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The growing concern about the risk and safety of autonomous vehicles (AVs) has

made it vital to understand driver trust and behavior when operating AVs. While

research has uncovered human factors and design issues based on individual

driver performance, there remains a lack of insight into how trust in automation

evolves in groups of people who face risk and uncertainty while traveling in AVs.

To this end, we conducted a naturalistic experiment with groups of participants

who were encouraged to engage in conversation while riding a Tesla Model

X on campus roads. Our methodology was uniquely suited to uncover these

issues through naturalistic interaction by groups in the face of a risky driving

context. Conversations were analyzed, revealing several themes pertaining to trust

in automation: (1) collective risk perception, (2) experimenting with automation,

(3) group sense-making, (4) human-automation interaction issues, and (5) benefits

of automation. Our findings highlight the untested and experimental nature of AVs

and confirm serious concerns about the safety and readiness of this technology

for on-road use. The process of determining appropriate trust and reliance in AVs

will therefore be essential for drivers and passengers to ensure the safe use of

this experimental and continuously changing technology. Revealing insights into

social group–vehicle interaction, our results speak to the potential dangers and

ethical challenges with AVs as well as provide theoretical insights on group trust

processes with advanced technology.

KEYWORDS

autonomous vehicles, automated driving systems, trust calibration, teammental models,

group polarization, contagion, trust propagation, self-driving vehicle design features

1. Introduction

1.1. Risks with self-driving vehicles and the need to evaluate
trust

Autonomous vehicles (AVs) are transforming transportation systems via breakthroughs

in technology including advanced sensors, artificial intelligence, and machine learning

algorithms (Bonnefon et al., 2016; Fleetwood, 2017; Merat et al., 2019). In Pittsburgh, users

can ride in the backseat of an autonomous Waymo with an employee who supervises the

automation (Wayland, 2022). The University of Texas at Arlington offers its students rides

around campus with fully automated public transit vehicles powered by the May Mobility

technology (Bishop, 2023). In Shanghai and Beijing, autonomous vehicles by AutoX can

transport people and goods on even the most challenging roads (AutoX Careers, Perks +

Culture, 2023).

Frontiers in Psychology 01 frontiersin.org

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1129369
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1129369&domain=pdf&date_stamp=2023-06-20
mailto:amomen425@gmail.com
https://doi.org/10.3389/fpsyg.2023.1129369
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1129369/full
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Momen et al. 10.3389/fpsyg.2023.1129369

AVs have nonetheless beenmet with highly publicized setbacks.

The NHTSA is investigating several fatal crashes associated with

AVs (Man Behind Wheel in Tesla Autopilot Crash that Killed

Two is Charged, 2022; Tesla Crash that Killed California Couple

Investigated by NHTSA, 2022). In another recent example, a couple

in a Honda Civic was killed after a Tesla exiting the highway

ran a red light and crashed into them. The State of California is

suing Tesla for misleading the public about the Tesla autopilot

capabilities, and news reporters have flooded social media with

first-person views of Tesla performing dangerously on city roads

[CNN (Director), 2021]. This has raised concerns about the risk

of riding in a partially automated or fully autonomous vehicle

and whether drivers or riders of vehicles can trust such vehicles

(Endsley, 2017; Molnar et al., 2018; Ekman et al., 2019; Kraus et al.,

2020, 2021; Ayoub et al., 2022). Addressing such concerns will be

paramount to public acceptance of AVs and to ensure its safe and

successful integration into our traffic systems (Banks et al., 2018a).

1.2. Trust and perceptions of risk theory

Based on the article by Lee and See (2004), trust is defined

as the confidence an individual has in another agent within a

context that involves elements of risk and vulnerability. A recent

study has delved into trust and performance in AVs in which the

driving automation represents the trusted agent (Molnar et al.,

2018; Ekman et al., 2019; Petersen et al., 2019; Lee et al., 2021;

Ayoub et al., 2022). Banks et al. (2018b) found that drivers

interacted with AVs in a way that indicated over-trust and

complacency in the AV. Endsley (2017) provided insight into

these issues by attributing them to a lack of transparency in the

vehicle, such as in the case of mode confusion and a general

lack of mental model development of the system’s capabilities.

These studies have demonstrated that trust evolves through an

interplay of complementary processes (Lee and See, 2004; Hancock

et al., 2021). Analytical processes involve cognitive reasoning and

rational decision-making about interactions with another agent.

Analog processes involve categorical judgments based on direct

observation and reports from parties that have experience with

the agent, group membership, norms and etiquette, team roles,

reputation, and gossip. Finally, affective processes involve the

rapid emotional responses that can arise when risk is involved

when interacting and depending on another agent (Loewenstein

et al., 2001; Slovic et al., 2007). Lee and See’s (2004, p. 54) model

further expands on the utilization of analytical, analog, and affective

information in a four-stage model: (1) information assimilation

and belief formation, (2) trust evolution, (3) intention formation,

and (4) reliance action, which is reproduced in our model (see

Figure 1). Due to the novelty of AVs, riders and drivers will

likely use whatever information is available to them to assess

associated risk, determine the trustworthiness of AVs, and then

whether they themselves will trust AVs. Additionally, users will

likely vary in their affective and individual risk tolerance and risk-

taking behaviors (Kannadhasan, 2015). Furthermore, group trust

dynamics expressed through conversation will likely shape exactly

how users utilize information as the trust process evolves (Li et al.,

2023). It is therefore important to put users in a situation where we

FIGURE 1

Hypothesized model of group trust processes based on Lee and

See’s (2004) Model.

can examine how these processes unfold together and assess how

trust processes manifest themselves in the AV situation.

