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Reliable and transparent in-vehicle 
agents lead to higher behavioral 
trust in conditionally automated 
driving systems
Skye Taylor 1,2†, Manhua Wang 1† and Myounghoon Jeon 1*
1 Mind Music Machine Lab, Grado Department of Industrial and Systems Engineering, Virginia Tech, 
Blacksburg, VA, United States, 2 Link Lab, Department of Systems and Information Engineering, 
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Trust is critical for human-automation collaboration, especially under safety-critical 
tasks such as driving. Providing explainable information on how the automation 
system reaches decisions and predictions can improve system transparency, which 
is believed to further facilitate driver trust and user evaluation of the automated 
vehicles. However, what the optimal level of transparency is and how the system 
communicates it to calibrate drivers’ trust and improve their driving performance 
remain uncertain. Such uncertainty becomes even more unpredictable given that 
the system reliability remains dynamic due to current technological limitations. To 
address this issue in conditionally automated vehicles, a total of 30 participants 
were recruited in a driving simulator study and assigned to either a low or a high 
system reliability condition. They experienced two driving scenarios accompanied 
by two types of in-vehicle agents delivering information with different transparency 
types: “what”-then-wait (on-demand) and “what + why” (proactive). The on-
demand agent provided some information about the upcoming event and delivered 
more information if prompted by the driver, whereas the proactive agent provided 
all information at once. Results indicated that the on-demand agent was more 
habitable, or naturalistic, to drivers and was perceived with faster system response 
speed compared to the proactive agent. Drivers under the high-reliability condition 
complied with the takeover request (TOR) more (if the agent was on-demand) and 
had shorter takeover times (in both agent conditions) compared to those under 
the low-reliability condition. These findings inspire how the automation system 
can deliver information to improve system transparency while adapting to system 
reliability and user evaluation, which further contributes to driver trust calibration 
and performance correction in future automated vehicles.
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1. Introduction

For years, psychologists, human factors specialists, engineers, and designers have been 
trying to find ways to improve user performance, acceptance, and trust with automated systems 
(Chen et al., 2018; Van de Merwe et al., 2022). With automated vehicles (AVs) just on the 
horizon of possibility for consumers, researchers have found that many factors influence human 
interactions with automation. The level of driving automation (LOA) (Cramer et al., 2008), 
presence and type of in-vehicle agent (IVA) (Dong et al., 2020), reliability of the system, and 
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transparency of the system (Wright et al., 2020) are all some of the 
variables that influence user experience with AVs. The research 
surrounding reliability and transparency in automation has been 
thoroughly studied but resulted in mixed conclusions when it comes 
to the interactions between these two factors, in terms of trust 
and performance.

According to the Society of Automotive Engineers (SAE), fully 
automated vehicles are not currently available to consumers (SAE 
International, 2022). There are, however, vehicles on the roads that are 
considered conditionally automated. Our study explores human 
interaction with a conditionally automated vehicle, which requires drivers 
to take over control of the vehicle under certain circumstances, such as 
low visibility or technical failures (SAE International, 2022). The objective 
of this study is to investigate the effects of reliability and presentation of 
transparent system information in the context of conditionally automated 
driving. We are led by the following research questions:

RQ1: How do system reliability and information transparency 
influence drivers’ behavioral trust (i.e., a measure of trust based 
on quantifiable behavior, Adali et al., 2010; for the purposes of this 
study, measured as the number of takeover compliances) and 
performance when doing so?

RQ2: How do system reliability and information transparency 
affect drivers’ overall experience of the intelligent agent?

For the purposes of this study, the agent’s reliability and information 
presentation were manipulated to determine the effects of these variables 
on takeover, performance, and experience with the agent. Reliability was 
represented as the level of information accuracy. The highly reliable 
agent’s information was always accurate, and the unreliable agent shared 
some inaccurate information about the driving scenario. To elicit 
transparency from a robotic agent to a human user, the following “Robot-
to-human” information factors are required: intention, task, analytics, and 
environment (Lyons, 2013). We designed two types of transparent agents, 
“what”-then-wait (on-demand) vs. “what + why” (proactive), each 
including all these factors and conveying the information via auditory 
message. The “what” information included factors regarding intention 
and environment, whereas the “why” information included factors 
regarding analytics and task. To examine the effects of information 
presentation, we manipulated how the “what” and “why” information 
pieces were conveyed to the user. The proactive agent provided both 
“what” and “why” information to the user in one instance. The 
on-demand agent only provided the “what” information unless the system 
was prompted to provide the “why” information by the user.

The unique contribution of the present study is twofold. First, the 
empirical data can help unpack the relationship between the system 
reliability and driver trust and show how the in-vehicle agent’s 
presentation of transparent information can mitigate its effects on 
driving behavior. Second, the results of the study can provide practical 
design guidelines for in-vehicle agents’ transparency with respect to 
system reliability.

