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Previous longitudinal assessment experiences for multidimensional continuous 
latent constructs suggested that the set of anchor items should be proportionally 
representative of the total test forms in content and statistical characteristics and that 
they should be loaded on every domain in multidimensional tests. In such cases, the 
set of items containing the unit Q-matrix, which is the smallest unit representing the 
whole test, seems to be the natural choice for anchor items. Two simulation studies 
were conducted to verify the applicability of these existing insights to longitudinal 
learning diagnostic assessments (LDAs). The results mainly indicated that there is no 
effect on the classification accuracy regardless of the unit Q-matrix in the anchor 
items, and even not including the anchor items has no impact on the classification 
accuracy. The findings of this brief study may ease practitioners’ worries regarding 
anchor-item settings in the practice application of longitudinal LDAs.
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Introduction

In educational and psychological measurement, cognitive or learning diagnostic assessments 
(LDAs) aim to provide diagnostic feedback on the current state of student learning (Rupp et al., 
2010). With the popularity of formative assessments, longitudinal LDAs, which evaluate students’ 
latent attributes (e.g., knowledge and skills) and identify their strengths and weaknesses over a 
period, have received attention from researchers in recent years. By utilizing longitudinal LDAs, 
researchers can describe students’ learning development trajectories and verify the effectiveness of 
remedial interventions (e.g., Chen et al., 2017; Zhan et al., 2019a; Tang and Zhan, 2021).

Several longitudinal diagnostic classification models (DCMs) have been proposed to provide 
methodological support for data analysis in longitudinal LDAs (for a review, see Zhan, 2020), such 
as the higher-order latent structural model-based models (e.g., Huang, 2017; Zhan et al., 2019a; Pan 
et al., 2020; Zhan and He, 2021) and the hidden Markov model (or latent transition analysis)-based 
models (e.g., Chen et al., 2017; Kaya and Leite, 2017; Madison and Bradshaw, 2018; Wang et al., 
2018). Currently, however, as a fresh research topic, there are still some issues in longitudinal LDAs 
that have not been explored clearly, besides model development, hindering their practical application.

Past approaches to modeling latent construct change have been based on repeated measurement 
data from multiple administrations of the same test or parallel tests at different occasions. In practice, 
especially for high-stake educational assessments, the use of the same test at multiple occasions is 
not always feasible. In addition, perfectly parallel tests do not exist; thus, the variation in results on 
different occasions may be partly due to the non-parallelism error of the instruments, which is 
difficult to quantify. A more commonly observed practice of test administration over time involves 
different test forms that share a common set of items called anchor-items rather than using the same 
test repeatedly or parallel tests (Kolen and Brennan, 2004; Paek et al., 2014; Zhan et al., 2019a). 
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Unfortunately, the anchor-item setting in longitudinal LDAs has not yet 
been systematically studied.

There have been a great number of studies on the comparability 
between raw scores and estimates of latent constructs on different 
occasions, both in classical test theory and item response theory (e.g., 
Embretson, 1991; Kolen and Brennan, 2004; von Davier et al., 2011). 
Typically, to establish a common scale, one must have a common set of 
anchor items that are shared across occasions. In longitudinal studies, 
because the same group of respondents took the test multiple times, the 
anchor items were set primarily to allow changes in observed scores to 
be attributed to changes in latent constructs rather than differences in 
item parameters on different occasions. Experience suggests that 
assessments should have at least 20% of the length of a total test to 
anchor the parameters to the common scale (Kolen and Brennan, 2004). 
However, since the latent constructs are treated as multidimensional 
discrete variables in LDAs, the applicability of those recommendations, 
mainly from tests for the unidimensional continuous latent construct, 
to longitudinal LDAs still needs to be explored.