1.3. Real-world evaluation of trust and the
value of constructive interaction in groups

The prominence of potential risk with self-driving vehicles

highlights the importance of naturalistic experiments to uncover

driver behavior in response to perceptions of risk (Bolstad and

Endsley, 1999; Banks and Stanton, 2016; Banks et al., 2018a;

Tenhundfeld et al., 2019, 2020; DSouza et al., 2021; Belcher et al.,

2022). The resulting adjustment in behavior and trust attitudes

observed with riders in response to perceptions of risk may not

be induced in a simulator (Kohn et al., 2021; Krausman et al.,

2022). Indeed, most driving research is conducted in driving

simulators or controlled laboratories, which lack the risk and

vulnerability associated with real traffic and potentially weaken

ecological validity (Kemeny and Panerai, 2003; Santos et al., 2005).

For assessments of trust, which involve situations of risk and

vulnerability, it is therefore important to assess participants in as

realistic conditions as possible.

Even when on-road experiments are conducted, there are

limitations to current approaches. For example, while Banks et al.
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(2018b) uncoveredmany usability issues with the Tesla automation,

they did not probe drivers on their internal thoughts and could only

infer user perceptions based on their recorded behavior. Endsley

(2017) results came from a think-aloud protocol conducted on

themself based on their a priori knowledge as a human factors

researcher. While their results uncovered crucial issues concerning

drivers’ experience with a novel automated vehicle, we believe

such a methodology is limited to explore how the different trust

processes evolve to cope with risk while driving with automated

capabilities. Critically, these studies have primarily focused on the

behaviors, attitudes, and perceptions of the driver, but have not

examined how trust evolves in groups of people while traveling

together in AVs.

Building on this understanding, it is important to account for

group factors and naturalistic social interactions when examining

trust and risk in AVs (O’Malley et al., 1984; Van den Haak et al.,

2004). Conventional methods such as the think-aloud protocol are

limited because it can be unnatural to prompt participants (or

prompt oneself, as was the case in Endsley, 2017) to divulge their

inner thoughts while executing tasks (Jeffries et al., 1991; Nielsen,

1993; Douglas, 1995; Boren and Ramey, 2000; Smith and Dunckley,

2002). Constructive interaction, in which participants work

together on tasks without persistent experimenter intervention,

can mitigate these limitations. Constructive interaction relies on

participants’ natural tendency to reveal their thoughts, insights,

and perspectives during the conversation, indirectly divulging

their specific experiences, reasons, and decisions when interacting

with technology (O’Malley et al., 1984; Nielsen, 1993; Douglas,

1995; Wildman, 1995; Kahler et al., 2000; Van den Haak et al.,

2004). Indeed, an experienced researcher might not perceive an

aspect of the task as risky, or cause for (dis)trust, enough to

probe the user with the right questions. For novel users, this

information is more likely to surface when interacting with

other users.

1.4. Motivation and design of the current
study

Hancock (2019) urges human factor researchers to consider

the massive societal implications of AVs. The promise for AVs

to transform society by reducing traffic deaths and improving

mobility begets researchers to iron out current AV issues toward

realizing this potential and foresee potentially new problems this

new societal landscape may thrust upon us (de Winter, 2019;

Emmenegger and Norman, 2019; Hancock, 2019; Waterson, 2019).

To this end, the current experiment aimed to explore how trust

processes unfold within groups in the face of a risky naturalistic

setting. Participants, in groups of two or three, rode three loops in

a Tesla Model X with Autopilot on campus roads while engaging

in normal conversations. Conversations were then transcribed and

analyzed for overarching themes in line with our research question:

How do group dynamics influence drivers’ and passengers’ trust

processes in AVs?

Our research question was intentionally broad to allow for

a wide-ranging exploration of themes that could be important

in this naturalistic study. We hypothesized we would observe

new insights into users’ inner trust processes in a novel and

potentially risky situation while driving or riding in an AV. This

information will help to form the building blocks for a theory

of how trust in automation processes evolves and interacts with

group dynamics.

2. Methods

2.1. Participants

Twenty-four groups consisting of 65 participants (M = 24.23,

age range: 18–52, 28 women) completed the experiment in

exchange for course credit. The sample included six two-person

groups and 18 three-person groups. Six groups were excluded

from the analysis because their discussions were not recorded,

or audio could not be transcribed. The remaining 18 groups

consisting of four two-person groups and 14 three-person groups

(n = 50 participants) were included in the qualitative analyses.

All participants provided informed consent, and the research was

approved by the Institutional Research Board at the United States

Air Force Academy.

2.2. Task paradigm

The driving task was performed using a 2017 Tesla Model

X (Software Version 10.2) on the USAFA campus roadway. The

driving loop took ∼15min, was 12.8 miles long, and consisted

of two continuous segments of the road connected by two

left turns at intersections with stop signs. Participants began

at the Tesla’s parking spot (see Figure 2, Point 1) and drove

to Point 2 where they made a left turn onto the campus

road, which began the “Loop.” To complete one full Loop the

drivers continued driving down this road to (Point 3) and

turned left. At the next intersection (Point 5), participants made

a left and drove until they reached Point 6 (Campus Visitor

Center), completing one loop. After completion of each of the

first two loops, the driver was instructed to enter the Campus

Visitor Center parking lot and park while riders completed

the surveys. Afterward, the driver drove manually out of the

parking lot and made a left onto the campus road toward

Point 2, where the loop restarted. However, after the third and

final loop, participants did not park at the visitor center and

instead completed surveys back at Point 1, where the experiment

concluded. During loops, participants were encouraged to engage

in general conversation.