1.1. Related work

1.1.1. Trust
Trust is defined as “the attitude that an agent will help achieve an 

individual’s goals in a situation characterized by uncertainty and 

vulnerability” (Lee and See, 2004). This concept of trust is one of the 
main factors which influences people’s intentions to use AVs 
(Panagiotopoulos and Dimitrakopoulos, 2018). In the present study, 
we look at compliance as a measure of behavioral trust (Adali et al., 
2010), meaning that the participants’ behavior indicates that they trust 
the agent/system. Although necessary for the adoption of AVs, trust 
is complex as it depends on many specific factors. One of the effective 
ways to improve driver trust and acceptance in AVs is to provide a 
tangible interface–such as a physical or virtual agent– to communicate 
system intentions and behaviors (Lee et al., 2019). In-vehicle agents 
(IVAs) have been proposed and evaluated in a wide context from 
manual driving (Johnsson et al., 2005; Nass et al., 2005; Maciej and 
Vollrath, 2009; Williams et al., 2013; Jeon et al., 2015), conditionally 
automated driving (Du et al., 2021; Mahajan et al., 2021; Wang et al., 
2022), and fully autonomous driving (Large et al., 2019; Wang et al., 
2021; Lee and Lee, 2022), to promote driver-automation interaction 
and improve driver performance.

Furthermore, although increased trust facilitates the reliance on 
automation, it can cause complacency and degrade monitoring 
performance of the driver (Parasuraman et  al., 1993; Bailey and 
Scerbo, 2007), where monitoring is a critical user task in the context 
of conditional AVs because users are required to intervene and 
respond to system failures. Therefore, trust and automation have an 
“interdependent relationship” and must be  properly calibrated to 
ensure the safe and effective use of automation (Lee and See, 2004). 
The influence of trust on performance has been studied across 
disciplines. In economics it has been shown to follow an inverted 
U-shape pattern with performance, where performance increases as 
trust increases until a certain point at which over-trust results in 
degraded performance (Villena et al., 2019). This has also been seen 
in the context of automation (Muir and Moray, 1996; Chancey et al., 
2017). Two major factors in determining how to bolster and/or 
calibrate trust in AVs are examined in the present study: transparency 
and reliability.

1.1.2. Reliability
Though ideal, AVs (along with the interfaces and in-vehicle agents 

integrated in the system to aid drivers) at their current technological 
evolution are not 100% reliable. Thus, an examination of how different 
levels of reliability impact drivers’ trust and performance is required. 
Reliability can be based on a machine’s ability to do what is asked of it 
when it is asked. When working with agents and assistants of 
automation, reliability can mean that the information they share is 
accurate. Decreased levels of system reliability have shown negative 
effects on users’ interactions with the system (Bliss and Acton, 2003). 
Also, previous research on automation reliability solidified that 
increased system reliability results in increased trust in and 
perceptions of the system (Kantowitz et al., 1997; Fox and Boehm-
Davis, 1998; Bailey and Scerbo, 2007; Wright et al., 2020; Azevedo-Sa 
et al., 2021). However, in terms of takeover performance in automated 
vehicles, there are inconclusive results regarding the influence of the 
system reliability. For example, in an online study, Lanzer et al. (2021) 
showed that unreliable automation led to higher willingness to 
takeover. On the other hand, Zang and Jeon (2022) showed that a 
combination of high reliability and high transparency level led to 
higher maximum lateral acceleration in takeover, and a combination 
of low reliability and low transparency level also led to the similar 
outcome. Therefore, more research is still required on the effects of 
system reliability in automated vehicles.
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Because trust is significantly increased when the reliability of 
an automated system is high, this results in complacency, which 
leads to degraded performance in monitoring the automation, 
despite better performance on secondary tasks (Bailey and Scerbo, 
2007; Azevedo-Sa et  al., 2021). Even when high reliability has 
shown improved human-automation performance, it was mainly at 
the 80% (Hanowski et al., 1994) and 100% (Mourant et al., 2015) 
levels. Our study will examine 100 and 67% reliability levels in 
terms of information accuracy.

1.1.3. Transparency
The content and mode of the automation’s information 

presentation has a significant effect on trust (Lee and See, 2004). Trust 
in automated driving systems is specifically influenced by the level of 
information offered (Cramer et al., 2008). When using agents to assist 
human-interaction with automation, an understanding of the agents’ 
behavior is paramount for a beneficial interaction (Pokam et al., 2019). 
This level and mode of information sharing can be  attributed to 
system transparency. Seong and Bisantz (2008) defined transparency 
as, “the extent to which the inner processes and decisions of an 
automation are made accessible.”

There are multiple benefits to transparent systems including 
improved performance, reduced human errors, and bolstered trust 
(Alonso and de La Puente, 2018). Many studies have exhibited 
increased trust in automation when the transparency of the system is 
increased (Entin and Entin, 1996; Cramer et al., 2008; Fan et al., 2008; 
Lyons, 2013; Mercado et al., 2016; Chen et al., 2018; Oliveira et al., 
2020; Hartwich et al., 2021). However, when information about the 
system’s uncertainty level is presented, trust may decrease (Stowers 
et al., 2020).

Generally, increased transparency improved performance in 
human-agent teaming (Helldin et al., 2013; Koo et al., 2015; Bagheri 
et al., 2022; Shull et al., 2022). On the contrary, when working in time-
sensitive contexts, such as driving a conditional AV, too much 
transparency can decrease performance due to the time needed for the 
system to present (and the user to process) the additional information 
(Stowers et  al., 2020). Additionally, certain scenarios require less 
information so as not to overwhelm the operator (Bhaskara et al., 
2020). Thus, the transparency of the system must be tailored to the 
available decision time (Entin and Entin, 1996).

