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The goal of this study is to evaluate the effect of a multimodal interface indicating 
the limits of automation in order to stimulate an appropriate level of attention 
and to induce accurate mode awareness and trust in partial driving automation. 
Participants drove in a driving simulator with partial driving automation and 
were confronted with surprising situations of suspension of driving automation 
systems in different contexts. They drove the simulator during three driving 
sessions, with either a multimodal interface indicating the limits of automation 
or a visual basic interface. Their driving performance, ocular behavior, and 
subjective evaluation of trust and workload were evaluated. The results revealed 
that the multimodal interface stimulates an appropriate level of attention and 
increases mode awareness and trust in automation, but these effects are context-
dependent. The indications of the limits of automation improved the knowledge 
regarding automation, but this knowledge did not necessarily lead to improved 
driving performance. Design solutions are discussed to support the improvement 
of driving performance for take-overs in vehicles equipped with partial driving 
automation.
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1. Introduction

Partial driving automation can supervise lateral and longitudinal controls of a vehicle 
through a combined function approach (NHTSA, 2013). The combination of Lane Centering 
Assist (LCA) and Adaptive Cruise Control (ACC) allows the vehicle to be  automatically 
centered in its lane, with its speed matched with a followed vehicle. The Society of Automotive 
Engineers (SAE, 2021) considers these two coordinated systems as the second level of driving 
automation system, out of five levels of automation. In SAE Level 2, referenced here as Partial 
Driving Automation (PDA), driving automation systems control the vehicle in specific 
conditions, while the human operator is responsible for monitoring the activity of driving 
automation systems. In situations of sharp bends, the LCA can reach its limits and transfer 
steering control back to the driver, while the speed is still regulated automatically. In these 
limited situations, the drivers need to be prepared to control the vehicle and be aware of the 
state of driving automation system to know which part of the driving activity (lateral, 
longitudinal, or both) they need to take over. Through the interface, the drivers perceive and 
interpret the functioning of automations, allowing them to form a mental model (i.e., a 
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representation of a system’s purpose, form, functioning, state, and 
structure; Seppelt and Victor, 2020) and calibrate trust in it (i.e., their 
attitude toward an agent that helps them achieve a goal in a situation 
where uncertainty and vulnerability are involved; Lee and See, 2004). 
Previous studies revealed that interfaces transmitting signals through 
multiple sensory channels (i.e., a multimodal interface) and 
displaying the limits of automation allow to improve the interaction 
with driving automation systems (Beller et al., 2013; Zhang et al., 
2019). It was proposed by previous authors that improving knowledge 
about automation’s limits leads to improving trust in it (Seppelt and 
Lee, 2019). Several usages are needed for drivers to form efficient 
knowledge about the functioning of the automation (Forster et al., 
2019). This study proposed to investigate the effect of prolonged 
usage of a multimodal interface indicating the limits of automation 
on the allocation of attentional resources, the identification of modes 
of automation, the quality of mental models, and trust in driving 
automation systems.

1.1. Challenges of automated driving

Goals and guidelines for interfaces of automated vehicles were 
established by Carsten and Martens (2019) to respond to the main 
challenges raised by automated driving. Those goals are based on 
Rasmussen’s (1983) Skills Rules Knowledge model of performance of 
skilled human operators. Following ecological interface design 
principles, the interfaces should aim to induce behavior with fast 
cognitive processing instead of slower higher cognitive knowledge 
processing. In line with Carsten and Martens’ work, the present study 
evaluates the effect of interfaces on the following challenges: (1) 
providing required understanding of the automated vehicles 
capabilities and status (minimize mode errors); (2) engendering 
correct calibration of trust; (3) stimulating appropriate level of 
attention and intervention; and (4) minimizing automation surprises. 
The goal (1) aims to ensure that drivers identify the status of 
automation, which is usually done by the interface: “a visual interface 
is typically presented in current commercially available systems. The 
most basic feedback a system can provide is showing whether the 
system or a function is activated or not” (Carsten and Martens, 2019, 
p. 6). The goal (4) aims to ensure that the interface avoids causing 
automation surprises, described as “situations where the driver 
actually notices the action is inconsistent with drivers expectation” 
(Carsten and Martens, 2019, p. 11). The situations described here refer 
to a detachment between the drivers’ excepted driving automation 
system’s status and the actual one. Therefore, the goal (1) aims to 
provide information that enables the identification of modes of 
driving automation system, and the goal (4) avoids the occurrence of 
errors related to the identification of the status of the driving 
automation system. Mode awareness, defined here as awareness of the 
current mode of driving automation system and the knowledge 
encompassing the existing modes (Kurpiers et al., 2020), allows to 
describe the identification of modes and the likely occurrence of 
automation surprises. An accurate mode awareness implies that 
modes have been identified and, therefore, automation surprises are 
not expected to occur. Therefore, we propose to gather goals (1) and 
(4) under a common global goal of increasing mode awareness. The 
three goals are discussed separately in three different paragraphs 
before proposing interface solutions.

1.1.1. Attention allocation
Humans have difficulties maintaining visual attention on a 

monitoring task in which less is happening for long periods of time 
(Bainbridge, 1983). When PDA is activated, the drivers must 
effectively monitor the lateral and longitudinal positioning of the 
vehicle to be ready to take over when a limit of automation is reached. 
When a limit of automation is reached, a suspension of driving 
automation occurs, meaning that the driving automation systems 
initiate a transition of control from automation to the drivers. A 
suspension of automation requires a switch of attention from 
monitoring to controlling the vehicle (Carsten and Martens, 2019). 
When the monitoring task to be performed is easy, long-lasting, and 
monotonous, the individuals tend to wander in their thoughts 
(Lemercier et  al., 2014; Berthié et  al., 2015). The out-of-the-loop 
phenomenon, defined here as a temporary disengagement from the 
control and the monitoring loops (Carsten and Martens, 2019), can 
be  observed in such configurations. To avoid the out-of-the-loop 
phenomenon leading to misses or false alarms of suspensions, 
interfaces of automated vehicles should allow allocating attention 
efficiently, facilitating the switch from monitoring to control. By doing 
so, drivers should be able to identify the status of automation and, 
therefore, improve their mode awareness.

1.1.2. Mode awareness
Mode awareness is founded on two dimensions, namely, 

knowledge about automation’s functioning and awareness at a specific 
moment of the state of driving automation systems (Kurpiers et al., 
2020). Experience with the driving automation system (i.e., the time 
spent using the system) plays a major role in correctly understanding 
the role one has to play in the interaction (Solís-Marcos et al., 2018). 
Interactions with an automated driving system enable the forging of a 
representation of its purpose, form, functioning, state, and structure, 
which can be merged into the term mental model (Seppelt and Victor, 
2020). The more the users interact with an automated driving system, 
the more accurate their mental model will be (Beggiato et al., 2015; 
Forster et al., 2019). Therefore, longitudinal studies are necessary to 
capture the evolution of mental models. In addition, the quality of 
mental models can be influenced by the design of interfaces in vehicles 
equipped with driving automation systems (Seppelt and Lee, 2019). 
The quality of these mental models, therefore, depends on the quality 
of the information perceived and understood. If the information on 
the interface is misunderstood, an inaccurate mental model may 
develop. Consequently, a proper awareness of the status of the modes 
of automation is necessary to form an accurate mental model.