2.3. Automation driving behavior

Table 1 describes the automated features of Tesla’s autopilot

mode: traffic-aware cruise control (TACC), autosteer, automatic

lane change, safety warnings, and disengaging autopilot (Autopilot,

2022). Participants were instructed to explore and use any of these

features during the drive.
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FIGURE 2

The USAFA loop. At the beginning of the experiment, participants exited the area at point 1 and began their driving loop from point 2 through point 6.

At point 6, the car was stopped so participants could complete assessments. After the assessments on the first and second loops, participants turned

left out of Point 6 and drove from point 2 through point 6. After completing the third loop, participants returned to point 7, instead of point 6, and

concluded the experiment.

2.4. Procedure

Participants were first greeted by an experimenter who ensured

all driving participants had a valid driver’s license for a minimum

of 2 years. The experimenter then obtained consent from all

participants and chose at random which participants would be the

driver, front passenger, and back passenger. Three-person groups

filled out the vehicle in the driver, front passenger, and back right

seats. Two-person groups filled out the vehicle in only the driver

and front passenger seats. Participants then entered the vehicles

at which point they were given a computer tablet to complete

survey measures.

The driver was then trained and tested on the TACC, Autosteer,

Automatic Lane Change, and Safety autopilot features of the car.

The training session consisted of a 5-min training video created

for this experiment (see Madison et al., 2021). The video trained

the participant on how to safely operate the vehicle, obey the

speed limit, activate and deactivate the autopilot features, safety

warnings, and appropriate hand position and force on the steering

wheel necessary to provide the Tesla feedback during autonomous

mode. The training video was scripted primarily from Tesla’s own

descriptions of how to use its autonomous features (see https://

www.tesla.com/support/autopilot) with some additional details,

to ensure clarity and understandability of directions by the

participants. Additionally, the driver was instructed to practice

engaging and disengaging the features while they were briefed;

the experimenter observed and corrected the driver if necessary.

Once the driver felt comfortable and had asked any questions, the

experimenter administered a post-training questionnaire to ensure

the driver understood the Tesla’s autonomous functions and could

properly drive the vehicle. If the driver answered any questions

incorrectly, the experimenter went through the training procedures

again until they were sufficiently trained for the experiment.

Drivers were instructed to drive three loops with the automated

driving functions as much as possible. The group was further

instructed that during the drive they were to engage in “normal

conversation.” Afterward, they were briefed on the directions of the

driving task that they would begin at the Tesla’s parking spot (Point

1) and drive to Points 2–6 to complete the loop three times. They

were instructed to engage in normal conversation during loops and

that after each loop they would fill out the quantitative measures.

Specifically, after each of the first two loops, they would park at

the Campus Visitor Center parking lot (Point 6) and park while

the driver and passengers completed assessments. After the third

and final loop, however, they would not stop at the visitor center

and instead drive to point 1, where they began the experiment.

Completing the assessments for the third and final time marked

the end of the experiment. Participants were then debriefed and

Frontiers in Psychology 04 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1129369
https://www.tesla.com/support/autopilot
https://www.tesla.com/support/autopilot
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Momen et al. 10.3389/fpsyg.2023.1129369

TABLE 1 Description of autopilot features.

Tesla autopilot
feature

Description Maneuver

Traffic-aware

cruise-control (TACC)

The Traffic-aware cruise-control (TACC) senses other vehicles

within its lane and slows down when vehicles get too close. The

distance to the next car is determined by car lengths preferred by

the driver (e.g., Tesla should stay four car lengths distant from the

next car in front). During TACC, the Tesla generally drives at

either the speed limit or the speed set by the driver

Drivers engaged TACC by pulling the automation stalk

toward them, which was located on the bottom left of the

steering wheel. TACC then showed an icon on the dashboard

with the speed the Tesla is set at. The Tesla’s speed could be

adjusted by pushing down or up on the automation stalk. A

single hard bump upwards increased the speed by 5 mph and

a bump downwards decreased speed by 5 mph

Autosteer Ability for the Tesla to stay within its lane when driving To engage autosteer, drivers pulled the automation stalk

toward them twice. Autosteer kept the vehicle within a traffic

lane as well as utilizing TACC

Automatic lane change Capability for the Tesla to execute a lane change by itself when

safe

The automatic lane change feature engaged when autosteer

was enabled and was triggered by the turn signal if Tesla

detected the adjacent lane was not blocked by another

vehicle

Safety warning Occurred to remind drivers to keep their hands on the wheel if

the Tesla was unable to sense the driver’s hands during autosteer

The beep would continue to audibly escalate to remind the

driver to apply force to the steering wheel. The Tesla

automatically pulled over on the side of the road if the driver

ignored these warnings. This did not occur for any groups in

the experiment

Disengaging autopilot Turning off autopilot Pushing the automation stalk away from them, pressing the

brake, or by applying force to the steering wheel

thanked for their participation. Safety was an emphasis of this

training with explicit instructions that safety was the top priority

of the study.

2.5. Data recording, reduction, and
thematic analysis

Two GoPros recorded video and audio inside the vehicle.

GoPros recorded the faces of the driver and front passenger as

they watched the road through the windshield. We conducted a

thematic analysis of these recorded conversations in the car in

line with Braun and Clarke (2012). A thematic analysis uncovers

overarching qualitative patterns defined as “themes.” This approach

enabled insights into the novel construct of group trust dynamics in

potentially risky scenarios.