How to deliver the correct type and amount of information to 
AV operators has been studied previously. Pokam et  al. (2019) 
following Lyons’s principles of transparency, confirmed that some 
types of information are necessary for the safe operation of AVs. 
Namely, “information acquisition” (what the system understands 
about its environment) and the “action execution” (what the system 
plans to do in response) are essential for situation awareness (SA). 
Furthermore, according to the Situation Awareness-based Agent 
Transparency (SAT) model for automation, developed by Chen 
et al. (2018), SA and trust are greatly increased when the systems’ 
plan of action, reasoning process, and projections/expected 
outcomes are provided (SAT levels 1, 2, and 3, respectively) (Chen 
et al., 2018). Yet, when time sensitivity is a factor, the combination 
of all three of these information levels improves trust but decreases 
SA and performance, compared to when only SAT levels 1 and 3 
are jointly provided (Bhaskara et  al., 2020; van de Merwe 
et al., 2022).

1.1.4. The interaction of reliability and 
transparency

If the transparency of a system is determined by the information 
provided to the user, then the reliability of that information is expected 
to influence the users’ performance and perceptions of that system. 
Nevertheless, only a few significant effects have been found between 
these two factors, and the results are mixed. Using an automation 
assistant in an automated target recognition task, Entin and Entin 
(1996) found that increased transparency resulted in the best 
performance when the reliability of the assistant was high, but the 
same level of transparency resulted in the worst performance when 
the system reliability was low, indicating complacency. However, a 
study on the reliability and transparency of a vehicle’s collision 
avoidance system found that increasing the amount of information via 
auditory messages negated the positive impact of a highly reliable 
system due to information overload (Mourant et al., 2015). This could 
be explained by Van de Merwe’s et al. (2022) findings that increased 
transparency has positive effects on SA up to a certain point, where 
too much information begins to diminish users’ SA and in turn, 
performance. However, Seong and Bisantz’s (2008) findings contradict 
this notion and claim, rather, that increased transparency mitigates 
decreased performance caused by low reliability. In terms of trust, 
increased transparency has shown to mitigate trust degradation 
caused by low reliability, but having little transparency in an unreliable 
system does not seem to influence trust (Kraus et al., 2020; Wright 
et al., 2020).

These contradictory findings suggest that further investigation is 
required to better understand the mechanisms between these 
variables. This study aims to explore the individual and interactive 
effects of reliability and presentation of transparent information on 
users’ trust, perceptions of in-vehicle agents, and performance in the 
context of a conditionally automated vehicle.

2. Method

2.1. Participants

A total of 30 participants (12 females) with normal vision or 
corrected-to-normal with glasses or contact lenses completed the 
study. The average age of participants was 24.57 (SD = 3.84). All 
participants held valid driver’s licenses with an average driving 
experience of 6.53 years (SD = 3.07). Participants’ driving frequency 
ranged from 1 time per week to 20 times, with an average of 6.16 times 
(SD = 3.89) per week. Participants provided informed consent and 
were compensated with a $10 cash payment for their participation.

2.2. Apparatus and stimulus

The Nervtech driving simulator (Nervtech™, Ljubljana, Slovenia) 
containing a car seat, steering wheel, and sport pedals was used for this 
study. Three large monitors provided a 120° horizontal view and 
consisted of three 48-inch HD TVs. The driving scenarios were 
developed using the SCANeR Studio, a driving simulation software 
program developed by the AV Simulation, run on a computer with an 
i7–8,086 K CPU and Nvidia GTX 1080 graphics card. Two driving 
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scenarios were developed to simulate conditionally automated vehicles. 
Two driving scenarios consisted of both highway and urban roads, 
traffic signals and signs, and other road users such as pedestrians and 
other vehicles. All the traffic follows the speed limit, ranging from 
50 km/h (31 mph) to 130 km/h (81 mph) depending on the traveling 
area (e.g., urban area, highway). All the vehicles were controlled by the 
traffic module within the SCANeR studio and traveled at the speed 
limit. The simulated subject vehicle had control of longitudinal and 
lateral motion for most of the time along a predefined route at the 
speed limit, while also handling limited road events such as following 
traffic lights and navigating intersections. When the automation system 
reached its limits due to suboptimal weather, or lighting conditions or 
surprising events, a speech takeover request (TOR) would be issued to 
notify the participants to take over control of the vehicle. The takeover 
time budget for the construction and severe weather events varied 
depending on the location and the event. These time budgets were 
tested in our pilot study to ensure that participants had sufficient time 
to react. If the participant decided to comply with the TOR, they could 
disengage the automated mode by either using a toggle attached to the 
steering wheel or pressing the brake. After the participant negotiated 
out the takeover event zone, the system prompted them to reengage the 
automated mode via a speech message, “Please reengage the auto-
drive.” If participants decided not to comply with the TOR, the driving 
system would avoid collision with the obstacle in order to avoid distress 
from a crash in the simulator, which resulted in a shattered windshield 
and loud crashing noise. Each scenario consisted of three takeover 
events and two non-takeover events, lasting approximately 7 min. The 
routes differed in the specific events that occurred and the terrain 
covered across the two scenarios to mediate learning effects. Scenario 
1 started at a stop light and the AV drove through a town for 
approximately 3.5 min before encountering the first TOR. The second 
scenario started on a highway and the AV encountered the first TOR 
after approximately 1.5 min. More details about the driving scenarios 
can be seen in Supplementary Tables S1, S2.

