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Introduction: This study investigates the process data from scientific inquiry 
tasks of fair tests [requiring test-takers to manipulate a target variable while 
keeping other(s) constant] and exhaustive tests (requiring test-takers to construct 
all combinations of given variables) in the National Assessment of Educational 
Progress program.

Methods: We identify significant associations between item scores and temporal 
features of preparation time, execution time, and mean execution time.

Results: Reflecting, respectively, durations of action planning and execution, and 
execution efficiency, these process features quantitatively differentiate the high- 
and low-performing students: in the fair tests, high-performing students tended 
to exhibit shorter execution time than low-performing ones, but in the exhaustive 
tests, they showed longer execution time; and in both types of tests, high-
performing students had shorter mean execution time than low-performing ones.

Discussion: This study enriches process features reflecting scientific problem-
solving process and competence and sheds important light on how to improve 
performance in large-scale, online delivered scientific inquiry tasks.

KEYWORDS

scientific problem solving, fair test, exhaustive test, preparation time, execution time

1. Introduction

The past two decades have witnessed an increasing use of computers and relevant 
technologies in classroom teaching and learning (Hoyles and Noss, 2003) and a swift transition 
from traditional paper-and-pencil tests to digitally-based assessments (DBAs) (Zenisky and 
Sireci, 2002; Scalise and Gifford, 2006) that accommodate advancement of educational 
technologies. Along with these trends, the National Assessment of Educational Progress 
(NAEP)1 began to use hand-held tablets to administer math assessments in the U.S. in 2017, so 
did other disciplines afterward. Capable of recording multi-dimensional data, DBAs offer ample 
opportunities to systematically investigate U.S. students’ problem-solving processes through 
well-designed technology-enhanced items (TEIs) (National Assessment Governing Board, 2015). 
TEIs refer broadly to computer-aided items that incorporate technology beyond simple option 
selections as test-takers’ response method (Koedinger and Corbett, 2006). In a TEI, test-takers 
are asked to interact with computers by performing a series of actions to solve one (or multiple) 

1 https://nces.ed.gov/
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problem. For example, in scientific inquiry TEIs of fair tests (Chen and 
Klahr, 1999), students are asked to adjust a target variable in an 
experimental setting or condition while keeping other(s) constant, to 
reveal effect or outcome of the target variable. In another type of 
scientific inquiry TEIs, exhaustive tests (Montgomery, 2000; Black, 
2007), students are required to construct all possible combinations of 
given variables to investigate what combination(s) leads to a specific 
outcome (see Section 2 for details). In both types of tests, students 
need to apply the control-of-variables strategy (CVS, see Section 2 for 
details), a domain-general processing skill to design controlled 
experiments in a multi-variable system (Kuhn and Dean, 2005; 
Kuhn, 2007).

Beyond final responses, interactive actions of students are captured 
as process data.2 Such data help (re)construct problem-solving 
processes, reflect durations (or frequencies) of major problem-solving 
stages, and infer how students deploy strategies they seem to know 
(Pedaste et al., 2015; Provasnik, 2021), all of which provide additional 
clues of students’ problem-solving behaviors (Kim et  al., 2007; 
Ebenezer et al., 2011; Gobert et al., 2012). For example, in drag-and-
drop (D&D) items, a popular type of TEIs, students drag some objects 
from source locations and drop them into target positions on screen. 
Compared to conventional multiple-choice items, such items can 
better represent construct-relevant skills, strengthen measurement, 
improve engagement/motivation of test-takers, and reduce interference 
of random guessing (Bryant, 2017; Arslan et al., 2020).

Despite the advantages, process data have long been treated as 
by-products in educational assessments. Until recently, scholars have 
begun to investigate whether (and if so, how) process data inform 
(meta)cognitive processes and students’ strategies during problem 
solving (Guo et al., 2019; Tang et al., 2019; Gong et al., 2021, 2022). By 
reviewing pioneering studies on NAEP process data before its formal 
transition to DBA, Bergner and von Davier (2019) proposed a 
hierarchical framework that divides process data use into five levels 
based on its relative importance to outcome: Level 1, process data are 
irrelevant/ignored and only response data are considered; Level 2, 
process data are incorporated as auxiliary to understanding outcome; 
Level 3, process data are incorporated as essential to understanding 
outcome; Level 4, process data are outcome and incorporated into 
scoring rubrics; and Level 5, process data are outcome and 
incorporated into measurement models.

Most published process data studies remain up to level 2 of this 
framework; they directly use students’ actions, action sequences, and 
(partial/rough) durations of answering processes to interpret item 
outcome (e.g., answer change behaviors, Liu et al., 2015; response 
time, Lee and Jia, 2014; or action sequences, Han et al., 2019; Ulitzsch 
et al., 2021). Before explicitly revealing correlations between process 
data and individual performance, inferences from these studies 
remain auxiliary rather than essential. In other words, discovering 
process features and their relatedness to test-takers’ performance is a 

2 Such data include, but are not limited to: student events and their time 

stamps, e.g., drag-and-drop, (de)selection, or tool-use actions during answer 

formulation, text (re)typing or editing behaviors during keyboard-based writing, 

or navigations across pages, scenes, or questions during on-screen reading; 

and system events and their time stamps, e.g., entering/leaving scenes, (de)

activating on-scene tools or popping-up messages.

prerequisite for using process features to understand or interpret 
individual performance, thus reaching higher levels of the framework.

This study aims to fulfill this prerequisite by investigating process 
data from scientific inquiry tasks (see Supplementary materials) and 
related research questions therein in a three-step procedure:

Define time-related features to illustrate action planning and 
executing stages of scientific problem solving. Many early studies have 
examined action-related features that reflect conceptual formation 
(Jonassen, 2000; Lesh and Harel, 2011), response strategies, and 
internal (individual dispositions) or external (testing circumstances) 
factors probably affecting students’ choices of strategies (Griffiths et al., 
2015; Lieder and Griffiths, 2017; Moon et al., 2018). However, the time 
needed for problem solving has been largely undervalued (Dostál, 
2015). As an informative indicator of problem solving stages, temporal 
information helps characterize patterns of students, and infer (meta)
cognitive processes occurring at various stages of problem solving.