2.5.1. Phase 1: transcribing audio and identifying
relevant conversations

Two researchers prepared the data for the thematic analysis.

They began by extracting audio from the GoPro videos and having

otter.ai (Otter.Ai—Voice Meeting Notes Real-time Transcription,

2022) automatically transcribe them. Annotators then watched

the GoPro videos and from the transcripts identified relevant

conversations pertaining to the Tesla and corrected grammatical

inaccuracies. Conversations were defined as discussions among

group members, regarding the Tesla or the drive, that differed

across time and topic with at least one speech turn. Transcripts

were sorted according to group, loop, and conversation numbers

within each loop if multiple conversations occurred. We coded

97 conversations overall totaling 335 conversational turns (i.e.,

instances of alternating contributions and responses) between the

participants (mean conversation length= 3.5 verbal exchanges).

2.5.2. Phase 2: authors’ review transcription
During the second phase, two of the authors independently

reviewed the prepared transcriptions. Through multiple readings,

authors took notes on a spreadsheet organized by conversation,

loop, and group.

2.5.3. Phase 3: initial coding based on notes
During the third phase, spreadsheets were combined with

each author’s notes and organized into their own column. The

same two authors independently derived one to five initial codes

per conversation per set of notes. Afterward, the authors came

together and combined codes. Redundant codes were discarded.

For example, “Team Mental Model Formation” was dropped as

a unique code for being redundant with “Group Mental Model

Formation.” Codes were combined when appropriate. At the

end of this phase, there were a total of 78 codes and each

code was supported by one to 44 pieces of information from

the data.

2.5.4. Phase 4: development of preliminary
themes

During phase 4, the two authors worked together to identify

patterns in the data representing potential higher-level themes.

Together, authors uncovered themes and sub-themes by grouping

codes that centered around similar relevant topics. For example,

codes pertaining to “Emotion and Experience” were compiled,

and from them derived sub-themes such as positive affect,

negative affect, neutral affect, and risk and vulnerability. This

process was repeated for all coding groups until all data was

reviewed. This resulted in a preliminary list of five themes and

20 sub-themes.
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2.5.5. Phase 5: development of final themes
During the final phase, authors discussed and debated whether

any themes or sub-themes should be combined, discarded, or

disbanded and rearranged, paying close attention to whether they

addressed the research question. For example, the previous theme

of “Emotion/Experience” was combined with “Group Emotions”

to form the new overarching theme of Collective Risk Perception.

The neutral affect sub-theme was discarded. At the end of this

phase, there were a total of five themes. After the final themes

were decided, all conversations were recorded and consolidated

into these codes (see Table 2).

3. Results and discussion

Results were structured in the following section by themes

and associated sub-themes (see Table 2). Quotes are cited with

the convention of G = group number, L = loop number, and C

= conversation number (see Table 2). Quotes also denote group

member source as either the driver, the front passenger (Front), or

the back passenger (Back).

3.1. Collective risk perception

Seventeen groups (94%) had 56 conversations related to

collective risk. Groups experienced risk and vulnerability during

autopilot that typically elicited negative emotions that tended to be

shared among the group. Participants felt a heightened sense of risk

during specific events such as sharp turns and curvy roads (G3, L1,

C2; Front: Was [the autopilot on] through that twisty area? Driver:

No, but if I had reduced the speed limit, I would have been okay), and

the Tesla accelerating in response to changing roadway conditions:

G5, L1, C9; Driver: So now I feel like I’m going too fast, I’m

catching up to everyone, but I know the speed limit was 55 here),

another vehicle cutting in front (G14, L1, C2; Driver: when that

car turned in front of us, I was like “I don’t wanna die I don’t

want to hurt the car!”

Finally, participants felt heightened risk during unexpected

events on the road. In an example of an unexpected roadway

event, a deer crossed the road while the Tesla was on autopilot

(see Figure 3). The driver waited for an automatic stop to happen,

which never occurred, before taking control of the vehicle at the

last minute, causing distress to the passengers. In this case, negative

emotions even lingered into later parts of the drive, such as when

the passenger sarcastically told the driver not to miss a stop sign

(G6, L3, C5; Front: I can tell you haven’t drove since you’ve been

here). Negative emotions also served as points of conflict when

there was disagreement regarding the perceived lack of control

experienced with the Tesla:

G14, L2, C2; Driver: I feel like autopilot is pretty convenient.

I don’t think about it. Front: I feel like I wouldn’t want autopilot

on my vehicle. I like to observe things and do everything myself.

Our findings demonstrate riders experienced risk often and

collectively, leading to negative emotions that were experienced by

the entire group, consistent with the affect heuristic (Loewenstein

et al., 2001; Slovic et al., 2007). Given that risk perception plays

prominently in the user’s trust perception in the form of an affective

trust process (Lee and See, 2004), it is possible that this would

increase a rider’s distrust in Tesla, leading to disuse (Hu et al.,

2022). This is consistent with previous studies which assert that

risk and vulnerability is the key factor in the development of trust

and should be induced for a realistic assessment of trust (Wagner

et al., 2018; Wagner, 2020). It is unclear whether the collective

experience of emotion is fully in response to Tesla’s performance

or also partly in response to the spreading of negative emotion

among riders, a phenomenon known as contagion (Loersch et al.,

2008). Goldenberg and Gross (2020) assert that digital networks,

such as social media, cause our own emotions to become more

like others, and is heightened due to increased exposure to these

technologies. It is unclear if rider distrust is a result of technology-

driven contagion, social-group-driven contagion, or a combination

of both.