Two humanoid robots were used as in-vehicle agents (IVAs): Milo, 
by Robokind, and NAO, by SoftBank Robotics. Figure 1 shows the 
experimental set-up with NAO as the IVA. When Milo was used, the 
robot was placed at the same position as NAO. We decided to use 
embodied agents considering their potential benefits of enhancing the 
co-presence of the automation system and improving trust toward the 
system (Hock et al., 2016).

2.3. Experimental design

A 2 [Reliability: low vs. high] x 2 [Transparent information 
presentation: “what + why” (proactive) vs. “what”-then-wait 
(on-demand)] mixed factorial design was used, with reliability as a 
between-subjects variable and transparency as a within-subjects 
variable. Fifteen participants were assigned to the high-reliability 
condition, where 100% of the information presented was accurate. 
The remaining 15 participants experienced the low-reliability 
condition. Participants’ gender was balanced between two groups. 
In the low-reliability condition, the “unreliable agent” provided the 
driver with statements with only 67% accuracy for a certain event. 
Within the low-reliability condition, one of three information 
pieces was inaccurate. Supplementary Tables S1, S2 present the lists 
of agent intervention scripts. Within each reliability group, 
participants had two driving scenarios corresponding to two 
transparency conditions. They always experienced the proactive 
type of transparency condition first, meaning that the agent 
provided “what” was occurring in the scenario or “what” was the 
driver’s action commanded by the system, followed by the “why” 
information that clarified the reason behind it including system 
recognition and how it recognized. Then, participants experienced 
the on-demand type of transparency condition in their second 
drive, where they were only provided with “what” information, and 
the participants then had the opportunity to ask for more 
information up to two times. The sequence of transparency 
conditions was not balanced intentionally to show participants what 
types of information were available when the on-demand condition 
was implemented, but the matching between driving scenarios and 
transparency conditions was fully counterbalanced to minimize the 
order effects.

Agents with different transparency conditions were presented 
using two robots mentioned before. We  intentionally utilized 
different robots to further distinguish two types of in-vehicle 
agents in terms of transparency condition. To prevent the 
appearance of the robot as a confounding variable, the orders for 
which each robot was assigned to the transparency condition were 
fully counterbalanced. Half of the participants had Milo as the 
proactive type of agent and NAO as the on-demand type agent; the 
remaining half of the participants experienced the 
opposite combination.

FIGURE 1

Experimental setup (left) and the two robots, Milo (middle), and Nao (right) used as embodied agents.
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2.4. Dependent measures and data 
preprocessing

Both objective and subjective measures were used to evaluate the 
effects of reliability and transparency on drivers’ performance and 
perception. Objective measures mainly included takeover request 
(TOR) compliance (Zang and Jeon, 2022) and takeover performance. 
The number of times participants complied with the agents’ TOR was 
collected as an indicator for their decision-making. Takeover 
performance included takeover time and motor vehicle control. 
Takeover time was used as a temporal measure for takeover 
performance. The takeover time (in seconds) was calculated by the 
time difference between when the agent completed the takeover 
message segment (i.e., “please take over”) and when the auto-drive was 
disengaged if the participant chose to comply with the takeover 
request (Figure 2). Vehicle speed during the manual control period 
after takeover was used to assess the post-takeover maneuver that was 
applicable to all takeover events. The average, minimum, and 
maximum speeds (in m/s) were acquired to create a diverse profile for 
the longitudinal control. We also collected the maximum and standard 
deviation of the steering wheel angle (in rad) to assess participants’ 
lateral motor control after takeover. These two measures were analyzed 
separately for the lane-changing required event (i.e., construction) and 
non-lane-changing required events (i.e., fog, tunnel, and rain/fog).

Each participant completed four takeover events in each of the 
two driving scenarios. A total number of 231 data points resulting 
from 30 participants were collected for each takeover performance 
measure, excluding 9 instances where participants did not comply 
with the TORs. For each measure, values exceeding six standard 
deviations were reviewed and corrected if a programming error was 
detected, or removed if a true outlier was determined. The average 
values for the remaining data were calculated for each condition 
before conducting further analysis.

In addition to the takeover performance, subjective ratings of the 
two different agents were collected using previously validated 
questionnaires. The Subjective Assessment of Speech System Interfaces 
(SASSI) (Hone and Graham, 2000) scale was used to capture 
participants’ perception toward the in-vehicle agent as a speech user 
interface with a total of 34 items on six dimensions using a 7-point 
Likert scale: System Response Accuracy (9 items), Likability (9 items), 
Cognitive Demand (5 items), Annoyance (5 items), Habitability (4 
items), and Speed (2 items). Participants’ trust toward the agent-
automation system was evaluated by the Trust in Automation System 
scale, which included 12 items on 7-point Likert scales (Jian et al., 
2000). Finally, participants’ perceived workload was measured via the 

NASA-Task Load Index (TLX) (Hart and Staveland, 1988). 
Participants’ preference toward the agent type was also collected (e.g., 
“Which voice agent do you prefer while driving?”). Their reasons 
behind the preferences were also collected.

