners’ prior knowledge as well as their 
abilities in spatial and logical reasoning affect the relation between the 

different visualizations and performance or passive and active load. 
We therefore assume moderating effects of all these aptitudes: With 
lower prior knowledge or spatial and logical abilities the differences 
between the visualizations will be  larger than with increasing 
knowledge and abilities.

Hypothesis 4 (a-c): Learners’ prior knowledge will moderate the 
relation between the different visualizations and their performance 
(4a), their passive load (4b) and their active load (4c).

Hypothesis 5 (a-c): Learners’ spatial abilities will moderate the 
relation between the different visualizations and their performance 
(5a), their passive load (5b) and their active load (5c).

Hypothesis 6 (a-c): Learners’ logical abilities will moderate the 
relation between the different visualizations and their performance 
(6a), their passive load (6b) and their active load (6c).

In addition to the analysis of the quantitative measures, a 
qualitative-exploratory analysis of the think aloud recordings will 
be made. This is intended to validate the problem areas as well as to 
analyze indications of the extent to which the different visualizations 
support the problem.

2.2. Method and analysis

Participants will be first semester psychology and mathematics 
teacher education students. A total of 66 subjects are to be surveyed 
in a within-subject design. The number of participants has been 
determined with G*Power, assuming a small effect size of 0.2 (based 
on comparison analyses of different visualizations from by Eichler 
et  al., 2020) in an ANOVA with one group and three repeated 
measures. The survey will take place via videoconference, with both a 
whiteboard for drawing and voice recordings available to capture 
participants’ approach using think aloud methods.

The study consists of a total of seven typical tasks to capture 
Bayesian thinking. The first task is presented without any assistance to 
see how the students already deal with the task in terms of prior 
knowledge. Once students have created their solution to the task, they 
are provided with step-by-step prompts to develop supporting 
visualizations. First, the students create a 2 × 2 table by using the 
prompts, which is then developed into a unit square. At this point, the 
visualizations are created by the students themselves, allowing for 
deeper understanding (Bodemer et al., 2005).

In a short video, the individual steps are now presented in 
summary form, with corresponding parts of the 2 × 2 table, the unit 
square and Bayes’ formula being highlighted via appropriate color 
coding. In the video, first the transition of the text task to the 
representation by a 2 × 2 table is described, then the transition from 
the 2 × 2 table to the unit square and finally to Bayes’ 
mathematical formula.

After the video, participants are given six Bayesian tasks with 
comparable difficulty but different contexts and numbers (two tasks 
each in similar contexts) and different visualization support (2 × 2 
table, unit square, and Bayes formula). Randomization of contexts 
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is intended to eliminate bias in the results. Table  1 shows 
the procedure.

Following each task, active and passive cognitive load as the 
dependent variables are measured by the two items “I exerted myself ” 
(active cognitive load) and “It was exhausting” (passive cognitive load; 
cf. Klepsch and Seufert, 2021).

Performance as another dependent variable is determined by the 
solution quality of the six Bayesian tasks. For this purpose, one point 
each is awarded for the subsample of the numerator and the denominator 
of the fraction of the Bayes’ formula to be determined and one point for 
the correct relation. Performance for the first, unassisted task is calculated 
in the same way and is used as prior knowledge measure. Participants 
will be excluded when there is less than one measure per visualization 
for each, performance and load-measure.

As additional control variables, the course of study and Abitur 
grade in math will be inquired about. The course of study is surveyed 
for descriptive purposes only. The graduation grade in mathematics is 
checked for correlation with performance in Bayesian tasks. If there is 
a correlation, the influence of the grade in relation to the performance 
is controlled as a covariate. Furthermore, learners’ spatial and logical 
thinking abilities will be analyzed by using the KFT-cognitive abilities 
subtests for paper folding and numerical series by Heller and Perleth 
(2000). The ability score is the percent of correctly solved tasks in these 
tests. The students’ prior knowledge is already assessed via the first 
task. Missings for control variables will be  imputed, despite the 
respective moderation analyses. The moderation analyses with the 
moderators prior knowledge, spatial and logical thinking abilities are 
conducted exploratively.

All participants are given the same tasks so that the analyses can 
all be  done within subject by repeated measures ANOVAs with 
subsequent contrast analyses. To determine the sphericity, a Mauchly 
test is first performed. If the significance of the sphericity is below 
0.05, the Huynh-Feldt correction is used for a sphericity of ε > 0.75, 
and the Greenhouse–Geisser correction is used for a value of ε < 0.75. 
If we obtain a result significant to the alpha error level p < 0.10, more 
detailed correlations are calculated using contrast analyses with the 
aid of the Bonferroni correction. The control variables prior 
knowledge, spatial and logical thinking are analyzed as moderators in 
individual moderation analyses via the PROCESS plug-in of Hayes 

(2022) in SPSS. For each moderation analysis the outcome variable Y 
is the performance in the Bayesian tasks, the independent variable X 
is the different visualizations, and the M variables are prior knowledge, 
spatial and logical thinking, respectively. When there is a significant 
correlation between one of these potential moderators with the 
dependent measure the respective variable will be  additionally 
included in the moderation analyses as a covariate (only in those 
where the variable is not analyzed as a moderator).

We set a significance level of p = 0.05 for all analyses. The contrasts 
will be  tested one-sided as the hypotheses are directed. All 
non-significant results will lead to rejection of the respective 
hypothesis. Effect sizes will be calculated for all analyses. If effects are 
medium size but non-significant, the hypotheses will be interpreted 
as worth considering in future studies under additional specifying 
conditions like learner characteristics, more or less difficult tasks etc., 
depending of the overall results.

The qualitative data will be aggregated in an iterative process with 
regard to the problems defined in the theoretical analysis on the one 
hand and the think aloud data revealed on the other hand. In addition, 
possible statements about the usability of the different visualizations will 
be aggregated with regard to their theoretical and reported functionality.
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TABLE 1 Summary of the procedure of the study.

Bayesian Task 0 (prior knowledge measure)  

No visualization  

Context 1

Prompts

Summarizing video

Bayesian Task 

(visualization)

Groups with different contexts per task for randomized 

order control

1 (2 × 2 table) Context 2 Context 4 Context 6

2 ( 2× 2 table) Context 3 Context 5 Context 7

3 (unit square) Context 4 Context 6 Context 2

4 (unit square) Context 5 Context 7 Context 3

5 (Bayes‘formula) Context 6 Context 2 Context 4

6 (Bayes‘formula) Context 7 Context 3 Context 5

Control variables (course of study, Abitur grade in 

maths, and test for spatial and logical thinking)
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