Regarding awareness of the status of driving automation systems, 
it is supported by the correct perception, comprehension, and capacity 
to project the future state of automation based on the available 
information (Endsley, 1995). This dimension relies mainly on the 
ability of drivers to perceive and understand interface signals about 
the status of driving automation systems, which is usually done 
through visual displays. As proposed by Kurpiers et al. (2020), an 
assessment of mode awareness can be performed by measuring three 
dimensions, namely, the drivers’ driving behavior, their ocular 
behavior, and their mental models. The behavior of the driver should 
be adapted to the mode of automation. When switching to manual 
driving, Deviation from Central Lane (DCL) or Time Headway (TH) 
should reveal that the drivers are in control of the vehicle. The ocular 
behavior of the drivers should reveal that their gaze is fixed on 
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pertinent information for the automations’ status (e.g., the cluster 
before a potential suspension of automation). The mental models, 
evaluated through questionnaires regarding the functioning of 
automation depending on the situation, should be accurate. Interfaces 
indicating the status of PDA should allow drivers to form an accurate 
mental model and to be  aware of the state of automation. With 
accurate knowledge about a system’s functioning, an appropriate 
degree of trust can be placed.

1.1.3. Trust in automation
Trust in automation is impacted by the way the drivers perceive 

and understand its functioning. If automation does not accomplish 
the goals that it is intended to achieve (e.g., achieve the driving task), 
breakdown of trust can be observed (Parasuraman and Riley, 1997). 
With highly automated vehicles, drivers over trusting the driving 
automation system gazed less at the road (de Winter et al., 2014) or 
failed to take over correctly when needed (Flemisch et  al., 2014). 
Therefore, trust in automation should be appropriately calibrated to 
the driving automation system’s capacity and limits. Informing the 
drivers of the driving automation systems’ capacity and reliability 
allows them to place adequate trust in it (Helldin et al., 2013). Trust 
that drivers have in driving automation systems is correlated with 
attention allocation (de Winter et  al., 2014). It was proposed by 
previous authors that improving knowledge about automation’s limits 
leads to improving trust in automation (Seppelt and Lee, 2019). The 
influence of interface design on the long-term construction of mental 
models is yet to be investigated. It can be expected that multimodal 
interfaces indicating the limits of automation allow to form accurate 
mental models faster than classical visual-only interfaces.

1.2. Multimodal interfaces and reliability 
information

To address the three challenges mentioned above, the following 
two types of interfaces were investigated in this study: multimodal 
interface and automation reliability interface. Multimodal interfaces 
use multiple sensory modalities to convey information. They allow the 
attentional demands of the interface to be  distributed across the 
multiple sensory channels, thereby reducing cognitive load compared 
to a situation where all demands are directed to a single sensory 
channel (Wickens, 2008). Earcons (i.e., abstract sounds representing 
meaning) indicating transitions of control from the system to the 
driver allow them to re-engage with the driving task (Petermeijer 
et al., 2017). Haptic feedback, in the form of kinesthetic and tactile 
feedback in the steering wheel, induces quick responses and is easily 
understood (Murata and Kuroda, 2015). Kinesthetic feedback can take 
the form of increased stiffness in the steering wheel, and tactile 
feedback can take the form of vibrations in the steering wheel (Gaffary 
and Lécuyer, 2018). Haptic feedback should reduce the risk of mode 
errors by informing the driver of the state of automation efficiently. 
Altogether, multimodal interfaces should induce more appropriate 
repartition of visual attention and make the identification of modes 
more accessible, allowing to respond to the first two challenges posed 
by automation: stimulate appropriate level of attention and induce 
accurate mode awareness. In addition to multimodal interfaces, 
information regarding the reliability of automation should allow the 
drivers to anticipate transitions of modes.

Reliability interfaces indicating the proximity to limits of 
automation aim to enable drivers to anticipate take-overs. Displaying 
automation’s uncertainty through gradual displays, pulsing LEDs, or 
varying colors in the cluster has led to faster reaction take-overs and 
better anticipation of automation suspensions (Beller et  al., 2013; 
Helldin et al., 2013; Kunze et al., 2019; Monsaingeon et al., 2020). An 
Indicator of Proximity to the Limits of Automation (IPLA) is proposed 
in this article and aims at exploiting information already present in the 
vehicle to anticipate suspensions of automation. Indeed, digital 
information about the environment is currently used to operate the 
driving automation systems (e.g., lateral acceleration, current speed, 
GPS position). One operating limit of PDA is the lateral acceleration 
of the vehicle during bends, which is itself dependent on the radius of 
a bend and the speed. Some vehicles use environmental mapping to 
make ACC more comfortable by adapting the vehicle’s speed to a 
sharp bend.1 This type of information can also be used to prevent 
future suspensions of automated driving systems by projecting the 
future lateral acceleration based on the radius of the upcoming bend 
and the current speed of the vehicle. The idea of the IPLA is to exploit 
this information and transfer it to an indicator for the driver. An 
indicator of this nature presented in peripheral vision should allow the 
drivers to direct their attentional resources to the road when control 
is needed, addressing the first challenge of automation, i.e., stimulate 
appropriate attention. However, the addition of visual information can 
capture attention and increase mental workload (Monsaingeon et al., 
2019). It can be expected that with training to use the interface, the 
mental workload would decrease (Christoffersen et  al., 1996). By 
informing on the limits of automation, drivers should be  able to 
anticipate transitions of modes and learn to identify situations in 
which these transitions may occur, thus addressing the second 
challenge of automation, i.e., induce accurate mode awareness. Finally, 
by informing on the situations that automation can or cannot handle, 
drivers should calibrate their trust accordingly, addressing to the third 
challenge of automation.

1.3. Methodology overview

The experimental method of this study aimed to assess the 
longitudinal effect of interface modalities on attention allocation, 
mode awareness, and trust in automation while interacting with 
partial driving automation systems. Participants were recruited 
following specific criteria. They were assigned to either one of two 
interface conditions. The participants were prepared for the study with 
educational material. Then, in a driving simulator, participants drove 
with PDA in driving scenarios built for the purpose of this study. The 
scenarios depicted driving situations in which automation could 
suspend depending on environmental conditions. These situations 
were selected by experts in the automotive industry because of their 
representativeness of the current functioning of driving automation 
systems. The use cases were bent roads, erased road markings, traffic 
jams, and foggy areas. Over a 3-week period, the participants 

1 For an example, see https://www.continental.com/en/press/press-releases/

predictive-assistance-continental-presents-adaptive-cruise-control-with-

ehorizon/
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performed three driving sessions, the first and last of which were 
considered pre-tests and post-tests, and the four intermediate sessions 
as training. During the study, participants’ driving behavior and visual 
fixations were measured. Their mental models, trust in automation, 
and workload were rated. The analysis plan consisted in comparing 
the measures of participants between the pre-tests and post-tests, 
depending on their interface condition, and separately for each 
use case.

1.4. Research objectives

This study aimed to assess to what extent the prolonged exposition 
to a Multimodal Interface with an indicator of Limits of Automation 
(MILA) addresses the goals proposed by Carsten and Martens (2019), 
considering the learning effect regarding automation and the interface. 
The tested goals were to stimulate an appropriate level of attention and 
intervention, to induce accurate mode awareness, and to induce 
appropriate trust in the system. The goals of Carsten and Martens were 
turned into a general hypothesis and divided into an operational 
hypothesis: (1) a MILA interface stimulates a more appropriate level 
of attention than a Visual Basic Interface (VBI), which would result in 
more gaze fixations on the instrument’s cluster before the suspension 
of driving automation systems and more important mental workload 
for MILA than VBI during the first uses but a decrease after several 
driving sessions; (2) MILA induces a more accurate mode awareness 
than VBI, which would result in more precise mental models in 
shorter periods of time for MILA than for VBI and better control of 
the vehicle when driving automation systems suspended; and (3) 
MILA induces a more important trust in automation than VBI.