We propose three temporal features to reflect, respectively, the 
major stages of scientific problem solving (see Figure  1). In an 
assessment setting, preparation time (PT) is defined as the time 
difference (duration) between the moment students enter a test scene 
and when they make their first answer-related event. It denotes the 
duration while students understand instructions and conceptually plan 
their actions, before making any. Execution time (ET) is defined as the 
time difference between students’ first and last answer-related events. 
It measures the duration while students execute their planned actions. 
Mean execution time per (MET) is measured as ET divided by the 
number of answer related events.3 ET reflects total efforts of students 
casted to construct their answers, including setting up answers and 
revising or (possibly) reviewing their choices, whereas MET reflects 
average effort over total events. Controlling for answer-related events, 
MET indicates the efficiency of action execution. Our study examines 
whether these temporal features significantly correlate item scores and 
characterize high/low-performing students in test scenes.4

Explore correlations between process features and item scores. This 
is the missing link in many existing studies of problem solving; some 
cannot verify such correlations, since the categorical features (e.g., 
action sequences) used cannot fit for correlation tests, whereas others, 
directly assuming such correlations, skip this step and use process 
features to inform/interpret performance. Neither approach is 

3 In addition to durations, one can measure numbers/sequence of answer-

related events in the test scene. Such features have some uncertainties: greater/

fewer events do not necessarily require more/less effort, more events 

sometimes indicate low competency, and it is non-trivial to align such features 

with performance (scores). The duration features proposed in our study can 

overcome these uncertainties by explicitly measuring students’ planning and 

executing stages and relating them to performance.

4 Some recent studies begun to touch upon duration features. For example, 

Arslan et al. (2020) reported no significant correlations between item scores 

and preparation (and execution) times in math items. Jiang et  al. (2021) 

investigated action sequences and response strategies derived. One can also 

measure ratios between durations. If durations can reflect the planning and 

executing stages during problem solving and characterize performance patterns 

of students, ratios between durations can further reveal relative cognitive loads 

between the planning and executing processes. We leave such ratio-based 

features in future work.
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complete. Our study focuses on detecting correlations between 
continuous process features and item scores and explaining feature 
differences across score groups.

We apply two statistical tests to detect correlations. First, the 
Kruskal-Wallis test (Kruskal and Wallis, 1952) compares process 
features across score groups, and reports whether (at least) one of the 
multiple samples is significantly distinct from others. As a 
non-parametric version of ANOVA, this test does not require a 
normal distribution of the residual values of features. Extended from 
the Mann–Whitney test, this test is an omnibus test applicable to 
small-scale, independent samples from multiple groups. Second, 
we  conduct the omnibus ANOVA between score groups, and 
log-transformed (base e) the process features to meet the normality 
assumption. This test is applicable to large-scale datasets. We use both 
methods to cross-validate obtained results by each method.

Use process features to characterize performance (or competence) 
differences between students and/or tasks. After verifying correlations 
between process features and item scores, we further investigate: (a) 
whether there exist differences (or similarities) in the process features 
across score groups and/or inquiry tasks; and (b) whether the observed 
differences (or similarities) characterize problem solving performance 
(or competence) between high- and low-performing students and 
between inquiry tasks. Answers to these questions further foster these 
features as informative indicators of students’ performance and pave 
the way for incorporating them into scoring rubrics and measurement 
models aiming to classify and interpret students’ behaviors.

In the following sections, we first review the CVS strategies and 
scientific inquiry tasks, and then define the process metrics and 
analysis plans. After reporting the analysis results, we  answer the 
abovementioned questions, summarize our contributions to scientific 
inquiry and problem solving research, and point out the general 
procedure of process data use in educational assessments.

2. Control-of-variables strategies and 
scientific inquiry tasks

Control-of-variables strategy (CVS)5 has been widely studied in 
science assessments. CVS refers to the skill used to design 

5 a.k.a. “isolation of variables” (Inhelder and Piaget, 1958), “vary one thing at 

a time” (Tschirgi, 1980), or “control of variables strategy” (Chen and Klahr, 1999).

controlled experiments in a multi-variable system. To avoid 
confounded experiments, all variables but those under 
investigation must be controlled in a way to meet task requirements. 
In the Next Generation Science Standards (NGSS), CVS and 
multivariate reasoning are viewed as two key scientific thinking 
skills. Central to early science instruction (Klahr and Nigam, 2004) 
(around grades 4–8), CVS cannot develop routinely without 
practice or instruction (Schwichow et al., 2016), making it a critical 
issue in development of scientific thinking (Kuhn and Dean, 2005). 
Children, adolescents, and adults with low science inquiry skills 
show difficulty in applying CVS in scientific problem solving (Chen 
and Klahr, 1999).

In large-scale assessments like NAEP, CVS is often assessed by two 
types of scientific inquiry tasks: fair tests and exhaustive tests. A fair 
test (see examples in Section 3.1) refers to a controlled investigation 
carried out to answer a scientific question about the effect of a target 
variable. To control for confounding factors and be  scientifically 
sound, students are expected to apply the CVS to meet the fair test 
requirement that: (a) all other variable(s) are kept constant; and (b) 
only the target one(s) changes across conditional sets for comparison. 
In such a “fair” setting, the effect of the target variable(s) can 
be  observed and less interfered by other variables. To properly 
complete the task, students need to choose, among possible 
combinations of different levels of the target and other variables, one 
(or a few) condition that meets the requirement. There are studies of 
CVS in scientific inquiry using small-scale participants and response/
survey data (Kuhn, 2007). A recent meta-analysis of intervention 
studies (partially) designed to enhance CVS skills revealed that 
instruction/intervention (e.g., cognitive conflict and demonstration) 
influences achievement in scientific inquiry tasks (Schwichow 
et al., 2016).