2.5. Procedure

Upon arrival to the lab space, participants were asked to read and 
sign the informed consent that was approved by the university 
Institutional Review Board (IRB# 19–088). Before the formal testing, 
participants underwent a practice simulation following the Georgia 
Tech Simulator Sickness Screening Protocol (Gable and Walker, 2013), 
which also helped them get familiar with the simulation scenarios and 
the takeover process. Participants not suspected to have a simulation 
sickness tendency continued to complete the demographic 
questionnaire. Then, the participants were instructed that they were 
going to experience two driving scenarios in a conditionally automated 
vehicle, where they did not need to drive the entire time, but the 
in-vehicle agent would request them to take over control of the vehicle 
for certain events. Participants were also instructed that they did not 
have to comply with the takeover request; however, if they decided to 
take over the control, they must hand over the control upon system 
request. All participants went through the proactive type of 
transparency condition in their first drive, then completed the 
on-demand type transparency condition in their second drive. 
Additionally, participants were further instructed that the agent would 
only give them an initial piece of information about a certain event. 
Participants were informed that they could ask for more information 
by saying “more information,” and then the agent would provide more 
detail about the event (see Supplementary Tables S1, S2). After 
completing each drive, participants completed both the subjective 
questionnaires and NASA-TLX. Their preference toward the agent 
type was also collected. The study lasted approximately 60 min.

3. Results

Two-way repeated measures analysis of variance (ANOVA) was 
performed to understand differences in participants’ takeover 
performance and their subjective ratings. If any significant interaction 
effect was identified, a simple main effect analysis was conducted to 
further understand how reliability and transparency were interacted. 
For the number of compliances, independent-samples Manny 
Whitney U Tests was used. For the qualitative data collected for 

FIGURE 2

Takeover event process.
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preference explanation, Affinity Diagrams (Holtzblatt and Beyer, 
2017) was used to reveal common themes.

3.1. Reliability manipulation check

To validate that our manipulation on the reliability level was 
perceived accurately, we used one of the items in the System Response 
Accuracy subscale from SASSI– “The system was accurate” –as 
perceived reliability. Results from an independent samples t-test 
indicated that participants under the high reliability condition rated a 
higher degree of agreement on this statement (Mean = 5.73, SD = 0.82) 
compared to the ratings of those under the low reliability condition 
(Mean = 4.87, SD = 0.26): t (28) = 2.23, p = 0.017. Thus, our 
manipulation of system reliability was successful. The success of 
reliability manipulation can also be  supported by participants’ 
comments at the conclusion of the study: the study:

“There were number of wrong information, and I did not feel safe or 
reliable using the system.” (P26 under low reliability condition)

3.2. Number of times more information 
was requested

We counted how many times participants asked for “more 
information” with the on-demand agent. For each event, participants 
could ask twice, resulting in 10 potential times for each participant. A 
total of 9 out of 30 participants did not request any more information 
(Figure 3, left). Results from a paired samples t-test indicated that the 
total number of times that a participant requested more information 
did not differ significantly between low reliability and high reliability 
groups: t (14) = 2.05, p = 0.67. We then looked at the number of events 
where participants requested further explanation. Only three 
participants asked for information for more than four events (Figure 3, 
right). The number of events in which more information was asked 
did not differ significantly between the two groups: t (14) = 2.05, 
p = 0.81. Thus, we anticipate that the information difference between 
participants who requested and did not request more information was 
small and would not have substantial influence on participants’ 
performance and subjective ratings.

3.3. Number of compliances with takeover 
request

Independent-samples Manny Whitney U Tests were performed to 
understand participants’ compliances with the takeover request 
(TOR). For proactive agents who always presented information at 
once, there was no significant difference in the number of compliances 
between participants under low reliability and high reliability 
conditions, U = 105, z = −0.48, p = 0.63 (Figure 4A). However, with 
on-demand agents, participants under the low reliability condition 
complied less frequently than those under the high reliability 
condition, U = 82.5, z = −2.11, p = 0.035 (Figure 4B).

3.4. Takeover performance

Participants did not select different takeover methods (use the 
toggle vs. press the brake) across different conditions: χ 2(3) = 0.42, 
p = 0.92. Thus, the subsequent takeover performance analysis did not 
differentiate these two methods.

3.4.1. Takeover time
Agent reliability had a significant main effect on drivers’ takeover 

time: F (1, 28) = 4.80, p = 0.037, η p
2 = 0.15. Participants had a longer 

takeover time when the agents provided unreliable information 
(Mean = 2.45 s, SD = 1.10s) compared to the agents providing reliable 
information (Mean = 1.54 s, SD = 1.10s; Figure 5). Transparency did 
not show a significant main effect on takeover time: F (1, 28) = 0.01, 
p = 0.91.

3.4.2. Post-takeover maneuver
The results indicated that reliability and transparency had a 

significant influence on speed-related measures. An interaction effect 
between reliability and transparency was found only on the maximum 
speed: F (1, 28) = 5.08, p = 0.032, η p

2 = 0.15. Under the low reliability 
condition, participants drove faster when under the proactive 
condition (Mean = 24.93 m/s, SD = 3.74 m/s) compared to when they 
received only “what” information at first (Mean = 23.56 m/s, 
SD = 2.87 m/s; Figure 6A).

There was no main effect of either reliability or transparency on 
the minimum speed or the average speed after participants took over 
the control (Figures 6B,C).

FIGURE 3

Frequency distribution for the number of times more information was requested.
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As for the lateral motor control, for the lane-changing required 
event (i.e., construction), reliability did not have a significant effect on 
the maximum steering wheel angle (MAX_STW): F (1, 21) = 2.82, 
p = 0.108, or the standard deviation of the steering wheel angle (SD_
STW): F (1, 25) = 1.62, p = 0.215. Transparency showed no significant 
main effect on these two measures either [MAX_STW: F (1, 21) = 0.99, 
p = 0.33, SD_STW: F (1, 25) = 0.065, p = 0.801].