Despite the lack of research, experience from multidimensional tests 
still gives us some insight into the anchor-item setting in longitudinal 
LDAs (Kolen and Brennan, 2004; Wang and Nydick, 2020). First, the set 
of anchor items is suggested to be proportionally representative of the 
total test forms in terms of content and statistical characteristics. Second, 
anchor items are suggested to be  loaded on every domain in 
multidimensional tests. Third, to help ensure similar behavior, each 
anchor-item is suggested to occupy a similar location (item number) on 
different occasions.

Currently, in the field of longitudinal LDAs with anchor items, there 
are some studies that follow those insights (e.g., Zhan et al., 2019a) and 
some that do not (e.g., Zhan, 2020), but none of them specify the reasons 
for this or explore the impact of the anchor-item setting. For example, 
in Zhan et al. (2019a) studies, the first 20% of items on each occasion 
were set as anchor items, and each anchor item examined each attribute 
separately, namely, the correspondence between anchor items and 
attributes expressed by a unit Q-matrix1, such as 1 0
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







 for 

two attributes.
In LDAs, the set of items containing the unit Q-matrix is the 

smallest unit that can represent the whole test in terms of content and 
statistical characteristics. Previous research has found that the unit 
Q-matrix is critical for the completeness of the Q-matrix and the 
identifiability of the DCM (Gu and Xu, 2020). The purpose of 
constructing the Q-matrix is to achieve the complete differentiation of 
all latent classes in the latent variable (class) space, which is also the 
main purpose of LDA. And the unit-Q matrix is the necessary condition 
to achieve that purpose (Chiu, 2013; Gu and Xu, 2020; Wang et al., 
2020). Therefore, in terms of achieving the main purpose of LDA, the 
set of items containing the unit Q-matrix seems to be the natural choice 
for anchor items.

However, a recent study of the hidden Markov model-based 
longitudinal DCM pointed out that no anchor items are necessary in 
longitudinal LDAs because the scale for DCMs in non-arbitrary 
(Madison and Bradshaw, 2018) or the interpretation of attribute is 
deterministic (Ma et al., 2021). The results of Madison and Bradshaw 

1 Also known as the reachability matrix (Tatsuoka, 1986) for structurally 

independent attributes, which specifies the direct and indirect relationships among 

the attributes.

(2018) study indicated that even in tests without anchor items, the 
hidden Markov model-based longitudinal DCM can classify 
respondents accurately and reliably. However, since their study only 
explored the pre-test/post-test scenario (i.e., longitudinal 
assessments with two occasions), it is not clear whether their 
conclusion is applicable to LDAs with more occasions, and whether 
it is applicable to the higher-order latent structural model-based 
longitudinal DCMs.

Overall, although existing studies can provide some insights, the 
research on anchor-item settings in longitudinal LDAs is relatively 
lacking, which hinders the application of anchor-item design in 
longitudinal LDAs. This study focuses on three questions to explore the 
impact of anchor-item setting on diagnostic classification accuracy of 
the higher-order latent structural model-based longitudinal DCMs in 
longitudinal LDAs with more than two occasions. Whether it is 
necessary to set the items containing the unit Q-matrix as anchor items? 
if so, whether increasing the anchor-item ratio is beneficial to increase 
diagnostic classification accuracy? if not, whether it is necessary to set 
anchor items?

For simplicity and without loss of generality, the longitudinal 
higher-order deterministic-inputs noisy and gate (Long-DINA) model 
(Zhan et  al., 2019a), which is a representative higher-order latent 
structural model-based longitudinal DCM, was used in this study. The 
rest of the paper starts with a brief review of the Long-DINA model, 
followed by two simulation studies to explore the impact of various 
anchor-item settings on classification accuracy in longitudinal 
LDA. Finally, the authors summarized the findings and discussed 
potential directions for future research.