An exhaustive test (a.k.a. all-pair or combinatorial test) (see 
examples in Section 3.2) requires test-takers to construct, physically 
or mentally, (nearly) all possible combinations of given variables to 
address an inquiry of what condition(s) induces a specific outcome. 
Similar to fair tests, students in exhaustive tests need to control the 
given variables by setting up combinations exhaustively or nearly so 
(in an open-ended case). Though not explicitly mentioned in NGSS, 
exhaustive testing is essentially related to CVS or at least a case of 
multivariate reasoning. How to conduct exhaustive tests is usually 
taught and learned relatively late in science education (around grades 
9–12). Such tests have also been adopted in other fields than 
educational assessments, e.g., software engineering and business 
(Grindal et al., 2005).

FIGURE 1

Proposed process features [preparation time (PT) and execution time (ET)] and corresponding major stages of scientific problem solving 
(understanding and planning, and executing planned actions, denoted by colored bars) in a scientific inquiry test item. Vertical lines denote the times 
when a test-taker enters and exits the task, vertical bars denote answer-related actions. See Supplementary materials for review of scientific problem 
solving processes.
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3. Materials and methods

Our study makes use of the 2018 NAEP science pilot tasks (see 
Supplementary materials). It adopted four tests, respectively, from 
four tasks in the repertoire: two fair tests administered on fourth- and 
eighth-graders, respectively (the primary and middle school bands, 
per NGSS), and two exhaustive tests on twelfth-graders (the high 
school band). Table 1 shows the samples of these tests.

Two criteria lead to the choice of these tasks. First, the sampled 
tests should cover most science subfields and grades in the NAEP 
sample. However, given that lower grade students have not been 
taught to solve exhaustive tasks, no such tests were administered on 
fourth-graders. Second, since fair tests were administered mostly on 
eighth-graders and exhaustive tests on twelfth-graders, it is impossible 
to select fair tests and exhaustive tests administered on students of the 
same grade. Nonetheless, since all the NAEP fair and exhaustive tests 
were designed by content experts following similar constructs and the 
only difference was that each task fell into one of the science disciplines 
(physical, life, earth/space sciences), the chosen tests in our study 
are representative.

3.1. The fair tests and scoring rubrics

The fair test 1 came from an earth/space science task. Its cover 
task6 is as follows. A city near a mountain suffers from strong north 
wind each year. The government plans to test the wind-blocking effect 
of three types of trees. Each type can be planted at the foot (low), side 
(medium), or peak (high) of the northern ridge of the mountain to 
reduce wind speed, and there is no interaction between tree type and 
mountain position (e.g., there is no preference for one type of trees to 
be planted at a specific position).

The whole task is presented to students through multiple scenes, 
some involving items. The first few scenes help students understand, 
represent, and explore relevant issues. After them comes the fair test 
scene, in which students are asked to design a controlled experiment 
to investigate the wind-blocking effects of the three types of trees. The 
follow-up scenes ask them to interpret/revisit their answers and apply 

6 Due to privacy and secure nature of NAEP data, we present conceptually 

equivalent cover tasks to maintain task security. The cover tasks have similar 

underlying structures and require similar cognitive processes to solve, but do 

not connect to specific science contents as the real tasks.

their knowledge in novel conditions. Students went through these 
scenes in the same order and could not freely jump around.

In the fair test scene (see Figure 2), students need to drag each 
type of the trees and drop it at one of the four virtual mountains 
resembling the real one near the city; students can drop the trees at the 
foot (low), side (middle), or peak (high) of the northern ridge of the 
mountain. Each mountain can hold one type of the trees, and each 
type can only be planted at one mountain. Students can move trees 
from one mountain to another, or from one position of a mountain to 
another position of the same or different mountain. After making final 
selections, students click an on-screen “Submit” button to initiate the 
experiment. Then, the wind speeds before and after passing over each 
of the mountains with/without trees are shown on screen as 
experimental results.

This fair test has two variables: tree type (with three levels, 
corresponding to the three tree types) and tree position (with three 
levels, low, middle, and high). To conduct a fair test showing the 
effect of tree type, students must keep the tree positions across 
mountains identical. Table 2 shows the scoring rubric of the test. 
Since students can never plant the same type of trees on two 
mountains or at two positions of one mountain, the rubric focuses 
mainly on the types of trees planted on mountains. In addition, no 
matter how students plant trees, one mountain is left with no trees. 
A complete comparison on the effect of tree type needs a baseline 
condition of no trees, but students are not required to explicitly set 
up this condition in this test. Therefore, although there are in 
principle 3 × 3 × 3 × P(4,3) = 648 ways of tree planting and 
3 × P(4,3) = 72 in which match the fair test requirement (P means 
permutation), the matching answers can be  classified into three 
types: (a) those having the three types of trees all planted at the 
“Low” positions of any three out of the four mountains; (b) all at the 
“Middle” positions; and (c) all at the “High” positions. These answers 
receive a full score (3). Answers having trees planted at two distinct 
positions of any three mountains has a partial score (2), and those 
having trees planted at three distinct positions of any three mountains 
receives the lowest score (1).

The fair test 2 comes from a physical science task. Its cover task is 
as follows. A bakery shop is developing a new product. The bakers 
want to test which of the three ingredients (white candy, butter, and 
honey) has the most acceptable sweetness in the new product. Each 
ingredient has three amounts to choose: 50, 100, and 200 milligrams. 
After instruction scenes, in the fair test scene, nine piles of the three 
ingredients with the three amounts are shown on the left side of the 
screen (see Figure 3A), and students can drag three of these piles into 
the three slots on the right side of the screen to show the effect of 
ingredients on the sweetness of the product. Students can move the 
piles from one slot to another. After making final choices, students 
click on an on-screen “Submit” button to initiate the experiment, and 
the sweetness of each choice is shown on the screen.