For non-lane-changing required event (i.e., tunnel, fog, and 
jaywalker), reliability showed a tendency that participants had a 
slightly higher MAX_STW (Mean = 0.11 rad, SD = 0.04 rad) and SD_
STW (Mean = 0.076 rad, SD = 0.01 rad) when the agents provided 
reliable information compared to the unreliable agents (MAX_SD: 
Mean = 0.077 rad, SD = 0.04 rad; SD_STW: Mean = 0.065 rad, 
SD = 0.01). But this tendency did not reach statistical significance 
[MAX_STW: F (1, 28) = 3.99, p = 0.056, η p

2 = 0.13, and SD_STW: F (1, 

28) = 3.30, p = 0.080, η p
2 = 0.11]. Transparency did not have a 

significant main effect on either [MAX_STW: F (1, 28) = 0.52, 
p = 0.478, or SD_STW: F (1, 28) = 2.14, p = 0.155].

3.5. Subjective ratings on driver-agent 
interaction

Results from repeated measures ANOVA revealed a significant 
main effect of transparency on the Habitability F (1, 28) = 7.68, 
p = 0.010, η p

2 = 0.22 and (System Response) Speed F (1, 28) = 5.33, 
p = 0.029, η p

2 = 0.16, subscales of SASSI. Agents with “what”-then-
wait type of transparency were perceived as more habitable, 
meaning that the user’s conceptual understanding of the system was 
similar to that of the actual system (Hone and Graham, 2000; 
Figures 7A,B).

We did not observe any significant main effect of either reliability 
F (1, 28) = 1.98, p = 0.17, η p

2 = 0.07 or transparency F (1, 28) = 0.14, 
p = 0.71, η p

2 = 0.01 on perceived trust toward the agents (Figure 7C).
Considering that the appearance of the two agents used in our 

study was different, we also evaluated whether such a difference would 
affect driver trust. A paired samples t-test indicated that the agent’s 
appearance did not have a significant influence on driver trust, t 
(29) = 1.48, p = 0.14 (two-tailed).

3.6. Perceived workload

We only found a significant main effect of transparency on 
participants’ perceived effort: F (1, 28) = 4.08, p = 0.05, η p

2 = 0.13. 
Participants perceived that they had to work more to accomplish their 
levels of performance when the agent only presented “what” 
information first. No significant differences were found on other 
dimensions or overall workload. See Supplementary Table S3 for all 
NASA-TLX ratings.

FIGURE 4

Number of compliances with TOR when accompanied by the what-and-why agent (A) and the “what”-then-wait agent (B).

FIGURE 5

Takeover time across all conditions (*p < 0.05) [Error bars indicate 
standard errors].
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3.7. Agent preference

Eighteen out of thirty participants (60%) favored the agents 
that proactively provided “what + why” information at once. The 
affinity diagrams organizing participants’ explanations indicated 
that such preference came from the additional information 
provided by the proactive agent, the explanation on the action 
required, the time saved from reducing extra information 
acquisition, the resulting positive perception toward the system 
(e.g., “more knowledgeable”), and their own behaviors (e.g., “I 
felt more confident”; Figure 8, top). However, not all participants 
found that the additional information was helpful but rather 
distracting. The additional information can be overloading and 
demanding, especially when it was considered “unnecessary” 
(Figure 8, bottom).

The remaining 12 participants (40%) preferred the agents that 
only provided “what” information at first. In contrast to the proactive 
agent, the on-demand agent was less distracting and concise (Figure 9, 
top). The extra information request created a sense of control and 
fulfilled the information needs as necessary (Figure 9, top). However, 
most participants perceived that the lack of information yielded great 
uncertainty, thus, generated anxiety (Figure 9, bottom). Participants 
also argued that the extra step of pulling information can be dangerous 
under time pressure during the takeover events.

4. Discussion

The objective of the present study was to investigate the effects of 
embodied in-vehicle agents’ reliability and information transparency 
on users’ takeover performance and trust in conditionally automated 
vehicle systems. Although we did not identify any changes in users’ 
subjective trust, we observed different levels of behavioral trust (i.e., 
the number of compliances) in response to system reliability and 
transparency. Our results indicate that although the system reliability 
has the decisive impact on the takeover time, the influence of system 
reliability on drivers’ takeover performance also largely depends on 
the system transparency. Additionally, the system transparency has 
greater impact on the driver perception toward the in-vehicle agents.

4.1. System reliability and transparency 
impact behavioral trust (RQ1)

Our findings indicated that the effect of reliability on drivers’ 
willingness to comply with the takeover requests (TORs) might 
depend on the agent type. When the agent proactively provided “what 
+ why” information at once, drivers did not exhibit different takeover 
behaviors in terms of compliance. However, when the agent provided 
information on-demand, drivers complied less with the TORs if the 

FIGURE 6

Maximum (A), Minimum (B), and Average (C) Speed across all conditions (*p < 0.05) [Error bars indicate standard errors].