3.2. Experimenting with automation

Ten groups (56%) had 18 conversations pertaining to

experimentation with the autopilot features (see Figure 4). Groups

experimented with automation to figure out how it worked. In

one of these instances, a driver tested the autopilot’s lane following

during a sharp turn in which a vehicle was passing in the

opposite lane:

G7, L2, C1; Driver: . . . but, instead of just grabbing [the

wheel], I was ready to stop [the wheel] if it kept turning. And

what it did was, it just straightened out in the center of the [lane].

Another group tested whether the autopilot would detect a

median, finding the Tesla swerved before reaching the median to

follow the lane (G14, L2, C3; Driver: I wonder if it knows there’s

a median, we should look into that... It made me turn! I think the

steering moved for me). Another group tested whether the autopilot

detected a bicyclist in the adjacent lane:

G1, L3, C1; Driver: Okay. What does the car do with a

cyclist? Okay good to know. Passenger: What happened there?

Was it trying to correct back into the cyclist? Driver: At least I

did not detect a recognition of the cyclist. I went left across the

dividing line and the cyclists did not appear on the little display.

So, I got worried that this thing wasn’t going to actually correct

for the cyclist, so I intervened.

Experimenting with automation can be classified as an

analogical trust process of direct observation and interaction with

the agent (Lee and See, 2004; Hoff and Bashir, 2015). Two examples

of a similar theme of “Testing the Limits of ODD (Operational

Design Domain)” was observed in Banks’s et al. (2018b) Tesla

self-driving study. In their prototype example, a driver similarly

experiments with the autopilot’s lane-following, while maintaining
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TABLE 2 Themes with description, trust process, number of conversations, number of groups, and percentage of groups.

Themes Description Trust process #C #G %G

Collective risk perception Tesla’s autopilot leads to feelings of

vulnerability and high risk

Affective 56 17 94

Experimenting with automation Drivers test whether the Tesla autopilot can

handle certain traffic situations

Analog 18 10 56

Group sense-making of

automation

Shared cognitions and attitudes about

automation among group members of a system

Analog 57 17 94

Human-automation interaction

issues

Design issues with the automation Analytic 17 8 44

Automation benefits Benefits of driving with automation Analytic 21 12 67

For each sub-theme, the number of conversations (#C) and groups (#G) that mention it are calculated along with a group representativeness percentage (%G) calculated by dividing the number

of groups that mentioned the theme by the total number of groups.

FIGURE 3

Sequence of events while encountering a deer on the road while driving on autopilot. The middle four images are recorded videos from the driver’s

perspective of the experimental driving session for Group 6. The outer four images were all AI-generated images by Midjourney to better

contextualize the video footage (Midjourney Documentation User Guide, 2023).

control, by releasing and hovering their hands over the wheel. The

authors attribute this as risky behavior stemming from a “natural

curiosity” to test a machine’s limits. However, we demonstrate, in

many more instances, that these risky experiments may also be a

mechanism for the driver and group to collectively calibrate their

trust in the Tesla. As we demonstrate, the driver is learning out

loud, enabling other group members insight into the driver’s first-

hand knowledge. Experimentation within a group setting like this

may be further explained by a common phenomenon in human–

human groups to polarize, or, make more extreme decisions than

individuals (Moscovici and Zavalloni, 1969; Fraser et al., 1971;

Myers and Lamm, 1976). Groups make a “risky shift,” or accept

more risk, when the group perceives risk as positive but a “cautious

shift” when they perceive caution as negative (Wallach et al., 1962).

Further research has found that this effect extends to technology,

with groups’ trust in technology as more extreme (greater trust or

greater distrust) than individual trust (Xu et al., 2014; Martinez

et al., 2023).

3.3. Group sense-making of automation

Seventeen groups (94%) had 57 conversations pertaining to

group sense-making with the autopilot features (see Figure 5).

Groups used several sources of information to better understand

and predict automated behavior via sharing (1) direct observations

about the Tesla autopilot, (2) expert referents, or, sources of

credibility and expertise from people, media, or other technology,

used to help understand automated driving technology, (3)

anecdotal stories, and (4) anthropomorphism. When participants

shared information directly observed about the Tesla autopilot, it

was typically either (1) offered unsolicited by the driver or front

passenger to help the other riders better understand the experience:

G14, L1, C1; Front: Oh yeah that was cool. Right when

we passed that [40 mph speed limit] sign it changed. Driver: It

doesn’t change to 40? Front: ...because you set the max, it just

tells you the speed limit.
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FIGURE 4

Examples of scenarios where drivers experimented with Tesla’s abilities. All images were AI generated by Midjourney (Midjourney Documentation

User Guide, 2023).

or (2) elicited by the front passenger asking the driver

a question:

G1, L2, C3; Front: Was that turn all the car? Was your hand

just lightly on the wheel but it was doing the turning? Driver:

Yeah. I let it do that whole turn, but it didn’t quite stay in

the lines.

The backseat passenger seldom contributed information. For

the second information source, expert referents typically served as

first impressions of the Tesla’s automation capabilities and were

made of family members (G1, L2, C2; Passenger: my son has a Tesla.

He loves it. He’s uh, you know, a techie engineer guy), their own

vehicles (G1, L2, C2; Driver: wish I could engage an autopilot on

my Honda Odyssey because you are on a freeway, straight, can see

for infinite ahead and think “why in the world am I driving this car

under these circumstances”) technology in general, social media, and

pop culture reporters:

G1, L3, C2; Driver: About three weeks ago, Malcolm

Gladwell put out one of his revisionist history podcasts. He and

his producer went down to Phoenix and messed around with

Waymo for a day, and that was pretty interesting. There are

Waymos just driving around, you can order one up like an Uber.