2. Method

2.1. Participants

The sample was composed of 40 volunteers (15 women) aged 
39–65 years (M = 53.34, SD = 6.83). This age group was selected 
because its constituents potentially belong to a socio-professional 
category whose financial capacity allows them to acquire a vehicle 
equipped with PDA. They were recruited via the panelist Eurosyn. It 
was required to be able to drive without glasses, to hold a valid driving 
license for at least 3 years, to drive several times a week, to have 
experienced cruise control at least once, and to have a positive attitude 
toward automation (evaluated on a response scale). If volunteers met 
these requirements, they were tested on their crystallized and fluid 
intelligence, and their visual acuity. The cognitive abilities start to 
decline quite early in age (i.e., approximately 20–30 years) and vary 
from one individual to another (Salthouse, 2009). By measuring fluid 
and crystallized intelligence, we ensured that the participants were 
representative of the general population and capable of using 
automated systems. The crystallized intelligence was assessed with the 
WAIS-IV’s Vocabulary test. The goal of the test is to define concepts 
and objects. It consists of 30 items of progressively increasing 
complexity (e.g., the first item is “peaceful,” and the last item is 
“castigate”). A correct answer scores 2 points, a correct but ambiguous 
answer scores 1 point, and a wrong answer scores 0 points. The 
maximum possible score is 57 points. Three consecutive zeros require 

the test to be stopped. Seven volunteers were excluded because they 
failed to define three consecutive concepts. The included participants 
succeeded in defining correctly around half of the concepts (M = 31.8; 
SD = 6.03). Fluid intelligence was assessed with the WAIS-IV’s 
Cancellation test. Volunteers had to cross out targets among distractors 
in a limited time. The score considered the speed of execution and the 
number of correct and incorrect responses (M = 15.98; SD = 12.84). 
Then, the participants took a visual acuity test in which they had to 
read a text with small letters at 60 cm of distance. They rated their 
a-priori trust in automation by answering the question “How much 
trust would you  place in the driving automation system?” on a 
response scale ranging from 0 (low) to 10 (high). The participants 
were randomly assigned to one of two interface conditions. The 
participants signed an informed consent form and were paid 150 
euros for their participation. The majority of the participants had a 
Cruise Control (CC) in their vehicle (n = 27), some had an ACC 
(n = 12), and a few did not have either a CC or an ACC, but already 
used it (n = 2). In all, 16 participants reported using their CC as much 
as possible, 13 use it when the situation seems appropriate, 4 reported 
using it sometimes, and 8 never use it. The functioning of the driving 
automation systems presented in this study varied from conventional 
CC. It was, therefore, expected that previous experience with CC 
would not affect the handling of the PDA. Prior to the experiment, the 
participants were explained the principles of PDA, functioning, and 
situations to use it.

2.2. Materials

2.2.1. Driving simulator
A high-fidelity driving simulator was built for the purpose of the 

CMI Project at IRT SystemX (Palaiseau, France) where this study took 
place (see Figure 1). It was composed of a full-car cab with seven 
visual channels, providing a high-fidelity graphic resolution and 
realistic driving environment. Three visual channels were located in 
front of the vehicle providing a 180° field of view. Three visual 
channels were display screens showing the view from the rearview and 
side mirrors. The remaining visual channel was a virtual instrument’s 
cluster displaying the instrument cluster. The SCANeR software 
version 1.9 (SCANeR Software, 2020) was used to simulate the driving 
environment. The simulated vehicle had an automatic gearbox and 
two modes of automated driving could be  activated (i.e., driving 
assistance and PDA). The steering wheel was controlled by a 
SensoDrive electric motor system (SENSODRIVE, 2020), which 

FIGURE 1

Driving simulator composed of a car with a 180° field of view. 
Adapted/Reproduced with permission from IRT SystemX.

https://doi.org/10.3389/fpsyg.2023.1107847
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Monsaingeon et al. 10.3389/fpsyg.2023.1107847

Frontiers in Psychology 05 frontiersin.org

allowed to produce haptic feedback by applying torque and vibration 
in the steering wheel. Auditory signals in the form of earcons were 
emitted from the driver’s headrest.

2.2.2. Driving automation systems
Driving automation systems were integrated with the simulator to 

simulate the driving automation systems available in today’s vehicles 
equipped with PDAs. A driving assistance (SEA Level 1) and the PDA 
(SAE Level 2) were simulated. The driving assistance was composed 
of only the ACC, and the PDA was composed of an LCA and an 
ACC. They could be activated by pressing buttons on a tactile screen 
on the right part of the steering wheel’s arm. They could be deactivated 
by pressing the same buttons or the brake pedal. Drivers could change 
mode independently between manual driving, driving assistance, and 
PDA. When switching from manual driving to driving assistance, only 
the ACC was activated (LCA could not be activated individually). 
When switching from driving assistance to PDA, the LCA was 
activated in addition to the ACC. When switching from PDA to 
driving assistance, the ACC stayed activated and the LCA was 
deactivated. When switching from PDA to manual driving, both the 
ACC and the LCA were deactivated. When switching from manual 
driving to PDA, both the ACC and the LCA were activated.

The following two limits of the ACC could be reached: maximum 
deceleration and non-detection of the followed vehicle. The maximum 
deceleration limit was reached when approaching a slow vehicle. The 
non-detection of the followed vehicle was reached when fog blocked 
the sensors. There were two limits of the PDA, namely, maximum 
lateral acceleration and non-detection of road markings. The limit of 
lateral acceleration could be reached when passing sharp bends and 
reaching an important lateral acceleration. The limit of detection of 
road markings was reached when the road markings were mostly or 
fully erased. When a limit of PDA was reached, the LCA suspended, 
while the ACC remained active. Once the correct condition for the 
LCA was present, it became active again on its own.

2.2.3. Interface design
The following two interfaces were compared during this study: a 

VBI and a MILA. These two interfaces shared similarities. They both 
presented the speed of the vehicle, the set speed of the ACC, the current 
state of the PDA and driving assistance, the detected road markings, 
the set distance of the ACC and a textual message area (see Figure 2). 

When the distance with the lead vehicle was too close with a Time To 
Collision (TTC) under 4 s, an auditory and visual alert was emitted. 
The alert was played again if TTC was below 2 s. The TTC was 
calculated by dividing the distance to the followed vehicle (m) by the 
speed of the participants’ vehicle (m/s). The two interfaces differed in 
the information they transmitted regarding the state and functioning 
of driving automation systems. The VBI only displayed the states of 
driving automation systems on the instrument’s cluster. It was also the 
case of the MILA, with the addition of an indicator of limits of 
automation, a haptic interface, and an auditory interface.

2.2.3.1. Indicator of proximity to the limits of automation
An IPLA was presented in this interface when the PDA was 

activated. The IPLA informed the drivers about a risk of a transition 
of the state of the PDA, with the objective of allowing them to 
anticipate the transition and act appropriately. Its design was based 
on a prior study and has been improved to reduce the risk of 
inadequate behavior (Monsaingeon et al., 2021). It was displayed on 
the instrument’s cluster in order to be perceived in peripheral vision. 
The limits of the following two systems of the PDA were displayed: 
limits of LCA and limits of ACC, which also provoked a suspension 
of LCA. In both representations, a cloud was displayed with varying 
sizes depending on the proximity to the limits of automation (see 
Table  1). The following two degrees of limits were indicated: a 
moderate size and yellow cloud indicated that limits are getting 
closer but should not be reached, and a large red cloud indicated that 
limits will soon be reached. A pop-up screen appeared in the center 
of the instrument’s cluster when the yellow and red clouds were 
displayed. It represented a visual icon of the event that caused the 
approach of limits (e.g., representation of a bent road), a textual 
message of the cause of approach to the limits, and the action to 
perform to act appropriately.

2.2.3.2. Auditory interface
The auditory interface indicated when a transition of control from 

the system to the driver occurred. It was composed of two earcons. 
The efficiency of the earcons to be perceived and comprehended was 
evaluated in previous studies. One earcon was presented when 
automation transited to ACC only, meaning that it indicated a 
transition of control of lateral movements of the car from the system 
to the driver. It was composed of two descending notes. A second 
earcon was presented when the PDA of automation (ACC and LCA) 
suspended, indicating a transition of control of both lateral and 
longitudinal movements of the car from the system to the driver. It 
was composed of three descending notes. The earcons were validated 
through different experiments to ensure that they were perceived 
and comprehended.