FIGURE 7

Habitability (A), System Response Speed in SASSI (B), and Trust in Automation (C) across all conditions (*p < 0.05) [Error bars indicate standard errors].
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system reliability was low with 67% information accuracy compared 
to when it was high with 100% accuracy. Compliance with a system 
serves as an indirect measure of user trust in automated systems 
(Chancey et  al., 2017): higher trust is associated with a greater 
tendency to comply (Fox and Boehm-Davis, 1998). The compliance 
pattern found in our study indicated that an automation system that 
provided additional explanations (i.e., what + why) hindered drivers’ 
ability to build appropriate trust toward systems with different levels 
of reliability. Even when the message included inaccurate information 
in the low reliability condition, drivers still developed the same high 
level of trust toward the unreliable agents as they developed their trust 
toward the reliable agents (Figure 4). Forming such high-level trust 
not matching with the system’s low capability can lead to overreliance 
on an automation system, which further predicts potential system 
misuse–overlooking the automation limitations and relying on it 

inappropriately (Lee and See, 2004). In case of uncertainties, limiting 
the information provided might be a solution to prevent over trust. 
Our findings indicated that without such explanations, drivers were 
less likely to comply with the system because they experienced 
difficulties forming an understanding of the system functions and 
thus, challenged the necessities of takeover.

Our findings indicate that if drivers decided to take over control, 
system reliability would play a critical role in drivers’ takeover time. 
With a low reliable system providing only 67% accurate information, 
drivers had a significantly longer takeover time compared to their 
reaction with a highly reliable system providing 100% accurate 
information. Figure 10 depicts a conceptual model of the takeover 
process adapted from Zeeb et al. (2015) and McDonald et al. (2019). 
In safety-critical takeover events presented in our study, a faster 
takeover time ensured the driver adequate time to be ready to regain 

FIGURE 8

Participants’ comments on their like and dislike of “what + why” agent.
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control of the vehicle and develop appropriate strategies to negotiate 
the hazardous situations. However, with inaccurate information 
provided from an unreliable system, drivers had longer latency in the 

cognitive processing and action selection stage, where they had to 
reevaluate the information after redirecting their gaze on the road and 
searching for confirmative information. Then, they were able to take 

FIGURE 9

Reasons behind likes and dislikes toward the “what”-then-wait agent.

FIGURE 10

A conceptual model of takeover process after a speech takeover request (adapted from Zeeb et al., 2015; McDonald et al., 2019).
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actions accordingly. Such an additional cognitive process resulted in 
a delayed takeover action. Existing evidence from eye-tracking 
research also indicated that people spent more time on low reliability 
automation systems and visited them more frequently in a monitoring 
task (Lu and Sarter, 2019).

The effects of system reliability on post-takeover maneuvers 
interact with the system transparency. When the system reliability was 
low, drivers drove faster after takeover when the system provided 
“what + why” information all in once compared to when the system 
provided only “what” information at first. As we mentioned above, 
drivers built up confidence in their actions with an explainable system. 
However, the unreliable system delayed their takeover action and left 
them less time to strategize actions. Consequently, confident drivers 
might exhibit risky driving behaviors–a higher speed in this case–to 
negotiate the hazards within limited time. Comparably, without 
further explanation, a less confident driver informed by an unreliable 
system might act with caution and drive conservatively.

4.2. Information transparency largely 
impacts driver experience (RQ2)

Although a smaller number of participants preferred the “what”-
then-wait type agent, findings in subjective ratings indicated that 
drivers rated this type of agent with higher Habitability and (System 
Response) Speed scores. The habitability subscale measures the extent 
to which the driver knows what to do to interact with the system 
(Hone and Graham, 2000). Because drivers were informed that they 
were allowed to request more information by saying the requesting 
phrase, they were more aware of their options compared to when 
interacting with the proactive agent as receptors. The existing evidence 
has supported that habitability is a key factor in speech system 
usability (Hone and Baber, 2001). Thus, in-vehicle intelligent agents 
as a speech user interface should also be designed in a habitable way.

The speed subscale measures how quickly the system responds to 
user inputs, measured by two statements: (1) “The interaction with the 
system is fast” and (2) “The system responds too slowly.” Conciseness 
was one of the advantages of the “what”-then-wait type agent, who 
provided the information segment in small pieces and allowed 
additional information per request. Such conciseness might yield a 
feeling of faster system response speed. On the contrary, the proactive 
agent provided all information at once. The syntactic and semantic 
complexity also increased as the information richness expanded. 
Some drivers struggled to understand the system output when the 
information got complicated, and the processing time was prolonged 
as a consequence (Hone and Graham, 2000). Participants commented 
that some of the additional information were unnecessary and already 
obvious to them. Thus, the information value–the quantifiable 
measure of uncertainty reduction (Howard, 1966)–is critical to 
promote user experience and trust in the system, as long as the 
information added does not increase the complexity of the message.

We identified an increased effort experienced by participants 
when using a “what”-then-wait type agent. Based on participants’ 
comments, the limited information provided by this type of agent 
created great uncertainty. Such uncertainty demanded drivers to exert 
extra mental effort to seek useful information from the environment 
before taking effective maneuvers. All these cognitive activities happen 
under time pressure. A trustable in-vehicle agent should demonstrate 

an attitude to help achieve drivers’ goals in an uncertain and 
vulnerable situation (Lee and See, 2004). Thus, the “what”-then-wait 
type agent was not able to facilitate trust.