This fair test has two variables: ingredient type (white candy, 
butter, and honey) and ingredient amount (50, 100, and 200 
milligrams). To show the effect of ingredients, one needs to keep 
ingredient amount identical across conditions. Among a total of 
C(9,3) × P(3,3) = 504 choices of three piles of ingredients (C means 
combination), 3 × P(3,3) = 18 match the fair test requirement. Table 2 
shows the scoring rubric of the test. Answers matching the fair test 
requirement receive a full score (3), and others receive a partial (2) or 
the lowest score (1).

TABLE 1 Basic information of the testlets investigated in this paper.

Test item Subfield Grade No. Students 
(Female, Male) 

for analyses

Fair test 1 Earth/space science 8 1,607 (800, 807)

Fair test 2 Physical science 4 1,990 (977, 1,013)

Exhaustive test 1 Life science 12 2,726 (1,285, 1,341)

Exhaustive test 2 Earth/space science 12 2,947 (1,465, 1,482)

Due to various reasons (e.g., early quit or data capture glitches), data of some students were 
missing. The rightmost column records the number of students whose process and response 
data were used for analyses.
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3.2. The exhaustive tests and scoring rubric

The exhaustive test 1 comes from a life science task. Its cover task 
is as follows. Farmers are trying to cultivate flowers with a special 
color. They do this in a natural way or using one or two types of 
fertilizers (A and B). After scenes for students to understand related 
issues, represent and explore different conditions, there comes the 
exhaustive test scene, in which students are asked to design an 
experiment to show which way has the highest chance to cultivate 
flowers with a target color. They can set up a condition by selecting (or 
not) any (or both) fertilizer, and save it by clicking an on-screen “Save” 
button. They can also remove a saved condition by clicking it and an 
on-screen “Delete” button. After saving some conditions, they can 
click on an on-screen “Submit” button to submit all the saved 
conditions at that moment as final answers. This test requires four 
variable combinations (see Figure  4). The follow-up scenes ask 
students to review their answers and apply their knowledge in similar 

domains. Students went through these scenes in the same order and 
could not freely jump around the scenes.

Table 3 shows the scoring rubric of this test. The four scales are 
based on the types of the saved answers, especially whether they 
include some hard-to-foresee ones (e.g., Figures 4A,D). An exhaustive 
answer covering all combinations in Figure 4 receives the full score 
(4), whereas answers lacking one, two, or three of the combinations 
receive lower scores 3, 2, and 1. The validity of the rubric (whether it 
can reasonably reflect students’ intuitive conceptions and clarify 
students with various levels of problem solving skills) is beyond the 
scope of this paper.

The exhaustive test 2 comes from an earth science task. Its cover 
task is as follows. Two cities (A and B) plan to build a transmission 
tower to broadcast television signals. To evaluate signal quality on 
the land between the cities, they segment the land into 14 regions, 
each having four locations for signal sampling (see Figure 5). After 
instructions, students are asked to select at most 15 locations (out 
of 42) in the 13 regions (one region with one location therein being 
chosen is used as a demo) to test the signal coverage. They can 
select a location by clicking on it and deselect it by clicking on it 
again. If 15 locations are already chosen, students must deselect 
some chosen locations before making new selection(s). After 
choosing some locations (not necessarily 15), students can click on 
an on-screen “Submit” button to submit the chosen locations as 
final answers.

In this exhaustive test, students need to: (a) select at least one 
location in each of the 13 regions to test signal quality; and (b) choose 
two additional locations, respectively, in the three regions adjacent to 
each city to evaluate the signal sources in the two cities. It is 
challenging to foresee both aspects of requirements. Table 3 shows the 
scoring rubric of the test. The four scales are dependent on whether 
students fulfil both, either, or none of the two aspects of requirement. 
Whether this rubric is valid is not the focus of this paper.

A

B

C

FIGURE 2

Example answers of the fair test 1. “Low,” “Medium,” “High” denote tree positions (foot, side, peak) in the northern ridge of a virtual mountain. “None” 
means no tree planted. In (A), the first “Low” indicates that one type of trees is planted at the foot of the mountain, the second and third “Low” indicate 
that the other two types of trees are planted on the second and third mountains, and “None” means that the fourth mountain has no trees planted. 
Since the scoring rubric (see Table 2) does not specify tree type and ignores the mountain without trees, submitted answers can be simply denoted by 
the tree positions in the mountains with trees. In this way, answer (A) can be denoted as “Low; Low; Low”, answer (B) as “Medium; High; High”, and 
answer (C) as “Low, High, Medium”.

TABLE 2 Scoring rubrics of the fair tests 1 and 2.

Score Rubric of the fair test 1 Rubric of the fair test 2

3 Trees are planted at the same 

positions of three mountains (e.g., 

Low; Low; Low in Figure 2A)

Select three distinct ingredients 

with identical amount (e.g., 

Figure 3B)

2 Two types of trees are planted at 

the same positions of the 

mountains (e.g., Medium; High; 

High in Figure 2B)

Select three distinct ingredients, 

but two of them have identical 

amounts or all three have distinct 

amounts (e.g., Figure 3C)

1 Tree positions on the mountains 

are distinct (e.g., Low; High; 

Medium in Figure 2C)

None of the above (e.g., 

Figure 3D)
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A B

C

D

FIGURE 3

Example answers of the fair test 2. (A) Nine piles of ingredients for selection: 50, 100, and 200 are milligrams, and each pile is marked by an index of 
1–9. (B) A choice of three piles, denoted by 2–5–8, matching the fair test requirement. (C) A choice of three piles, 1–5–9, partially matching the 
requirement. (D) A choice of three piles, 7–8–6, not matching the requirement.