2.2.3.3. Haptic interface in the steering wheel
The following two haptic signals were transmitted through the 

steering wheel: kinesthetic and tactile signals. The settings of the 
haptic interface were tuned after the results of inter-studies. The 
kinesthetic signal consisted in increasing the stiffness of the steering 
wheel when PDA was activated. The tactile signals consisted in 
indicating a transition of control of the lateral movement of the car 
through a low-frequency vibration in the steering wheel. Two soft 
jerks indicated the activation of PDA, and three moderate jerks 
indicated a suspension of PDA. The correct perception and utility of 
the haptic interface were validated in previous experiments.

FIGURE 2

Visual representation of the instrument’s cluster of the VBI, with 
information that was mutual to both interfaces. The driving speed is 
90 km/h. The message box on the left gives information on the 
remaining kilometers on the fuel tank. On the right side, the status 
of activation of driving automation systems and the set speed are 
displayed. In the center of the screen, the detected road markings 
and set distance of the ACC are displayed (blue). Adapted/
Reproduced with permission from IRT SystemX.
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2.2.4. Eye-tracking glasses
Our choice of eye-tracking technique took into consideration the 

areas fixated by drivers during the event of the scenarios. This measure 
allowed evaluating where the participants looked for information 
depending on the situation. The SMI Eye-Tracking Glasses, a pair of 
glasses equipped with infrared sensors to monitor eye movements 
(saccades, fixations, and blinks), and a frontal camera to record the field 
of vision were used. The eye-tracking data were recorded at a sampling 
frequency of 60 Hz. The glasses were connected to a mobile phone 

(Samsung Galaxy Note 4) that allowed us to power the glasses, calibrate 
the gaze measures, display the visual behavior in real time, and store the 
video and audio recordings. Eye-tracking data were extracted using the 
BeGaze version 3.7 software. We also used this software to map the 
fixations. This mapping consisted in associating each recorded fixation 
with an Area Of Interest (AOI) and was carried out by a third-party 
project partner. The AOIs were the instrument’s cluster, the exterior 
environment, and the interior environment. The BeGaze software then 
calculated the fixation count and duration for each AOI.

TABLE 1 Representations of the IPLA depending on the proximity to the limits and the driving automation system.

Type of limit and degree of proximity to 
the limits

Representation of proximity to the limits of automation (central textual 
message)

Limit of ACC

Limits at moderate proximity

(Limited visibility, careful)

Limits at close

proximity (Limited visibility, take back control)

Limit of LCA

Limits at moderate proximity

(Sharp bend, reduce speed to 85 km/h)

Limits at close proximity

(Control the trajectory)

The proximity to the limits of the ACC system is represented by a vertical halo (e.g., fog area). The proximity to the limits of the LCA is represented by a horizontal halo (e.g., bent road). 
Adapted/Reproduced with permission from IRT SystemX.
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2.2.5. Driving scenario
The driving scenarios were created by Nervtech enterprise for this 

study. They depicted highways, national roads, or country roads, with 
moderate surrounding traffic. Between each type of road, the vehicle 
was teleported. The new type of road was announced on the screen of 
the simulator, and a black screen preceded the entry to the new type 
of road. A lead vehicle was always present in front of the driver. The 
scenarios were created not only to simulate a realistic road situation 
but also to control as much as possible the occurring events and 
replicate them for all participants. All scenarios were composed of a 
total of 20 events, each one separated from the other by 90 s. This 
duration was inspired by Beller et al. (2013). Each event lasted from 
10 to 20 s, for a total duration of 30 min of driving. The events were 
(1) bent roads, (2) traffic jams, (3) erased road markings, and (4) foggy 
areas (see Figure 3). These events were chosen according to Renault 
Clio manual because of the possible risk to face a suspension of 
automation depending on the characteristics of the situation. Among 
the 20 events of the scenario, 16 had characteristics that allowed 
driving automation systems to function normally and 4 had 
characteristics that provoked a suspension of driving automation 
systems (i.e., one per type of event). These four events were randomly 
placed in the scenario and were identical for all participants. Each type 

of event was represented an equal number of times (i.e., five times by 
type of event).

2.2.6. Tutorial
Prior to driving in the simulator, an interactive tutorial realized 

on Adobe Xd (version 44.1.12.5) was read by the participants. This 
tutorial aimed to synthesize the functioning of the driving automation 
systems. The tutorial was composed of four parts: (1) an explanation 
of what a driving automation system is, (2) the procedure to activate 
the driving automation systems, (3) a presentation of the limits of the 
driving automation systems, and (4) a summary of the tutorial with 
the experimenter (see Supplementary Figure 1). The description of the 
limits of driving automation systems consisted in presenting the 
following four situations that the driver could encounter during the 
experiment: bent roads, traffic jams, erased road markings, and areas 
of fog. For each situation, a description of the course of the event was 
given step by step, with the presented interfaces and the actions 
required to avoid a hazardous situation.

2.2.7. Instructions
The participants were instructed to drive as much as possible 

with PDA driving automation systems activated during a 30-min 

FIGURE 3

Representation of the driving scenario with the type of road and the type of event. Events marked in black did not affect driving automation systems. 
Events marked in red suspended driving automation systems.
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driving scenario. They could deactivate it whenever considered 
necessary but had to reactivate it as soon as possible if the situation 
allowed it. They had to follow a white vehicle and maintain a constant 
distance from it and not cross it. The participants were instructed to 
drive at maximum legal speed.

2.2.8. Familiarization scenario
A familiarization scenario was completed by the participants to 

initiate them to driving the simulator and automated driving systems. 
This scenario was a 2 × 2 straight highway without other vehicles and 
lasted for approximately 10  min. During this training, the 
experimenter, who was sited behind the participants, helped them to 
get used to the sensations offered by the simulator. They began by 
turning the steering wheel at low velocity, slowly increasing speed, 
and testing the brakes. Then, the experimenter guided the participants 
into activating and deactivating driving automation systems, 
changing the target speed and front vehicle distance, and informed 
them about the interfaces that communicated the state of driving 
automation systems. They witnessed the interfaces in action and were 
finally confronted with a situation during which driving automation 
systems suspended suddenly. They were warned and prepared to 
act accordingly.

2.3. Procedure

Before recruitment, participants filled out questionnaires 
regarding their driving habits. If they were selected for the 
experiment, they were sent explanations regarding the experiment 
and the functioning of PDA-automated vehicles. The participants’ 
appointments were fixed for three driving sessions, one per week for 
3 weeks. Each session lasted about 2 h and 30 min, resulting in a total 
of 7 h and 30 min of experiment per participant. At the beginning of 
the first session, they filled out an informed consent form. Then, the 
procedure of the experiment was explained. Before driving the 
simulator, participants were presented with a tutorial. They were 
instructed to read each page of the tutorial at their own pace for 
approximately 10 min and were free to ask questions. A familiarization 
scenario was completed, and the first questionnaire regarding trust 
toward automated vehicles was filled. The participants then began the 
first experimental scenario. Before each experimental driving 
scenario, the eye-tracking glasses were mounted on the participants 

and calibrated. For all participants, the first experimental scenario 
was a mixed situation scenario (see Figure 4). The experimenter was 
outside the car and did not intervene, except to deal with technical 
issues. Once the scenario was over, the participants were interviewed. 
They then filled out a mental model questionnaire and workload and 
trust rating scales. Four scenarios followed and were focused on 
specific use cases (e.g., scenarios composed only of bent roads). A 
Latin-square design was used to ensure that all orders of scenarios 
were completed with an equivalent number of repetitions. During the 
last session, a mixed situation scenario was performed, similar 
interviews to the previous scenario took place, as well as a semi-
directed interview regarding the opinions of the participants toward 
the different interfaces. Afterward, they filled out the mental model 
questionnaire and workload and trust rating scales. The participants 
were thanked and paid for their participation.