Finally, in terms of agent preference, the on-demand agent was 
less preferred compared to the proactive agent. This finding aligns 
with the previous research that “what”-only explanation on a vehicle’s 
action had the lowest acceptance (Koo et al., 2015). The proactive 
agent who provided “what + why” information at once was slightly 
preferred in our study. Existing evidence has supported the benefits of 
having such an agent in promoting trust (Forster et al., 2017; Ha et al., 
2020) and acceptance (Koo et al., 2015; Forster et al., 2017; Naujoks 
et  al., 2017) of automated vehicles (AVs). The “what + why” 
explanation also made the environmental information more accessible 
for inattentive drivers. We  also found mixed feelings toward the 
proactive agent, especially when the prompts were too long to 
be digested. Previous research studies have also found that what + why 
explanation can increase annoyance compared to the single piece 
explanation (i.e., “what” only or “why” only; Koo et al., 2015, 2016). 
Such negative feelings might come from the compromised explanation 
goodness and explanation satisfaction when presenting the 
information. Hoffman et al. (2018) have pointed out that explanation 
is not the cluster of statements, but depends on the user needs, existing 
knowledge, and especially, goals. Because some information provided 
by the proactive agent overlapped with drivers’ existing knowledge, it 
was perceived as unnecessary and thus, may have hurt the explanation 
goodness and explanation satisfaction.

5. Limitations and future work

This study provides a deeper understanding of how drivers 
perceive an automated vehicle and its agent depending on specific 
combinations of multiple factors (i.e., reliability and transparency of 
the intelligent agent), but we acknowledge several limitations of this 
work that can be further examined. First, the order of the transparency 
conditions was not counterbalanced in such a way that participants 
could learn the information available for them to request thereafter. 
Although different humanoid robots were matched and 
counterbalanced with different transparency conditions that could 
create a perception of different agents presented, participants’ 
experience with the automation system can be affected by this fixed 
sequence. In the future, researchers with a similar dilemma can 
educate participants on the available information provided by the 
system and allow them to experience several examples using sample 
events that are different from the experimental condition. Second, the 
manipulation of the reliability conditions was slightly compromised 
with the “what”-then-wait type agent. If the participant did not ask for 
more information, they lost the chance to receive as much false 
information, depriving the agent’s opportunity to be interpreted as 
reliable or not. However, since we presented the proactive agent first, 
participants may have had an anchored trust level to low reliability or 
to high reliability. This anchoring effect impacted their subsequent 
trust in the second drive and set the initial trust level similar to the 
first one. Thus, we believe the reliability manipulation was still valid 
in their second drives. However, we also acknowledge that there might 
be better approaches to examine our manipulation check on reliability, 
such as directly collecting participants’ perceived system reliability 
level as low, medium, and high. Additionally, empirical research has 
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identified several major factors that influence TOR performance. 
Mainly, repeated exposure to the takeover task could improve takeover 
time (McDonald et al., 2019). Participants practiced the takeover task 
during the training scenario, and the order of conditions was 
counterbalanced to minimize the influence of order effects and 
enhance the study’s internal validity. However, the familiarity could 
have manifested as the drivers experienced multiple opportunities to 
conduct the takeover action.

Despite these limitations, the findings from our study can inspire 
future investigation on how different settings of reliability and 
transparency can further impact driver trust and their performance. 
With limited technology, uncertainty in system information cannot 
be eliminated in the near future. Findings from the existing literature 
converge toward the idea that users have some tolerance for 
information accuracy (Kantowitz et al., 1997; Fox and Boehm-Davis, 
1998), but the fine point of accuracy tolerance has not reached an 
agreement (around 60–70% accuracy). A deeper look into the 
threshold of an acceptable accuracy level is needed to accommodate 
the technology limitations. In addition, our results indicated that 
“what + why” type information can increase user trust toward the 
system and improve their confidence in taking actions. However, such 
elevated trust might have unintended consequences if the information 
provided was unreliable. With the foreseeable system unreliability, 
always providing explanations might not be beneficial all the time. 
Future research can be done to explore an appropriate approach to 
deliver only relatively reliable information or convey unreliable 
information in a way that allows people to be aware of its inaccuracy 
and take that into consideration. For example, an adaptive agent can 
be developed to adjust the information transparency in response to 
different events in terms of urgencies, and also strategize according to 
the reliability level. In a future study, it would also be beneficial to 
include a baseline level of transparency to evaluate whether 
information about the driving scenario is required at all during a TOR.

6. Conclusion

In the present study we evaluated the effects of reliability and 
transparency of in-vehicle agents (IVAs) on drivers’ takeover 
performance, their trust, and their perception toward the automation 
system in conditionally automated vehicles. Our findings indicated 
that high system reliability in general increased drivers’ takeover 
request compliance rate and shortened the takeover time, which might 
suggest an increase in drivers’ trust. However, the increased trust and 
user perception by the proactive agent can have unintended 
consequences that lead to risky driving behaviors when the system is 
unreliable. This interaction effect between system reliability and 
information transparency sheds light on the importance of agent 
adaptability according to user contexts and system limitations. Based 
on our findings, we have the following design recommendations:

 • Information provided by IVAs should be set to an appropriate 
reliability level to accommodate for the system uncertainty while 
also promoting user trust and encouraging safer 
driving behaviors.

 • Information transparency should be adjusted carefully according 
to system reliability to avoid false trust and confidence, and the 
subsequent influence on driving behaviors.

 • IVAs should be designed in a habitable way to assist drivers in 
forming a correct conceptual model of interacting with the 
automation system, which can further improve their performance 
and experience.
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