And it’s a Chrysler Pacifica and with a bunch of sensors on top,

no engineer, no person in the car, just the car and it comes and

gets you and drives you to your destination. You ride in the back.

For the third information source, groups often told anecdotes

and stories when communicating about their own and other

vehicles (G3, L1, C2; Driver: It’s a feature, car is locked, you can’t

open the gas cap door, that’s good), educational videos on social

media, and other Tesla’s (G9, L1, C1; Driver: one time my friend’s

dad picked me up in their Tesla from school and, from the way

it decelerated, I thought I was gonna throw up after that). For

the fourth information source, anthropomorphism occurred when

participants named the car (G9, L2, C2; Front: We like to name

our cars. So, we ended up naming this one Karen, because it would

constantly beep at you. Constantly) in response to negative emotions

regarding the audio warnings, and to show affection (G9, L2, C2;

Front: My folks got a Kia Telluride. I was trying to think of an

affectionate name for it. Like “Telly” or “Tia”).

Our results agree with several areas of literature associated

with groups and sense-making and fits with the analogical trust

process of reputation and gossip (Lee and See, 2004). Riders sharing

information about their driving experience falls in line with Bolstad

and Endsley’s (1999) principles of team mental models where

(1) group members share pertinent information with each other,

(2) communicate verbally and through technological mediums,

(3) have accurate shared mental models, and (4) and engage

in effective collaboration and planning. Indeed, riders shared

pertinent information, communicated, and, at times, had accurate

mental models. Featured prominently in our theme of group sense-

making is that groups often shared stories of previous experiences

to make sense of the novel Tesla autopilot. Indeed, storytelling is

an oft-cited way for groups to deal with perceptions of risk in novel

or uncertain situations (Bietti et al., 2019). Given that risk shapes

perceptions of trust, this also connects with recent automation

literature in trust propagation. Trust propagation occurs when

an individual’s perception of trust is shaped indirectly through

the direct experience of another individual. Our results add to

the literature by findings trust propagation occurs frequently in

AVs, likely due to the risk participants faced by our naturalistic

design. The extent that storytelling is an effective method to

alleviate uncertainty in an AV should be further examined in

future research. The utilization of expert referents to inform trust

assessments is also consistent with findings on the concept of

trust propagation (Guo et al., 2023). In this case, trust referents

came from family members, pop culture reporters, experience

from their own vehicles and technologies in general, and social

media. A similar mechanism of peer influence was observed with

parents’ willingness to let their children ride unattended in an
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FIGURE 5

Five sources of information that groups used to make sense of automation. All images were AI generated by Midjourney and then compiled and

labeled in this collage (Midjourney Documentation User Guide, 2023).

AV (Ayala et al., 2022). Users are also anthropomorphized by

conversing and relating their experience with other vehicles to their

experience with the Tesla. Epley et al. (2007) suggests individuals

default to anthropomorphizing technology because they lack

knowledge about the internal workings of technology yet have a vast

understanding of human-like traits readily available. This tendency

to anthropomorphize is heightened by effectance motivation—the

desire to interact effectively with the environment—and sociality

motivation—the desire for social connection. When riders named

the vehicle “Karen” due to its unpredictable and constant beeping,

it was likely to satisfy effectance motivation. Indeed, a commonly

observed phenomenon is to name natural disasters, which are also

unpredictable and distressing (Storms Payback from God, Nagin

Says Mayor Faults War, Blacks’ Infighting—The Washington Post,

2006). When a rider named the vehicle “Telly” to show affection, it

was likely out of sociality motivation. Indeed, research has shown

that naming non-human agents, such as technological gadgets, can

satisfy our need for social connection (Epley et al., 2008a,b; Powers

et al., 2014).

3.4. Human-automation interaction issues

Eight groups (44%) had 17 conversations identifying several

human-automation design issues with the Tesla automation (see

Figure 6), following an analytical trust process (Lee and See, 2004).

These included issues with the autopilot features such as mode

confusion—confusion over the on/off status of autopilot:

G3, L1, C2; Experimenter: Yeah, go ahead and turn the

autopilot back on. Driver: Oh, it’s [autopilot] not on? I thought it

was on. Front: Okay, so you were just going, that was autopilot

through that twisty area? Driver: No, I think I turned it off. Yeah.

Mode confusion was found in previous experiments examining

driver behavior in Tesla (Nikolic et al., 1998; Endsley, 2017; Banks

et al., 2018a). Drivers were unaware the autopilot had turned off

is a potential safety issue as this occurred during critical times

in the drive. Banks et al. (2018a) posits this occurs because the

autopilot status directs the driver’s attention to outside the vehicle
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FIGURE 6

Human-automation interaction issues were experienced and discussed in the groups during the drives. All images were AI generated by Midjourney

(Midjourney Documentation User Guide, 2023).