2.4. Experimental design

A two-factor experimental design, mixed between and within 
subjects, considered two levels of interface design, namely, a baseline 
condition represented by VBI and a multimodal interface indicating 
the limits of driving automation represented by MILA, and two levels 
of driving scenario, namely, mixed scenario 1 and mixed scenario 2. 
The interface type was a between-subjects variable. The driving 
scenario was a within-subjects factor.

2.5. Measures

2.5.1. Driving behavior
The driving simulation software allowed to gather vehicle 

parameters. The measures were similar to Langlois and Soualmi 
(2016) and represented the driving performance after a period of 
automated driving. Following Kurpiers et  al. (2020) propositions, 
good driving performance after the suspension of driving automation 
systems is an indicator of accurate mode awareness. The mean 
distance to the center of the lane (i.e., distance between the center of 
the car and the center of the lane in meters) was measured after the 
suspension of automation in the bent road, fog areas, and erased road 
markings scenarios. TH was measured about 5 s before reaching the 
speed of a slow vehicle in traffic jams.

FIGURE 4

Representation of the procedure of the experiment.
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2.5.2. Ocular movements
Gaze positions were coded on a reference image featuring eight AOIs 

(see Supplementary Figure 2). For each AOI, the mean fixation duration 
and the number of fixations were extracted during time windows of 
varying duration depending on the use case (see Table 2). During these 
time windows, the driver could have perceived the use case on the road, 
perceive the information on the interface, react to the use case, and 
return to a nominal situation. The measures during these time windows 
were divided into five periods: (0) preventive information (for curve 
only), (1) normal road before the apparition of the event, (2) information 
of limits of automation for MILA, (3) suspension of driving automation 
systems, and (4) restoration of a normal situation.

The AOIs were gathered into the following two groups: on-path 
(on the road) and instrument’s cluster. The proportion of fixation 
duration on-path (on the road) was calculated by dividing the 
duration of fixation on-path by the total fixation duration. This 
measure was calculated during the period that followed the suspension 
of driving automation systems. The proportion of fixation on the 
instrument’s cluster was calculated by dividing the duration of the 
fixation on the instrument’s cluster by the total duration of fixation. 
This measure was calculated during periods that preceded the 
suspension of driving automation systems.

2.5.3. Rating scales

2.5.3.1. Mental models
A rating scale was designed to evaluate the mental model of 

participants regarding the functioning of driving automation systems 

depending on the encountered uses cases. It was inspired by the 
mental model rating scale for Level 2 and Level 3 vehicles of Forster 
et al. (2019). It was all composed of 11 points response scales, ranging 
from 0 (“strongly disagree”) to 10 (“strongly agree”). It included 17 
items, of which 12 items covered the understanding of driving 
automation systems’ functioning (3 for each use case) and 5 items 
served as distractors. For each item of interest, one end of the rating 
scale was correct and the other one was incorrect (see Table 3 for 
detailed items of interest). Mixed linear models were used on each 
item of interest to evaluate the effect of each variable. The scenario 
and the interface were defined as fixed factors. The participant 
variable was defined as a random factor.

2.5.3.2. Raw task load indeX
A French version of the Raw Task Load index (RTLX; Cegarra and 

Morgado, 2009) workload rating scale was completed after the first 
and last mixed scenarios. This rating scale consists in evaluating the 
workload in six dimensions (i.e., mental demand, physical demand, 
temporal demand, effort, performance, and frustration). The 
participants evaluated the workload of the driving task on a Likert-
style rating scale, ranging from 0 (“low”) to 10 (“high”) for each 
dimension. The total workload index was calculated by summing up 
the ratings of each dimension.

2.5.3.3. Trust in automation
To control that participants’ trust in automation before usage was 

not different between the interfaces groups, they rated their trust in 
automation on a response scale ranging from 1 (“Not at all”) to 10 
(“Totally trust”) by answering the question “How much trust would 
you place in the Highway and Traffic Jam Assist?.” The difference of 
trust before usage was compared between the two groups with the 
Mann–Whitney U-test, with the normality of residues not being 
respected (p < 0.05). The participants reported their trust in 
automation after usage by rating their degree of agreement to the 
affirmation “I trusted the Highway and Traffic Jam Assist during this 
scenario” on a response scale ranging from 1 (“Not at all”) to 10 

TABLE 3 Description of the affirmation of the mental model rating scale.

Use case Affirmation Correct answer Type of knowledge

Curve PDA is able to function in any type of bend. Strongly disagree Existence of a limit of automation

In sharp bends, PDA becomes unavailable than reactivates itself after the bend. Strongly agree Presence of auto-activation

In sharp bends, the ACC turn to suspended state. Strongly disagree Which driving automation system suspends

Erased road 

markings

When road markings are completely or very faded, the ACC and becomes 

unavailable, then reactivates itself.

Strongly disagree Presence of auto-activation

When the road markings are completely erased, PDA will ask you to take over 

the steering wheel.

Strongly agree Existence of a limit of automation

When the road markings are removed, the ACC suspends. Strongly disagree Which driving automation system suspends

Traffic jams The ACC is able to brake to match the speed of the vehicle being followed, 

regardless of the speed of the vehicle being followed.

Strongly disagree Existence of a limit of automation

The ACC is suspended when braking is too important for the system. Strongly agree Which driving automation system suspends

When an important braking occurs, the ACC is suspended. Strongly agree Which driving automation system suspends

Fog areas The PDA is able to operate regardless of fog density. Strongly disagree Existence of a limit of automation

The ACC is suspended when the fog is too dense, then reactivates itself. Strongly disagree Presence of auto-activation

When the fog is too dense, the PDA suspends. Strongly agree Existence of a limit of automation

TABLE 2 Time-windows during which the measures were extracted, 
depending on the use case.

Bent 
road

Traffic 
jam

Fog 
area

Erased 
markings

Before the event 30 5 10 10

After the event 40 35 30 30
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(“Totally”). This rating scale was completed after each driving 
scenario. The mean ratings of trust in automation were calculated for 
mixed scenario 1 and mixed scenario 2 for each group of interfaces. 
The progression of trust between mixed 1 and mixed 2 was assessed 
by subtracting the ratings of the two scenarios. The difference in 
progression between the two interfaces’ groups was compared with 
the Mann–Whitney U-test, with the normality of residues not being 
respected (p < 0.05).

2.6. Analysis

The measures of driving performance, ocular behavior, and 
mental workload were analyzed with mixed linear models. Measures 
of driving performance, visual fixation, and mental models were 
analyzed separately for each use case. They were presented separately 
for each use case. The following variables were integrated as fixed 
factors in the model: scenario (mixed scenario 1 vs. mixed scenario 2) 
and interface (VBI vs. MILA). The interactions between these factors 
were also integrated. The participant factor was integrated as a random 
factor. Bonferroni’s post-hoc tests were carried out when interactions 
were significant.

3. Results

3.1. Driving performance after suspension 
of driving automation systems

The driving performance was analyzed and described separately 
for each type of use cases (see Table 4 for summary). In the bent road 
use cases, the mixed linear model analysis revealed a significant effect 
of the scenario F(1,39) = 12.56, p = 0.001 on the mean central lane 
deviation, with moderate effect size (Cohen’s d = −0.70). The 
participants deviated less from the center of the lane during mixed 
scenario 2 (M = 0.46 m; SD = 0.45) than during mixed scenario 1 
(M = 0.63 m; SD = 0.46). This result suggests that the participants of the 
two interface groups improved their correction of the trajectory of the 
vehicle after the suspension of driving automation systems. No effect 
of the interface and no interaction were found significant. During the 
fog use cases, a main effect of the interface was found on the mean 
central lane deviation F(1,38) = 8.25, p = 0.007, d = −0.65. The 
participants of the MILA interface (M = 0.43 m; SD = 0.25) deviated 
less than participants of the VBI group (M = 0.29 m; SD = 0.16). This 
result suggests that independently of the scenario, drivers of the MILA 
group had better control of the trajectory of the vehicle than drivers 
of the VBI group after the suspension of driving automation systems. 
No effect of the scenario and no interaction were found significant 
(p > 0.05). On roads where lane markings were completely erased, a 
significant effect of scenario was found F(1,39) = 10.17, p = 0.003, 
d = −0.57 on the mean central lane deviation. The participants 
deviated less during mixed scenario 2 (M = 1.07 m; SD = 0.56) than 
during mixed scenario 1 (M = 1.42 m; SD = 0.63). This result suggests 
that drivers of the two interface groups had better control of the 
trajectory of the vehicle after the suspension of automation during 
mixed scenario 2 compared to mixed scenario 1. The effect of the 
interface was not significant, and neither was the interaction in this 
use case (p > 0.05). In the traffic jams use cases, no effect of the 
scenario and interface and no interaction were found significant on 
the TH (p > 0.05).