A B

C D

FIGURE 4

All the combinations in the exhaustive test 1: (A) None; (B): A; (C): B; 
(D): A + B.

3.3. Process-based measures

We define and measure three temporal features: preparation time 
(PT), execution time (ET), and mean execution time per answer-
related event (MET). All of them are calculated based on time stamps 
of answer-related events. In the fair tests, answer-related events 
include: drag a type of trees (or a pile of ingredients) and drop it on a 
position of a virtual mountain (or a slot), or move a type of tree (or a 
pile of ingredients) from one mountain (position) (or one slot) to 
another; in the exhaustive tests, such events include: select one or two 
fertilizers (or a number of locations), and save or cancel a condition. 
The ending time point of ET is not the moment when students click 
on the “Submit” button, because after executing the last answer-related 
event, they can review their answers, thus moving into the next stage 
of problem solving. Also, executing actions may involve planning 
bounded to prior actions, which is different from the conceptual 

planning of related actions before making any. Therefore, we limited 
ET as the duration between the first and last answer related events. In 
addition to answer-related events, other factors (e.g., mouse or 
computer speed) might affect the efficiency of action execution. Since 
the tests were administered on site using the same model of tablets, 
the influence of these factors was minimal.

3.4. Preprocessing and analysis plan

Before analysis, we  first remove missing values. Then, for each 
process feature in a data set, we adopt a 98% winsorization estimation 

TABLE 3 Scoring rubrics of the exhaustive tests 1 and 2.

Score Rubric of 
exhaustive test 1

Rubric of exhaustive test 
2

4 Answers cover all the four 

conditions: None, A, B, A + B.

The 15 chosen loc. Include:

(1) One loc. in each of the 13 regions 

(except region 6).

(2) One additional loc. in one of 

adjacent regions to City A.

(3) One additional loc. in one of 

adjacent regions to City B.

3 Answers exclude None, OR 

exclude A or B.

At least 14 chosen loc. Match cases 

(1) and (2), or (1) and (3). At least 13 

chosen loc. Match case (1) only.

2 Answers exclude A + B,

OR exclude A + B and A or B,

OR exclude None and A + B.

At least 2 loc. Match cases (2) and (3) 

above.

1 None of the above. None of the above.

For the exhaustive test 1, the original rubric also evaluates whether students give a proper 
interpretation of submitted answers. Here, students are rescored based only on their saved 
conditions. “Loc.” stands for location.
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(Dixon, 1960) (set the values <1% of the whole values to the value at 1%, 
and those >99% to the value at 99%) to adjust spurious outliers. 
Winsorization is independent of data distribution and preserves the exact 
proportion of data points, thus being more flexible than other outlier 
removal methods that presume a normal distribution of data points.

For response data, we  first show score distributions among 
students and summarize how many students appropriately applied the 
CVS in each test, and then show the most frequent (top  10) 
submitted answers.

For process data, we conduct the Kruskal–Wallis test to compare 
the duration features across score groups. If a significant value of p is 
reported by the test, we  adopt another non-parametric test, the 
Wilcoxon signed-rank test, on pair-wised score groups to clarify 
which pair(s) of score groups have different means of the features. 
These two tests, implemented using kruskal.test and wilcox.test 
functions in the stats package in R 3.6.1 (R Core Team, 2019), provide 
quantitative evidence on the relation between item scores and process 
features. Since there are three Kruskal–Wallis tests on the three 
measures, respectively, the critical p-value for identifying significance 
is set to 0.05/3 ≈ 0.0167.

To cross-validate the results of the Kurskal–Wallis and Wilcoxon 
signed-rank tests, we also conduct the omnibus ANOVA and pair-
wised t tests (if the omnibus ANOVA test reports a significant value 
of p) between score groups. The log-transformed (base e) features pass 
the normality test (we use the Shapairo–Wilk’s method to test 
normality, and the p-values are all above 0.05, indicating that the 
distributions of the log-transformed data are not significantly distinct 
from a normal distribution). The ANOVA results are shown in the 
Supplementary materials.

4. Results

4.1. The fair tests

The two fair tests show similar trends in score distribution and 
top 10 frequent submitted answers.

In the fair test 1, 41.4% of the students received the lowest score (1), 
29.1% received a partial score (2), and only 29.5% properly applied the 
CVS and got a full score (3). In other words, the majority (over 70%) of 
the students failed to properly apply the CVS in this test. Figure 6A 
illustrates the top 10 frequently-submitted answers in this test. “Low; 
Low; Low” was the most frequent correct answer, and other correct 
ones (e.g., “Medium; Medium; Medium” and “High; High; High”) were 
less frequent; “Low; Medium; High,” an answer with totally-varied tree 
positions, was the most common incorrect answer, and its variants (e.g., 
“High; Medium; Low” or “Low; High; Medium”) were also common, 
all receiving the lowest score (1); and the answers having a partial score 
(2) (e.g., “Medium; Low; Medium”) were less frequent.

In the fair test 2, only 28.8% of the students properly applied the 
CVS and got the full score (3), and most students had either the lowest 
score (1) (33.3%) or the partial score (2) (37.9%). Figure 6B shows that 
“1,4,7” was the most frequent correct answer, so was “3,6,9,” but other 
variants (e.g., “2,5,8” and “9,6,3”) were less frequent. “1,5,9,” an answer 
with totally varied ingredient amounts, was the most frequent incorrect 
answer. Others (e.g., “1,2,3,” “7,8,9” or “9,8,7”) that kept ingredient type 
consistent but varied ingredient amount were also frequent. Students 
who submitted these answers applied the CVS on a wrong variable. 
Other answers (e.g., “1,2,4” or “1,6,9”) that partially controlled the 
target variable of ingredient amount could not get the full score.