Brief review of longitudinal 
higher-order deterministic-inputs noisy 
and gate model

Let ynit be the item response of person n (n = 1,..., N) to item i (i = 1,..., 
I) at occasion t (t = 1,..., T). The long-DINA model can be expressed 
as follows:

First order:
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Second order:
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Third order:
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(3)

where λ0it and λ1it are the intercept and interaction parameters for item 
i at occasion t, respectively; αnt = (αn1t,..., αnKt)’ denotes person n’s 
attribute profile at occasion t, αnkt∈{0, 1}; qikt is the element in an I-by-K 
polytomous Q-matrix at occasion t; θnt is person n’s general ability at 
occasion t; βk and δk are the slope and difficulty parameters of attribute 
k on all occasions, respectively, since the same latent structure is 
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assumed to be invariance at different occasions; μ = (μ1,..., μT)’ is the 
mean vector, and Σ is the variance–covariance matrix:
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where σ1T is the covariance of the first and Tth general abilities. As  
a starting and reference point for subsequent occasions, θn1 is 
constrained to follow a standard normal distribution, which is μ1 = 0 and 
σ1

2 1= . The mean values and variances of θnt (t ≥ 2) are free to estimate. 
When T = 1, the Long-DINA model is reduced to the higher-order 
DINA model for cross-sectional data analysis (de la Torre and 
Douglas, 2004).

Simulation studies

Two simulation studies were conducted to explore the impact of 
various anchor-item settings on classification accuracy in longitudinal 
LDAs. Study 1 aims to explore whether setting the items containing the 
unit Q-matrix as anchor items would be  beneficial in increasing 
diagnostic classification accuracy, while Study 2 aims to explore the 
influence of different anchor-item ratios on the diagnostic classification 
accuracy. Study 1 is the basis for Study 2, and we separated these two 
studies mainly to avoid the interaction between different operational 
variables, which may cause difficulties in the interpretation of the results.

Simulation study 1

Design and data generation
For ease of expression, Q and Qa were used to denote the Q-matrix 

of the whole test and that of the anchor items, respectively, and R was 
used to denote the unit Q-matrix. Three factors were manipulated. First, 
the number of items on each occasion was set at It = 20 and 30. Second, 
the sample size was set at N = 100 and 500. Third, five conditions were 
set for anchor-item settings (see Table 1). Also, the number of required 
attributes was fixed to K = 4, and the number of occasions was fixed to 
T = 3. A total of 100 data sets were generated in each simulated condition.

On each occasion, the Q was generated as Q = (R, R, Q*)T, to ensure 
the identifiability of the DCM (Gu and Xu, 2020), where the R is a 4 × 4 
unit Q-matrix and the Q* was randomly combined from 11 possible 

attribute patterns that required more than one attribute2. Since anchor 
items were located at the same location on three occasions, when some 
items in Q* were selected as anchor items, the qits of them on the 
subsequent occasions (t ≥ 2) were fixed to the ones on the first occasion, 
qi1. The Q was regenerated in each replication; namely, 100 Qs 
were generated.

Five simulated conditions were considered (see Table 1): (1) four 
items outside R (i.e., in Q*) were designated as anchor items; (2) four 
items inside R were designated as anchor items; (3) eight items 
outside R were designated as anchor items; (4) four items inside and 
four items outside R were designated as anchor items; and (5) eight 
items inside two Rs were designated as anchor items. Figure  1 
displays the sample Qs with 20 items (the 30-item one just has 10 
more items in the back). In the Q on each occasion, the first two 4 × 4 
unit matrices were the two Rs, and the remaining items in the Q* 
were randomly generated and different in each replication. The 
different color areas and their combinations correspond to the five 
simulated conditions in Table 1. For example, the blue and red areas 
correspond to simulated condition 4. As already noted in the 
introduction, existing experience suggests that anchor items should 
occupy the same position at different item points, so to control for 
possible position effects, we  fixed the anchor-item positions 
throughout the studies.

On each occasion, following the setting of Zhan et al. (2019b), item 
parameters were generated from a bivariate normal distribution with a 
negative correlation coefficient, as follows:
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In such cases, there was a moderate negative correlation between the 

generated guessing (i.e., 
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guessing and slipping presented a positively skewed distribution 
(average ≈ 0.1, minimum ≈ 0.01, and maximum ≈ 0.6), which was more 
realistic than fixing them to a specific value (Zhan et al., 2019b). When 
some items were selected as anchor items, the item parameters of those 
items on subsequent occasions (t ≥ 2) were fixed to those on the 
first occasion.