3.2. Eye-tracking measures

Table  5 details the descriptive statistics of fixation proportion 
depending on the experimental conditions and the use cases. The ratio 
between the total duration of visual fixation on all AIO and the 
duration of visual fixation of the instrument’s cluster is reported. In 
the bent road use cases, the mixed linear model revealed a significant 
effect of the interface F(1,39) = 11.01, p = 0.001, d = 0.76 on the 
proportion of fixation on the instrument’s cluster. The participants 
with the MILA (M = 0.10; SD = 0.15) looked more at the instrument’s 
cluster before a suspension of driving automation systems compared 
with the participants of the VBI (M = 0.02; SD = 0.04). No effect of the 
scenario and no interaction were revealed for this use case. This result 
suggests that IPLA captured the drivers’ visual attention longer than 
VBI before bends in which the automation suspended. In the erased 
marking scenario, the mixed linear model revealed a significant effect 
of the interface F(1,39) = 6.09, p = 0.018, d = 0.59. The participants with 
the MILA (M = 0.13; SD = 0.14) looked more at the instrument’s cluster 
before a suspension of PDA driving automation systems compared 
with the participants of the VBI (M = 0.05; SD = 0.14). No effect of the 

TABLE 4 Descriptive statistics [mean (SD)] of the driving performance 
measures depending on the use case, scenario, and interface condition.

Use case (metric 
and unit)

Scenario Interface condition

MILA VBI

Bent road (mean central 

distance in meters)

Mixed scenario 1 1.12 (0.58) 0.81 (0.36)

Mixed scenario 2 0.64 (0.47) 0.65 (0.39)

Traffic jams (minimal time 

headway in seconds)

Mixed scenario 1 2.61 (0.84) 2.20 (1.33)

Mixed scenario 2 2.25 (0.57) 2.20 (0.69)

Fog area (mean central 

distance in meters)

Mixed scenario 1 0.30 (0.19) 0.43 (0.35)

Mixed scenario 2 0.29 (0.14) 0.43 (0.14)

Erased road markings 

(mean central distance in 

meters)

Mixed scenario 1 1.48 (0.69) 1.36 (0.56)

Mixed scenario 2 1.01 (0.57) 1.14 (0.56)

TABLE 5 Descriptive statistics [mean (SD)] of the proportion of visual 
fixation on the instrument’s cluster before the suspension of automation 
depending on the use case, scenario, and interface condition.

Use case Scenario Interface condition

MILA VBI

Bent road Mixed scenario 1 0.42 (0.36) 0.09 (0.16)

Mixed scenario 2 0.50 (0.32) 0.08 (0.16)

Traffic jams Mixed scenario 1 0.29 (0.19) 0.35 (0.22)

Mixed scenario 2 0.32 (0.25) 0.27 (0.15)

Fog area Mixed scenario 1 0.08 (0.11) 0.08 (0.15)

Mixed scenario 2 0.05 (0.08) 0.06 (0.12)

Erased road 

markings

Mixed scenario 1 0.15 (0.17) 0.06 (0.19)

Mixed scenario 2 0.10 (0.08) 0.04 (0.06)

The reported numbers refer to the ratio between the total duration of visual fixation on all 
AIO and the duration of visual fixation on the instrument’s cluster.
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scenario and no interaction were revealed for this use cases. This result 
suggests that IPLA captured the drivers’ visual attention longer than 
VBI before areas where the erased road markings would cause the 
automation to suspend. In the traffic jam and fog area use cases, no 
effect of the interface and scenario and no interaction were found 
significant (p > 0.05).

3.3. Mental model rating scale

Results of the mixed linear models are reported for the 
questions regarding each use cases that yield significant effects (see 
Table 6 for a summary of descriptive statistics). For the bent road 
use cases and the affirmation “The PDA of automation is able to 
function in any type of bend,” a significant effect of the interface was 
observed F(1,39) = 5.11, p = 0.029, d = 0.60. The participants of the 
MILA group answered better (M = 6.24; SD = 2.98) than the 
participants of the VBI group (M = 4.30; SD = 3.50). A main effect 
of the scenario was also found for this question F (1, 39) = 5.82, 
p = 0.021, d = 0.39. The participants had a more accurate mental 
model after mixed scenario 2 (M = 5.93; SD = 3.58) than after mixed 
scenario 1 (M = 4.66; SD = 3.05). No interaction was found 

significant (p > 0.05). Overall, these results suggest that the MILA 
interface helped drivers form an accurate mental model of the 
existence of a limit to the functioning of the automation in bends 
and that this knowledge improved over time for both 
interface groups.

For the traffic jams use cases, a main effect of the interface was 
observed for the question “The ACC is able to brake to match the speed 
of the vehicle being followed, regardless of the speed of the vehicle being 
followed” F(1,39) = 4.93, p = 0.032, d = 0.57. The participants of the 
MILA group had a better mental model (M = 3.76; SD = 3.50) than the 
participants of the VBI group (M = 2.00; SD = 2.64). This result 
suggests that the MILA interface helped drivers form an accurate 
mental model regarding the existence of a limit of automation in 
traffic jams. No effect of the scenario and no interaction were found 
significant for this question (p > 0.05). A significant effect of the 
scenario was found for the question “The ACC is suspended when 
braking is too important for the system.” F(1,39) = 4.30, p = 0.045, 
d = 0.45. The participants had a better mental model after mixed 
scenario 2 (M = 8.20; SD = 2.44) than after mixed scenario 1 (M = 6.98; 
SD = 2.95). This result suggests that the mental models of drivers in 
both interface groups were improved after multiple encounters with 
the situation.

TABLE 6 Descriptive statistics [mean (SD)] of the scores1 to the mental model rating scales depending on the use case, type of knowledge investigated 
by the question, scenario, and interface condition.

Use case Type of knowledge Scenario Interface condition

MILA VBI

Bent road Existence of a limit of automation Mixed scenario 1 5.48 (2.68) 3.80 (3.24)

Mixed scenario 2 7.00 (3.13) 4.80 (3.75)

Which driving automation system suspends Mixed scenario 1 4.14 (3.05) 5.85 (3.25)

Mixed scenario 2 5.05 (4.06) 6.00 (4.06)

Presence of auto-activation Mixed scenario 1 6.43 (2.80) 5.45 (3.24)

Mixed scenario 2 6.29 (3.51) 4.65 (3.39)

Traffic jams Existence of a limit of automation Mixed scenario 1 3.57 (3.40) 1.25 (1.80)

Mixed scenario 2 3.59 (3.67) 2.75 (3.14)

Which driving automation system suspends Mixed scenario 1 7.33 (2.52) 6.60 (3.36)

Mixed scenario 2 7.95 (2.48) 8.45 (2.44)

Which driving automation system suspends Mixed scenario 1 8.24 (2.53) 6.55 (3.66)

Mixed scenario 2 7.10 (3.27) 7.95 (3.28)

Fog area Existence of a limit of automation Mixed scenario 1 6.76 (2.84) 5.55 (3.49)