FIGURE 5

Example answers in the exhaustive test 2. Squares marked as 1–14 are the regions between City A and City B. Round dots in a region are locations for 
sample taking. Region 6 is the demo region with a chosen location marked in red, and the others are marked in grey. Green dots are students’ chosen 
locations. In this answer, there is at least one chosen location in all 13 regions except region 6, and there is at least one additional chosen location in 
one of the three regions adjacent to City A (region 5) and City B (region 11). This answer has a score of 4 (see Table 3).
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A
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FIGURE 6

Top 10 frequent answers of the fair test 1 (A) and those of the fair test 2 (B). Values on top of the bars are numbers of students, and those inside 
brackets are proportions.

Table 4 shows the means and standard errors of the process 
features across score groups. As for the fair test 1, the Kruskal–
Wallis tests report significant differences of these features across 

score groups (PT, χ2 = 12.2, df = 2, p < 0.005; ET, χ2 = 89.916, df = 2, 
p < 0.001; MET, χ2 = 64.776, df = 2, p < 0.001). The omnibus 
ANOVA tests show similar results [PT, F(2,1604) = 5.943, 
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p < 0.005; ET, F(2,1604) = 51.7, p < 0.001; MET, F(2,1604) = 38.93, 
p < 0.001].

As for the fair test 2, the Kruskal–Wallis tests report marginally 
significant differences in PT (χ2 = 7.824, df = 2, p = 0.02) and MET 
(χ2 = 6.600, df = 2, p = 0.037) and significant differences in ET 
(χ2 = 78.111, df = 2, p < 0.001) between score groups. The omnibus 
ANOVA tests show non-significant results for PT [F(2,1987) = 2.744, 
p = 0.065], but significant and marginally significant results for ET 
[F(2,1987) = 37.53, p < 0.001] and MET [F(2,1987) = 3.451, p = 0.032].

Table 5 shows the Wilcoxon signed-rank test results. In both fair 
tests, the students with higher scores had shorter ET than those with 
lower scores; and the full score students had shorter PT and MET than 
the lowest score students, but such differences were not statistically 
significant when the partial score group was involved.

4.2. The exhaustive tests

The two exhaustive tests show similar results.
In the exhaustive test 1, 25.2% of the students received the lowest 

score (1), 33.9% properly applied the CVS and received the full score 
(4), and the rest got the partially high (3) (34.1%) or low (2) (6.8%) 
scores. In other words, the majority (over 65%) of the students failed 
to properly apply the CVS. Among the top 10 frequent answers (see 
Figure 7), “A; B; A + B; None” and its variants “A; A + B; B; None” and 
“A + B; A; B; None” received the full score, but they were less frequent 
than “A + B,” “B,” “A,” and “None,” which were the most frequent 
incorrect answers with the lowest score. Answers having partially high 
(e.g., “A; A + B; None”) or low (e.g., “A; A + B”) scores were 
less frequent.

In the exhaustive test 2, many students received the lowest score 
(1) (26.8%) and partially low score (2) (60.6%), and only 5.8% properly 
applied the CVS and got the full score (4), and 6% got the partially 

high score (3). Due to extremely numerous cases of submitted answers 
and equivalence of submitted answers, we  discuss the frequent 
answers based on Figure 4 and the scoring rubric in Table 3. Most 
students got the partially low score (1), their submitted answers did 
not ensure that at least one location in each of the 13 regions was 
chosen; instead, they chose over 2 locations in the three regions 
adjacent to City A/City B, indicating that they failed to figure out the 
two requirements (see Section 3.2) of this test.

Table  6 shows the means and standard errors of the process 
features across score groups. In the exhaustive test 1, the Kruskal–
Wallis tests report significant feature differences across score groups 
(PT, χ2 = 133.57, df = 3, p < 0.001; ET, χ2 = 498.49, df = 3, p < 0.001; MET, 
χ2 = 258.97, df = 3, p < 0.001). The omnibus ANOVA tests show similar 
results [PT, F(3,2721) = 65.4, p < 0.001; ET, F(3,2721) = 224.5, p < 0.001; 
MET, F(3,2721) = 78.4, p < 0.001].

In the exhaustive test 2, the Kruskal–Wallis tests report marginally 
significant difference in PT (χ2 = 10.317, df = 3, p < 0.017), and 
significantly differences in ET (χ2 = 440.33, df = 3, p < 0.001) and MET 
(χ2 = 158.79, df = 3, p < 0.001). The omnibus ANOVA tests also show 
(marginally) significant differences in PT [F(3,2942) = 3.094, 
p = 0.026], ET [F(3,2942) = 185.7, p < 0.001], and MET 
[F(3,2942) = 45.58, p < 0.001].

Table 7 shows the Wilcoxon signed-rank test results. Similar to the 
fair tests, the full score students had shorter PT and MET than other 
low score students; but unlike the fair tests, the full score students had 
longer ET than most of the other score students. The patterns might 
not be consistent when partial score groups were involved.

5. Discussions

5.1. Problem solving processes of high- 
and low-performing students

This study examined two fair tests and two exhaustive tests from 
the NAEP scientific inquiry tasks, which require students to apply the 
control-of-variables strategy to design controlled experiments. 
We  propose three process features to reflect the major stages of 
problem solving and use them to investigate performances of students 
having various levels of problem solving competency. In both types of 
tests, high- and low-performing students exhibited distinct response 
and process patterns.

In terms of response, more than 70% of the fourth- and eighth-
graders failed to properly apply the control-of-variables strategy in the 
fair tests, and over 80% of the twelfth-graders failed to do so in the 
exhaustive tests. These are consistent with previous literature (Chen 
and Klahr, 1999).