Additionally, for the latent structural parameters, δk  were all set as 
1.5 and ββ = − −( )′1 0 5 0 5 1, , ,. .  for the four attributes. For general abilities, 
the correlations among them were set at 0.9. Between two consecutive 
occasions, the overall mean growth (i.e., µ µt t− −1 ) was set as 0.5, and 
the overall scale change (i.e., σ

σ
t

t−1
) was set as 1 25. . The general 

abilities on T occasions were generated from a T-way multivariate 
normal distribution according to Eq. 3. On each occasion, the true 
attribute profile for each person was generated according to Eq.  2. 
Finally, the observed item responses were generated from Bernoulli 
( pnit ), where pnit  was given in Eq. 1.

2 Namely, (1100), (1010), (1001), (0110), (0101), (0011), (1110), (1101), (1011), (0111), 

and (1111).

TABLE 1 Anchor-item settings in Study 1.

Condition Number of 
anchor 
items

Number of 
R in anchor 

items

Anchor-
item 

location

1 4 0 9 ~ 12

2 4 1 1 ~ 4

3 8 0 9 ~ 16

4 8 1 1 ~ 4 and 9 ~ 12

5 8 2 1 ~ 8

There are 20 or 30 items on each occasion; anchor items were located remained the same on 
three occasions.
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Analysis
The parameters of the Long-DINA model were estimated using full 

Bayesian estimation via the Markov Chain Monte Carlo algorithm, which 
was implemented in the JAGS software (Plummer, 2015). The JAGS code 
for the Long-DINA model can be found in Zhan et al. (2019c).

For each dataset, two Markov chains were used, and 10,000 
iterations were run for each chain. The first 5,000 iterations in each chain 
were discarded as burn-ins. The remaining 5,000 iterations (each chain 
had 5,000 iterations) were run for the model parameter estimation. The 
potential scale reduction factor (PSRF; Brooks and Gelman, 1998) was 
computed to assess the convergence of every parameter. Values of PSRF 
less than 1.1 or 1.2 indicate convergence. Our results indicated that the 
PSRFs were almost less than 1.1, suggesting good convergence for the 
specified setting.

Also, the attribute correct classification rate (ACCR) and pattern correct 
classification rate (PCCR) were computed to evaluate the classification 

accuracy of attributes as ACCR
I
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where I(·) was an indicator function, 

αnkr and α nkr  was the true and estimated status of person n for attribute k 
on occasion r, respectively; αnr and αα nr  was the true and estimated attribute 
profile of person n on occasion r, respectively; N was the sample size, and 
Re was the number of replications. Following Zhan et al. (2019a), two kinds 
of PCCR were considered: PCCR on each occasion and longitudinal PCCR 
(LPCCR) for all occasions. The former focuses on whether K = 4 attributes 
on a given occasion can be correctly estimated, while the latter focuses on 
whether all T × K = 12 attributes can be correctly estimated.

Results
Figures  2, 3 display the recovery of the attributes and the 

recovery of latent ability in Study 1, respectively. Except for some 
findings that are consistent with previous studies (e.g., classification 
accuracy increased with time, with more items, and with a larger 
sample size), the main focus of this study was on the performance 
differences of the five conditions. Obviously, the recovery of 
attributes and ability do not vary greatly under different conditions, 
especially when the sample size increased from 100 to 500, the 

consistency of the results under all conditions was higher. The results 
of Study 1 answered the first question of this study, that is, it seems 
that there is no need to set the items containing the unit Q-matrix as 
anchor items.