rather than the controls inside the vehicle while Endsley (2017)

cites a lack of salient audio warnings. The group nature of our

experiment, we believe, also contributed to mode confusion by

passengers serving as an additional distraction (Laberge et al.,

2004; Neyens and Boyle, 2008; Zhang et al., 2019). A second

issue was the transfer of control—the action of transferring

between autopilot and manual features—engaging autopilot via the

automation lever, deactivating autopilot with the steering wheel,

and utilizing automatic lane change (G10, L1, C5; Driver: I don’t

have another lane to try [automatic lane change]...I feel like that’s

asking for a problem). Previous research demonstrates that trust

during the transfer of control maneuver is related to the comfort

of riders in simulated driving tasks (Molnar et al., 2018; Petersen

et al., 2019). Given our naturalistic experiment on public roads,

it is likely to transfer of control issues further exacerbated riders’

perceptions of comfort during the drive. Together, these findings

underscore the importance of smoothly transferring control from

manual to autopilot. Another issue pertained to boredom resulting

from the lack of tasks and engagement when the autopilot was

on (G14, L2, C2; Driver: I feel like I wouldn’t want autopilot

on my vehicle. I like to observe things. I would rather be doing

everything myself ). The boredom experienced by drivers during the

experiment could also be a potential safety issue. Indeed, vigilance

research demonstrates that attention can be sustained for so long

before decrements in performance occur. Similarly, transportation

research demonstrates prolonged exposure to highly automated

driving can lead to driver disengagement (Stanton and Barnes-

Farrell, 1996; Young and Stanton, 2002; Saxby et al., 2007; Endsley,

2017) and automation complacency (Parasuraman et al., 1993; Lee

and See, 2004; Hollnagel and Woods, 2005). If drivers do not

appropriately monitor Tesla, it would be potentially unsafe. It is

important for automated driving systems to ensure drivers are

actively and positively engaged. A fourth issue pertained to skill

degradation, in which drivers mentioned a lack of motivation to go

back to standard driving, and the lack of involvement of feet during

automated driving (G9, L2, C3; Driver: I’m still afraid that driving

regular would feel pretty boring because this is really like trying

to match my correct speed knowledge). Given that roadways are

composed of mixed traffic—both non-automated and automated

vehicles—the potential for AV drivers to be unsafe when going back

to normal vehicles having lost essential driving skills is an issue

that could occur with ubiquitous and long-term automated driving

(Parasuraman et al., 2000; Saffarian et al., 2012). A fifth issue groups

mentioned regarding Tesla was its transparency. One group was

unclear regarding the Tesla’s process of detecting events (i.e., speed

limit sign) via its sensors and that it sometimes was unclear how the

Tesla made an error (G1, L1, C1; Driver: I wonder why it thinks that’s

that speed limit... I don’t know what baseline map Tesla uses). One

group conversed about why Tesla’s process for projecting roadway

events and why it did not detect a cyclist:

G7, L3, C1 Driver:When we had that Jeep in front of us on

the other road [we got] a little picture. But the cyclists did not

appear on the little display, so I got worried that this thing wasn’t

going to actually correct for the cyclist.

Additionally, groups noted how the Tesla communicated via

warning beeps as well as failures to communicate information (G24,

L3, C1; Front: I did hear it go beep. I’m not sure if it’s because you

hit the brake or if it actually saw the deer). The need for increased

transparency into Tesla’s autopilot behavior is in line with other

findings (Banks and Stanton, 2016; Banks et al., 2018a; Chen et al.,

2018). Thus, it is key that AV designers focus on displays that are

consistent, provide accurate information and convey uncertainty

when sensors are unreliable or unavailable (Kraus et al., 2020).

Additionally, designers should expand on the capabilities of the

display. Endsley (2017, 2023) similarly found that, while Tesla’s

display increased transparency, it failed to provide insight into

its internal workings. Designing Tesla displays to visually indicate

its current range of detection, information showing its decision-

making, and confidence would greatly improve riders’ experience

and ultimately safe use of the AV (Du et al., 2019; Maarten

Schraagen et al., 2021).

3.5. Automation benefits

Twelve groups (67%) had 21 conversations pertaining to the

benefits of driving with automation (see Figure 7). Aspects of the

Tesla’s autopilot regarded as particularly positive were when it acted

reliably during autopilot, such as lane-centering, adaptive cruise-

control, automatic lane change, auto-breaking, and the perceived

lack of work required during autopilot. One group liked that the

Tesla could perform a lane change (G2, L3, C1 Driver: [Completes
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automatic lane change] wow, that’s cool). Groups also liked when

the automation accurately provided transparency into the system.

Specifically, they noted the Tesla’s detection of events via its sensors

such as when it detected changes in speed limits, and roadway

events such as registering objects or other inhabitants of the road

(G16, L2, C3; Driver: this is crazy that a car can even do something

like this but there’s some smart people to figure out).

Identifying automation benefits constitutes an analytical trust

process (Lee and See, 2004). Previous research also demonstrates

drivers positively regard autopilot features during ordinary parts

of the drive (Endsley, 2017; Banks et al., 2018a). These positive

benefits of autopilot speak to the promise of automated vehicles.

On the other hand, Banks et al. (2018a) found drivers felt positive

to the extent they released their hands from the wheel and engaged

in non-driving secondary tasks until prompted by the driver

monitoring system. This is a potential safety concern if drivers

become too comfortable and disengage from the driving task and

the Tesla’s autopilot suddenly becomes unreliable.

3.6. Revised group trust process model

We have further determined where the five themes fit into Lee

and See’s (2004, p. 54) expanded model (see Figure 8). The model

is divided into four stages, including (1) information assimilation

and belief formation, (2) trust evolution, (3) intention formation,

and (4) reliance action, which is reproduced in our model (see

Figure 8). Given this taxonomy, we can group the themes group

sense-making and collective risk perception into stage 1 since these

themes involve the processing of information and beliefs. The

human-automation issues and automation benefits can be classified

into stage 3 because these are specific attitudes toward automation.