TABLE 5 Wilcoxon signed-rank test results between pair-wised score groups of the two fair tests.

Fair test 1 Fair test 2

PT ET MET PT ET MET

1v2 158,942 (0.527) 163,023 (0.016) 158,766 (0.548) 229,631 (0.025) 289,097 (0.001) 252,368.5 (0.458)

1v3 176,639 (<0.001) 2,038,350.5 (<0.001) 199,945.5 (<0.001) 177,693 (0.011) 247,740 (<0.001) 209,433.5 (0.014)

2v3 120,966.5 (0.014) 139,637.5 (< 0.001) 136,592.5 (< 0.001) 212,462 (0.580) 244,581.5 (<0.001) 229,515 (0.056)

“1” to “3” refer to score groups. Values outside brackets are test statistics, and those inside are p values. Significant (having p values <0.0167) results are marked in bold. Supplementary Table S1 
shows the omnibus ANOVA and pair-wise t-tests results.

TABLE 4 Means and standard errors of PT, ET, and MET in each score 
group of the two fair tests.

Score Fair test 1 Fair test 2

PT ET MET PT ET MET

1
85.571 

(1.166)

41.330 

(1.098)

5.125 

(0.091)

22.247 

(1.007)

53.043 

(1.650)

6.178 

(0.170)

2
85.154 

(1.407)

38.807 

(1.216)

4.958 

(0.103)

22.219 

(0.832)

41.677 

(1.265)

5.777 

(0.134)

3
79.745 

(1.172)

29.082 

(1.081)

4.138 

(0.090)

21.959 

(0.874)

37.108 

(1.387)

5.549 

(0.157)

Values (in seconds) outside brackets are means and those inside brackets are standard errors.
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FIGURE 7

Top 10 frequent answers of the exhaustive test 1. Values on top of bars are numbers of students, and those inside brackets are percentages of students.

TABLE 6 Means and standard errors of PT, ET, and MET across the score 
groups of the exhaustive tests 1 and 2.

Score Exhaustive test 1 Exhaustive test 2

PT ET MET PT ET MET

1
9.056 

(0.325)

24.949 

(0.922)

5.502 

(0.144)

15.994 

(0.388)

29.560 

(0.670)

2.324 

(0.043)

2
6.797 

(0.439)

41.623 

(1.804)

3.520 

(0.113)

14.967 

(0.231)

35.772 

(0.473)

1.969 

(0.022)

3
7.105 

(0.207)

31.700 

(0.715)

3.899 

(0.070)

15.821 

(0.705)

50.940 

(1.624)

2.705 

(0.076)

4
5.714 

(0.172)

42.523 

(0.763)

3.140 

(0.051)

16.641 

(0.755)

71.503 

(2.053)

2.423 

(0.066)

Values (in seconds) outside brackets are means and those inside are standard errors.

In the fair test 1, the most common strategy was to vary tree 
position in mountain, e.g., “Low; Medium; High” (and its 
variations) (see Figure 6A). In the fair test 2, the most common 
strategy was to vary ingredient amount, e.g., “1,5,9” (and its 
variations) (see Figure 6B). These similar results are in line with 
early observations in response data (e.g., Shimoda et al., 2002): 
students adopting inappropriate strategies failed to recognize that 
variation in this extraneous variable actually interfered the effect 
of the target variable.

In the exhaustive test 1, the common wrong strategies were to save 
(and submit) only one of the four possible conditions. In the 
exhaustive test 2, the common wrong strategies were to select locations 
mainly in the regions adjacent to a city but ignore those in between. 
These inappropriate strategies reveal that: the low-performing 
students in these tests failed to conceive an exhaustive set of test data 

for the controlled experiments, probably due to lacking intention or 
required skills, and as a consequence, they simply submitted a subset 
of test data or some guessed answers. These results are in line with 
early studies (Tschirgi, 1980).

In terms of process, consistent patterns are evident in the 
process features. As for preparation time, in the fair tests, 
compared to students with the lowest score, those with a full score 
tended to spend shorter preparation time before making their first 
answer-related action. Longer preparation in students with the 
lowest score indicates that they needed more time to understand 
the test and plan their activities, whereas high-performing 
students could efficiently do so. This difference at the planning 
stage reveals that whether a student can properly solve a problem 
depends on whether he/she efficiently grasps the instructions and 
plans the activities before any is made. Apparently contradictive to 
the intuition that longer planning leads to better outcome, our 
finding is supported by results from other time-constrained tasks, 
e.g., a shorter pre-writing pause (duration between the moment a 
student entered the item and when he/she made the first typing 
event) in high-performing students in a time-constrained writing 
test, indicating efficient task planning (Zhang et al., 2017).

Patterns in preparation time between the high- and 
low-performing students were not consistent in the exhaustive tests. 
In the exhaustive test 1, students with the full score spent less 
preparation time than those with the lowest score, but in the 
exhaustive test 2, such pattern disappeared. The number of exhaustive 
combinations in the exhaustive test 1 (4) is much smaller than that in 
the exhaustive test 2 (15). Therefore, in the exhaustive test 2, both 
students with lower scores and those with the full score might not 
be able to foresee all required combinations at the planning stage, so 
they simply started right away to make selections and think along with 
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the process of answer formation. This leads to non-significant 
difference in preparation time between the high- and low-performing 
students in this test.

As for execution time and mean execution time, in the two fair 
tests, most students with the lowest score spent longer execution 
time in conducting the drag-and-drop actions than those with 
higher scores (see Tables 4, 5). In these tests, the minimum number 
of actions required to construct an answer was just 3: drag and 
drop each type of trees (or three piles of different ingredients) 
respectively at the same (or different) positions of three mountains 
(or the three slots). There were two situations that caused longer 
execution time in students with the lowest scores: they either spent 
more time in executing individual actions or kept revising their 
choices,7 both reflecting hesitation or uncertainty during the action 
execution stage of problem solving. The process feature of mean 
execution time (see Tables 4, 5) explicitly reveals that on average, 
students with the lowest score spent more time on conducting each 
of their answer-related actions, i.e., they were less efficient in action 
execution than those with the full score.