Mixed scenario 2 7.57 (3.33) 7.75 (3.06)

Existence of a limit of automation Mixed scenario 1 7.10 (3.71) 5.90 (3.71)

Mixed scenario 2 7.38 (3.68) 8.60 (1.96)

Presence of auto-activation Mixed scenario 1 4.71 (3.33) 5.35 (3.57)

Mixed scenario 2 4.62 (4.18) 6.15 (3.77)

Erased road markings Existence of a limit of automation Mixed scenario 1 7.38 (2.69) 7.50 (3.00)

Mixed scenario 2 8.48 (2.03) 8.45 (2.33)

Which driving automation system suspends Mixed scenario 1 4.81 (3.50) 5.05 (3.59)

Mixed scenario 2 5.33 (4.20) 5.95 (4.10)

Presence of auto-activation Mixed scenario 1 2.86 (3.20) 3.35 (3.05)

Mixed scenario 2 2.00 (3.15) 3.25 (3.45)

1Scores ranged from 0 to 10. Score close to 10 indicates accurate mental models.
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For the fog area use cases, for the affirmation “The PDA of 
automation is able to operate regardless of the fog density,” a main 
effect of the scenario was found F(1,39) = 8.53, p = 0.006, d = 0.47. The 
participants had better mental models in mixed scenario 2 (M = 7.66; 
SD = 3.16) than in mixed scenario 1 (M = 6.17; SD = 3.19). This result 
suggests that the mental models of drivers in both interface groups 
were improved after multiple encounters with the situation. No main 
effect of the interface and no interaction effect were found for this 
question (p > 0.05). For the affirmation “When the fog is too dense, the 
PDA of automation suspends,” a main effect of the scenario was found 
F(1,39) = 5.04, p = 0.030, d = −0.48. The participants had a better 
mental model after mixed scenario 2 (M = 7.98; SD = 3.00) than after 
mixed scenario 1 (M = 6.51; SD = 3.21). This result suggests that mental 
models of drivers in both interface groups regarding which driving 
automation system suspends in fog were improved after multiple 
encounters with the situation. For all questions on erased road 
markings, no significant effect was observed (p > 0.05).

3.4. Trust in automation and mental 
workload

Nonparametric tests were carried out on measures of trust. 
Medians and interquartile range (IQR) are, therefore, reported. IQR 
represents the difference between the 75th and the 25th percentiles of 
the data (Upton and Cook, 1996). Regarding trust in automation 
before usage, the VBI group reported a slightly more important trust 
(Mdn = 7.50; IQR = 1.25) than the MILA group (Mdn = 7; IQR = 2.00). 
However, this difference was not significant (p > 0.05), suggesting that 
the two groups had a comparable a-priori trust before the experiment. 
Regarding trust after usage, a significant effect of the interface on the 
progression of trust across scenarios was found significant U = 122, 
p = 0.017, r = 0.42. The trust of the MILA group progressed more 
importantly (Mdn = 1; IQR = 2) than trust of the VBI group (Mdn = 0; 
IQR = 1). This result suggests that the increase in trust in automation 

between mixed scenario 1 and mixed scenario 2 was larger of the 
MILA group compared with the VBI group (see Figure 5). Regarding 
mental workload, the mixed model revealed a significant effect of the 
interface on the total score of mental workload F(1,38) = 7.04, 
p = 0.012, d = 0.74. VBI’s participants rated mental workload as lower 
(M = 16.2; SD = 7.71) than MILA’s participants (M = 21.6; SD = 7.65). 
Self-evaluated mental workload reduced significantly between mixed 
scenario 1 (M = 21.4; SD = 7.91) and mixed scenario 2 (M = 16.6; 
SD = 7.69; F(1,38) = 19.70, p < 0.001, d = 0.65). No interaction was 
found significant (p > 0.05). These results suggest that MILA interface 
was rated as causing a greater workload than VBI interface, regardless 
of the scenario, and that workload decreased after the mixed scenario 
for both interface groups (see Figure 6).

4. Discussion

This study aimed to evaluate to what extent a MILA stimulates an 
appropriate level of attention and intervention, induce accurate mode 
awareness, and create appropriate trust in automation, compared to a 
VBI interface, considering learning effects. In a driving simulator, 
drivers reacted to driving automation systems’ suspensions and had 
either one of the two interfaces. Their driving performance, ocular 
behavior, mental models, and self-evaluation of trust and mental 
workload were gathered. The following hypotheses were tested: (1) a 
MILA interface stimulates a more appropriate level of attention than 
a VBI interface, which would translate into more gaze fixations on the 
instrument’s cluster before the suspension of driving automation 
systems, heavier mental workload for MILA than VBI on first usages, 
but a decrease after multiple driving sessions; (2) MILA induces a 
more accurate mode awareness than VBI, which would translate into 
more precise mental models in shorter periods of time for MILA than 
for VBI and better driving behavior when driving automation systems 
suspended; and (3) MILA induces a greater trust in automation 
than VBI.

4.1. Attention stimulation

Regarding the stimulation of attention, results of ocular 
behavior measurements revealed that the drivers’ gaze before the 
suspension of automation was influenced by the interface. The 
participants of the MILA group gazed more importantly at the 
instrument’s cluster in the bent road and erased markings use cases. 
In these situations, the MILA interface appeared to have oriented 
the attention of the driver to the instrument’s cluster. This reveals 
that the monitoring loop of the drivers was solicited and focused on 
information regarding the state of the vehicle. This would be an 
indicator that this interface allows to put back the drivers in the 
loop and potentially avoid out-of-the loop phenomenon in these 
situations. These results are coherent with those of Monsaingeon 
et al. (2021), who found that an indicator of limits of automation 
was taken into account by drivers in their decision of action. 
However, these results were not observed in the traffic jam and for 
area use cases. This can be explained by the fact that the visual 
resources are heavily exploited in these situations. The fog areas 
demand focused vision to control the vehicle, and the traffic jams 
imply braking to avoid collision with the followed vehicle.

FIGURE 5

Graphic representation of the mean score to the trust scale, 
depending on the interface and the moment of the measure. Error 
bars represent the standard deviations.

https://doi.org/10.3389/fpsyg.2023.1107847
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Monsaingeon et al. 10.3389/fpsyg.2023.1107847

Frontiers in Psychology 13 frontiersin.org

The MILA interface was more demanding than the VBI interface 
according to the subjective workload measurement. It appears that 
orienting the attention of the driver on the instrument’s cluster has an 
attentional cost. Both interfaces were rated as causing a very low 
mental workload. With both interfaces, workload decreased after the 
second scenario, indicating that the cost of using the driving 
automation systems and interfaces decreased. It was expected that the 
workload of the MILA interface’s group decreased more importantly 
than that of VBI. However, the increasing workload is not necessarily 
detrimental to driving performance. The Malleable Resources Theory 
(Young and Stanton, 2002) postulates that attentional resources are 
dependent on the difficulty of a task. When the task is too easy, the 
level of available resources decreases, causing degradation of 
performance. An interface that induces a more important workload 
might increase the difficulty of the driving task and avoid cognitive 
underload. Overall, the MILA appears to have induced an appropriate 
level of attention in the bent road and erased marking situations.