Simulation study 2

Design, data generation, and analysis
Five ratios of anchor items were considered: 0, 20, 40, 60, and 80% (see 

Tables 2, 3). For the last four conditions, items containing one R were used 
as anchor items in all four conditions, and the number of items outside R 
was increased to operate the simulated conditions to avoid the influence 
of the number of unit Q-matrices. The data generation process and the 
data analysis process were consistent with those in Simulation Study 1.

Results
Figures 4, 5 display the recovery of the attributes and the recovery 

of latent ability in Study 2, respectively. Obviously, the classification 
accuracy and recovery of latent ability were quite similar across all 
conditions, indicating that simply increasing the ratio of anchor items 
outside the unit Q-matrix does not contribute substantially to 
classification accuracy. It is worth noting that even without any anchor 
items, the classification accuracy and recovery of latent ability were 
basically consistent with other conditions. The results of Study 2 
answered the last two questions of this study, that is, different anchor-
item ratios did not affect classification accuracy, and also, not having 
anchor items had no effect on classification accuracy.

Conclusion and discussion

Previous longitudinal assessment experiences for multidimensional 
continuous latent constructs suggested that the set of anchor items 
should be  proportionally representative of the total test forms in 
content and statistical characteristics, and that they should be loaded 
on every domain in multidimensional tests. In such cases, the set of 
items containing the unit Q-matrix, which is the smallest unit 
representing the whole test, seems to be the natural choice for anchor 
items. To verify the applicability of these existing insights to 
longitudinal LDAs, two simulation studies were conducted. The results 
mainly indicated that there is no effect on the classification accuracy 

FIGURE 1

Sample Q-matrices with 20 items in Study 1. Gray means “1” and blank means “0”; occasion is in parentheses; simulated condition 1 contains anchor-items 
in the red area; simulated condition 2 contains anchor-items in the blue area; simulated condition 3 contains anchor-items in the red and yellow areas; 
simulated condition 4 contains anchor-items in the blue and red areas; simulated condition 5 contains anchor-items in the blue and green areas.
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regardless of the unit Q-matrix in the anchor items, and even not 
including the anchor items has no effect on the classification accuracy. 
The findings of this study may ease practitioners’ worries regarding 
anchor-item setting in the practice application of longitudinal LDAs.

The results of this brief study support Madison and Bradshaw 
(2018) view that no anchor items are necessary in longitudinal LDAs. 
This view applies not only to the hidden Markov model-based 

longitudinal DCM but also to the higher-order latent structural model-
based longitudinal DCM. In addition, the findings of this study may 
ease practitioners’ worries regarding anchor-item setting in upcoming 
practice applications; namely, practice applicants do not seem to 
be overly worried about how anchor items are set in longitudinal LDAs, 
and even the absence of anchor items does not affect the accuracy of 
classifying respondents.

FIGURE 2

Recovery of attributes in Study 1. I, number of items; N, sample size; Occasion is in parentheses; C1, four items outside R were set as anchor items; C2, four 
items inside R were set as anchor items; C3, eight items outside R were set as anchor items; C4, four items inside and four items outside R were set as 
anchor items; C5, eight items inside two Rs were set as anchor items; R, unit Q-matrix. ACCR, attribute correct classification rate; PCCR, attribute pattern 
correct classification rate on each occasion (4 attributes); Longitudinal PCCR, PCCR on all three occasions (12 attributes).

FIGURE 3

Recovery of ability in Study 1. I, number of items; N, sample size; Occasion is in parentheses; C1, four items outside R were set as anchor items; C2, four 
items inside R were set as anchor items; C3, eight items outside R were set as anchor items; C4, four items inside and four items outside R were set as 
anchor items; C5, eight items inside two Rs were set as anchor items; R, unit Q-matrix; RMSE, root mean square error.
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FIGURE 4

Recovery of attributes in Study 2. I, number of items; N, sample size; ACCR, attribute correct classification rate; PCCR, attribute pattern correct classification 
rate on each occasion (four attributes); LPCCR, PCCR on all three occasions (12 attributes); Occasion is in parentheses; C1, ratio of anchor items is 0%; C2, 
ratio of anchor items is 20%; C3, ratio of anchor items is 40%; C4, ratio of anchor items is 60%; C5, ratio of anchor items is 80%.