Experimenting with automation involves stage 4 because riders are

actively figuring out their reliance strategy in real time.

4. General discussion

4.1. Trust process mechanisms in groups
and teams: a revised model

The purpose of our study was to uncover how group dynamics

influenced trust processes while interacting with and traveling in an

automated vehicle. Our experiment allowed us to explore how trust

processes unfold within groups in the face of a risky naturalistic

setting. Our five themes aligned with Lee and See’s (2004) analytical,

analog, and affective processes of trust evolution and formation

(see Figure 8). Specifically, our themes of automation benefits and

human-automation interaction highlight the analytical nature of

trust. Indeed, riders cognitively reasoned and came to judgments

regarding certain aspects of Tesla’s capabilities (i.e., automation

benefits) and deficiencies (i.e., human-automation interaction).

These judgments were shared extensively by riders through

conversation, potentially through candidate group mechanisms

such as shared mental models and/or a trust calibration in

the automation process occurring collectively among the group.

Our themes of experimenting with automation and group-sense

making highlight the analogical nature of trust. Candidate group

mechanisms for this process likely include polarization and

propagation. Indeed, experimenting with automation and the

direct observation source of group-sense making both leverage

direct observations of Tesla’s behavior in response to roadway

conditions. Additionally, the expert referents aspect of group-sense

making is in line with reputation from the analog trust influence

while the anecdotal stories facet of group-sense making connect

with the analog source of information stemming from reports

from parties that have experience with the agent. More broadly,

influences of expert-referents and anecdotal stories bear out Lee

and See’s (2004) proposed influence of the organizational context

of trust. When individuals lack information, the organization can

serve as a source of information through gossip (e.g., anecdotal

stories) and reputation (e.g., expert referents). Finally, our theme

of collective risk perception highlights the affective nature of trust,

as negative attitudes stemming from perceived risk were typically

rapidly and reactively experienced by the entire group on short-

time scales. Contagion is a likely candidate mechanism for this

effect. For all identified trust and group processes and effects

discussed here, we emphasize these are hypothesized as they arose

from our naturalistic AV setting. The group’s processes revealed

here confirm the importance of the social and relational nature

of trust and should be incorporated into theories of trust (de

Visser et al., 2018; Chiou and Lee, 2021). Developing a group

process theory of trust in automation will require further testing

and validation in more rigorous experimental settings.

4.2. Practical implications for improving AV
technology

One way to calibrate trust in the face of risk, uncertainty

and human automation issues (i.e., mode confusion, transfer of

control, boredom) may be through effective instructional strategies

(Dikmen and Burns, 2017; Endsley, 2017). Dikmen and Burns

(2017) and Endsley (2017) similarly acknowledge the necessity

of instructional videos that demonstrate the system’s capabilities

and could be hosted online and continually updated. Beyond

demonstrating the system’s capabilities, our results further suggest

that training should demonstrate driving automation’s in-the-wild

behavior during uncertain, rare, and hazardous traffic scenarios.

In those circumstances, our groups most often experienced risk

and experimented with AV. Future experiments should explore

the most effective instructional strategies to calibrate trust with

an AV so that people who over-trust, adjust their trust downward

and people that distrust, adjust their trust upward (Parasuraman

et al., 2014; Forster et al., 2018; Azevedo-Sa et al., 2020; de Visser

et al., 2020). Ultimately, such “trust in automation” training could

be delivered when AVs are delivered to their new owners or

as part of a requirement to obtain special AV driving licenses

(Cummings, 2019). In addition to training, some of the observed

human automation issues could be resolved through improved

design. Mode (automation vs. manual) and transfer of control is

currently indicated by visual and audio cues that lack appropriate

salience. Future designs could incorporate larger visual cues and

improved audio alerts that better alert the driver. As participants

often felt distracted by jarring loud beeps, it is further important
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FIGURE 7

Three benefits of driving with automation. All images were AI generated by Midjourney (Midjourney Documentation User Guide, 2023).

FIGURE 8

Revised Lee and See’s (2004) model to capture trust processes as part of group dynamics.

that audio alerts sound pleasing, which may be achieved through

musical sonification (Gang et al., 2018; Seppelt and Lee, 2019; Chen

andChen, 2021; Nadri et al., 2023). Aside frommultimodal cues, we

recommend a different transfer of control maneuver (e.g., button)

that is more straightforward than the current lever maneuver.

Issues with transparency into the system’s performance via the

display likely contributed to collective perceptions of risk and

uncertainty. As stated before, Tesla displays should better indicate

its current range of detection and incorporate information about its

decision-making and confidence (Maarten Schraagen et al., 2021;

Endsley, 2023). Finally, unobtrusive physiological measurements of

both drivers’ and passengers’ cognitive state and trust could provide

critical data to improve AV safety (Tenhundfeld et al., 2019; Belcher

et al., 2022).

5. Conclusion

In conclusion, our research underscores the importance of

understanding trust within group contexts and its implications

for the development and acceptance of AV technology. Our

findings align with Lee and See’s (2004) trust process model,
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shedding light on the analytical, analogical, and affective nature

of trust in AV systems. We extend this study by showing that

conversations among group members are significant to consider

as group mechanisms such as shared mental models, polarization,

propagation, and contagion factor into trust perceptions and

decision-making. More practically, our study has implications for

improving AV technology for enhanced trust calibration. Effective

instruction and design elements, including more salient visual and

audio cues, hold promise for enhancing human-automation trust.

Importantly, our study highlights the crucial role of studying trust

in more ecologically valid environments and the role of group

processes in the development of trust in AVs.
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