4.2. Mode awareness

The interface influenced the behavioral and knowledge 
dimensions of mode awareness. The quality of mental models was 
more accurate for the MILA group regarding knowledge about 
automation’s behavior in bent roads and traffic jams. These results 
regarding traffic jams are in line with Seppelt and Lee (2019) who 
found that continuous displays induced more accurate mental models 
on limits while traveling at a slow speed. However, the mental models 
were not better for MILA’s group regarding the erased marking and 
fog areas. In these situations, information on the instrument’s cluster 
was presented for a short period of time (3 s), on the contrary to traffic 

jams (8 s) and bent roads (20 s). The participants might not have been 
able to read the information and were not fully aware of the limits and 
actions to perform in these situations. This highlight that time is 
necessary for the drivers to integrate complex information. Moreover, 
an area of the instrument’s cluster was highlighted to indicate that only 
the LCA will suspend, and another area indicated that both the ACC 
and the LCA will suspend. Drivers might have not perceived the 
difference, explaining why questions regarding mental models on 
which system is suspended depending on the situation did not lead to 
better results. The results also revealed that knowledge regarding the 
limits of automation was influenced by the long-term usage of driving 
automation systems. These results were coherent with Forster et al. 
(2019) findings who showed that multiple driving sessions are 
necessary to form accurate mental models. However, it was expected 
that the mental model’s formation would be faster with the MILAs 
group thanks to the indicator of limits of automation, which was not 
observed. It appears, therefore, that the MILA interface had an 
immediate effect on mental models and was not influenced by 
multiple usages. Following the suggestions of Boelhouwer et al. (2019), 
in-car information impacts the formation of mental models. Our 
results also show that the modality and type of information is a factor 
in the formation of mental models. However, the extent to which 
mental models are correlated with driving performance is dependent 
on the type of situation encountered.

Regarding driving performance, participants had better driving 
performance after the suspension of automation in the fog area. This 
effect was not influenced by the learning effect, meaning that it 
occurred during the first interaction with automation. However, 
MILA’s interface did not impact driving performance in all other use 
cases. In contrast to Seppelt and Lee’s (2019) results, the multimodal 
interface did not allow to increase TTC in traffic jam situations where 

FIGURE 6

Graphic representation of the mean global RTLX scores, depending on the interface and the driving scenario. Error bars represent the standard 
deviations. *Significant difference (p < 0.05).
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emergency braking was necessary. One key difference between Seppelt 
and Lee’s study and ours is that their auditory feedback was 
continuously emitted, while we used discrete auditory signals after 
reaching the limit of automation. Continuous auditory signals might 
allow to better anticipate the suspensions. Regarding the learning effect 
on driving performance, results revealed that drivers tended to perform 
better during the last scenario compared with the first scenario in bent 
roads and erased road markings situations. In these situations, drivers 
had to control the direction of the car, as only the LCA suspended 
while the ACC stayed activated. This finding highlights the importance 
of experience with automation when needed to react to surprising 
suspensions. Contrary to what we  expected, the interface did not 
influence the capacity of drivers to learn to react to suspensions.

4.3. Relation between mental models and 
driving performance

Overall, the results of mental model questionnaires and driving 
performance indicate an asymmetry between knowledge about the 
system’s limit and the application of the correct driving behavior. 
Mental models were improved by the multimodal interface regarding 
the limits of automation in bent roads and erased markings, but the 
driving performance was not improved in these situations. Kurpiers 
et  al. (2020) indicated a link between knowledge and behavior 
dimensions of mode awareness. But how the knowledge pillar 
interacts with the behavioral pillar? Our results suggest that improved 
knowledge about the system’s limit does not automatically lead to 
improved driving behavior. According to Rasmussen’s (1983) SRK 
model, knowledge and rule-and skill-based behavior are supported by 
different types of information. Knowledge behavior is based on 
symbols, while skill and rule behavior is supported by signs. Our 
indicator of limits of automation used both symbols and signs. 
Symbols (icons + text) indicated the cause of the limit of automation 
that would be reached and the action to perform. The sign was a halo 
with varying sizes and colors to indicate the proximity to the limits. 
Our results tend to show that the symbols were more used in the bent 
road and erased marking situations, leading to better mental models. 
It appears that symbols were prioritized to the detriment of signs, 
leading to better mental models, but not better driving performance. 
It might be possible that symbols require more attentional resources 
than sings and that they cannot be processed in parallel. Another 
argument in favor of this idea is that in the fog areas, driving behavior 
was better for the MILA interface group, while the gazes on the 
instrument’s cluster were not more important. This means that drivers 
did not acquire the symbols proposed on the instrument’s cluster and 
based their behavior on signs. Signs proposed in the IPLA might that 
have been perceived in peripheral vision, inducing better driving 
performance, but not feeding mental models.

4.4. Trust in automation

Trust in automation was influenced by the interface, leading to a 
more important increase in trust for the MILA group compared with 
the VBI group. This result is coherent with previous work on indicators 
of reliability and limits of driving automation systems (Beller et al., 
2013; Helldin et al., 2013). The relationship between mental models 

and trust in automation was discussed by Seppelt and Lee (2019), who 
showed that improved mental models lead to an increase in trust. Our 
results confirm that suggestion. Furthermore, it appears that mental 
models can be improved regarding only specific aspects of driving 
automation systems’ functioning, and it will generally impact trust. 
Indicating the limits of driving automation systems can lead to small 
effects on mental models, but a generally positive effect on trust in 
driving automation systems. Interestingly, the trust of the MILA group 
improved even if driving behavior only slightly improved. An 
explanation for that would be  that explicit knowledge about the 
driving automation systems is more important than objective behavior 
in trust construction. The quantity of information of MILA, evaluated 
as significantly more cognitively demanding compared to VBI, was 
also being related to improved trust. Giving more information to 
drivers about the automation’s functioning appears to be reassuring 
and could lead to a more acceptable technology.

4.5. Limitations

Several limitations can be reported in this study. The main limitation 
is that some factors might have reduced realism in the drivers’ experience. 
A trade-off between the ecology of situations and experimental control 
was necessary. Passing by 20 events at a regular pace during a 30-min 
drive is not a daily occurrence. The events were very controlled to ensure 
replicability for each participant. The only vehicles present around the 
drivers were those that were relevant for the event. Therefore, it missed 
elements like vehicles crossing or pedestrians to make the situations 
realistic. Moreover, the rhythm to which the event occurred could have 
made the driving sequences soporific, creating boredom for drivers and 
reducing their reaction time to suspensions of driving automation 
systems. The fact that drivers were equipped with eye-tracking glasses 
might also have reduced immersion and the realism of their reactions. 
We oriented toward this type of eye-tracking device to gather high-
accuracy measures. Eye-tracking devices integrated into the vehicle 
could make the simulation more immersive but are often less accurate. 
A second limitation concerns the mental model questionnaires. The 
exact identical questionnaires were given after each scenario. Even 
though the relevant questions were mixed with distractive questions, the 
mental model of the participant might have been forged according to this 
question. Future studies should aim to develop mental model 
questionnaires that avoid repetitions.

4.6. Conclusion and future research

This study offers a novel insight into how interface design can 
improve the interaction between a human and an automated driving 
system. Its originality resides in the fact that novice drivers learned to 
use automation and that their experience was evaluated with objective 
and subjective measures. The participants recruited were 
representative of the population that buys PDA vehicles. The results 
revealed that multimodal interfaces with a limit of automation impact 
attention allocation and intervention, although this effect is context 
and situation dependent. It allows to improve mental models on 
specific knowledge but appears to have a limited impact on driving 
behaviors in risky events. This study highlights that improved 
knowledge about driving automation systems does not necessarily 

https://doi.org/10.3389/fpsyg.2023.1107847
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Monsaingeon et al. 10.3389/fpsyg.2023.1107847

Frontiers in Psychology 15 frontiersin.org

lead to improved driving behavior. It appears that indicators of limits 
of automation should integrate symbols when it aims to improve 
mental models and integrate signs when it aims to improve driving 
performance. The relationship between knowledge and behavior 
should be further studied to shed better light on their interaction. 
Even though this study takes into account the learning of drivers with 
3 driving sessions separated by 1 week, some authors suggested that 
2–3 weeks of daily use is necessary to master the usage of ACC 
(Weinberger et al., 2001). More time is maybe necessary to master the 
usage of ACC coupled with LCA. The answer to how mental models’ 
knowledge transfer to driving behavior might reside in time. Future 
studies should investigate the long-term usage of multimodal 
interfaces with limits of automation to evaluate this transfer.
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