While this brief study focused on longitudinal assessments with three 
time points, the conclusions are applicable to longitudinal assessments 
with more than three time points as well. Supplementary Figure S1 depicts 
the attribute recovery in the simulated conditions with four time points of 
the two typical anchor item settings (no anchor item and four items inside 

R). The results indicated that the classification accuracy for both anchor 
settings remained high consistent across varied simulated conditions.

Previous researches which conducted in CTT and IRT have found 
that a certain percentage of anchor items are needed; however, in LDA, 
the attributes on different occasions are on the same scale because the 
interpretation of attribute is deterministic (Madison and Bradshaw, 2018; 
Ma et al., 2021). This essential difference leads to attribute estimates at 
different occasions that are naturally on a same scale, without the need to 
build linking between them through anchor items. Of course, due to the 
unobservability of latent variables, we  cannot determine in advance 
whether the analyzed latent variables satisfy the binary certainty 
assumption. In recent years, some researchers have started to pay attention 
to the problem of non-determinism or continuity of attributes (e.g., Zhan 
et al., 2018; Ma et al., 2022). A more interesting direction is to explore how 
model misspecification and particularly the violation of binary certainty 
assumption of attributes will affect the use of anchor items.

Although the findings of this study are valuable in guiding how to 
set anchor items in the practical application of longitudinal LDA, the 
current study only considered some simple cases and still left some 
issues for further discussion. First, this study explores the performance 
of only one longitudinal DCM (i.e., the Long-DINA model) under 
different anchor item settings. Whether the findings would apply equally 
to other longitudinal DCMs [e.g., generalized DINA (de la Torre, 2011)-
based longitudinal model] warrants further study. Second, only the 
commonly used internal anchor items, in which the score on anchor 
items contributes to the respondents’ total score on the test, were 
considered in this study. Whether the findings apply to the longitudinal 
LDA with external anchor items is still worth further study in the future. 
Third, the simulated conditions in this study follow some insights from 
experience (Kolen and Brennan, 2004), such as each anchor item being 
fixed at the same location on different occasions and anchor items being 
loaded on every domain (i.e., attributes), and did not explore the impact 

TABLE 2 Anchor-item settings for conditions with 20 items in Study 2.

Condition Ratio of 
anchor 

items (%)

Number of 
anchor 
items

Anchor-
item 

location

1 0 0 –

2 20 4 1 ~ 4

3 40 8 1 ~ 4 and 9 ~ 12

4 60 12 1 ~ 4 and 9 ~ 16

5 80 16 1 ~ 4 and 9 ~ 20

Anchor items were located remained the same on three occasions; anchor items contain a unit 
Q-matrix (i.e., items 1 ~ 4) under all conditions, except condition 1.

TABLE 3 Anchor-item settings for conditions with 30 items in Study 2.

Condition Ratio of 
anchor 

items (%)

Number of 
anchor 
items

Anchor-
item 

location

1 0 0 -

2 20 6 1 ~ 4 and 9 ~ 10

3 40 12 1 ~ 4 and 9 ~ 16

4 60 18 1 ~ 4 and 9 ~ 22

5 80 24 1 ~ 4 and 9 ~ 28

Anchor items were located remained the same on three occasions; anchor items contain a unit 
Q-matrix (i.e., items 1 ~ 4) under all conditions, except condition 1.
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of anchor item setting under conditions that violate these insights. 
Fourth, to focus on the research topic, this brief report ignored the effect 
of some factors on classification accuracy, such as item quality, attribute 
hierarchy, misspecified Q-matrix, and local dependence between the 
responses to anchor-items. Fifth, herein, all item parameters of the same 
item were assumed to be invariant over time. However, item parameter 
drift might be expected for anchor items, and in that case, more work 
would be required to address this issue.
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