Unlike the fair tests, in the exhaustive tests, most students with the 
lowest score showed shorter execution time than those with higher 
scores in answer formulation (see Tables 6, 7). According to Table 3, 
low scores in these tests correspond to incomplete submissions. The 
longest execution time of most full score students suggests that they 
were well motivated and had endeavored in constructing and saving 
all possible conditions, even at the cost of spending more time in total. 
By contrast, the shorter execution times of the lower score students 
were mostly caused by two cases: (1) they did not spend much time 
exploring the conditions and finished the test with lack-of-thinking 
results, which reflected low motivation/engagement or lack of 
reasonable understanding; (2) without realizing that they needed to 
submit all possible conditions, some students left the test after 
submitting just one condition (consistent with the frequent 
wrong answers).

As for mean execution time, in the exhaustive test 1, though 
spending more time in problem solving, most students with the full 
score showed shorter mean execution time than those with the lower 
scores (see Tables 5, 6). This indicates that most of high-performing 
students efficiently formulated their answers. In the exhaustive test 2, 

7 Both can be identified from event logs, and action frequency data can 

further clarify which situation is more popular.

although spending longer time in selecting multiple locations for 
comparison, most high-performing students had smaller or 
comparable mean execution time to that of low-performing students, 
who submitted incomplete answers. To sum up, in both tests, high-
performing students tended to be more efficient in executing multiple 
answer-related actions than low-performing ones.

5.2. Process features and problem-solving 
competency

In all four tests, most students who properly applied the control-
of-variables strategy (thus having high problem-solving competency) 
enacted more goal-oriented behaviors (Shimoda et al., 2002). In the 
fair tests, they quickly grasped the goal at the planning stage, and 
efficiently set up the conditions matching the fair test requirement; in 
the exhaustive tests, with a clear goal in mind, they persistently 
constructed all the conditions for comparison within a longer 
execution time. By contrast, students having low problem-solving 
competency were confused about the target variable while formulating 
answers in the fair tests; in the exhaustive tests, they either ignored or 
did not fully understand the goal, and tended to drop before 
submitting enough conditions.

The proposed process features of execution time and mean 
execution time reflect the level differences in goal-orientation and 
motivation between students, which are crucial to problem solving 
(Gardner, 2006; Dörner and Güss, 2013; Güss et  al., 2017). The 
contrasting patterns of execution time between the two types of tests 
reveal different characteristics of the solutions and execution stages 
therein; the fair tests need conditions matching the fair test 
requirement, yet the exhaustive tests request all possible conditions. 
They also reveal that task property could influence how students 
deploy strategies that they seem to know, which echoes the knowledge-
practice integration in NGSS.

The consistent patterns of mean execution time in high-
performing students across the two types of tests indicate that both 
types of tests require similar control-of-variables strategies and high-
performing students can efficiently apply such strategies in solving 
apparently-distinct problems. This suggests that the capabilities of 
doing analogical reasoning and employing key skills and related 
abilities across tasks of various contents are critical in scientific 
problem solving.

Most of the above discussions concern the full and lowest score 
students, because the statistical tests report consistent results 

TABLE 7 Wilcoxon signed-rank test results between pair-wised score groups of the two exhaustive tests.

Exhaustive test 1 Exhaustive test 2

PT ET MET PT ET MET

1v2 750,18.0 (<0.001) 29,065 (<0.001) 83,948 (<0.001) 743358.5 (0.034) 547,881.5 (<0.001) 834,208 (<0.001)

1v3 372,475.5 (<0.001) 215,673.5 (<0.001) 400,288.5 (<0.001) 77,802 (0.975) 31,302 (<0.001) 60441.5 (<0.001)

1v4 422,941.5 (<0.001) 128,978.5 (<0.001) 458,813.5 (<0.001) 63,511.5 (0.172) 12,317 (<0.001) 60,717 (<0.001)

2v3 84,443.5 (0.693) 111,656 (<0.001) 80,219.5 (0.147) 166,080.5 (0.197) 100,023 (<0.001) 99,775 (<0.001)

2v4 98,433.5 (<0.005) 81,207 (0.284) 100,851 (<0.001) 135,210 (0.009) 41,858 (<0.001) 102,545 (<0.001)

3v4 501,936.5 (<0.001) 274,362.5 (<0.001) 531,023.5 (<0.001) 15,784.5 (0.258) 9,378 (<0.001) 19,416.5 (0.016)

“1” to “4” refer to score groups. Values outside brackets are test statistics, and those inside are p-values. Significant (having p-values <0.0167) results are marked in bold. 
Supplementary Table S2 shows the omnibus ANOVA and pair-wise t-tests results.
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between these groups in each test. Inconsistent results exist 
between partial score groups or between a partial score group and 
the full (or the lowest) score group. This inconsistency is due to 
several reasons. First, some partial score groups contained fewer 
students than others. Second, as in the scoring rubrics, the 
response difference between the full (or the lowest) and a partial 
score is smaller than that between the full and the lowest scores. 
Both of these factors decimated the statistical power of the 
analyses. Third, due to lacking empirical bases (Parshall and 
Brunner, 2017), the predefined rubrics might not be able to clearly 
differentiate students with different levels of problem solving 
competency. The reliability of scoring rubrics is worth further 
investigation, but it is beyond the scope of the current study.

The discussions on problem solving process and competency 
based on process features of high- and low-performing students in 
different tests provide useful insights on teaching and learning of the 
control-of-variables strategies and related skills as well as applying 
them in similar scientific inquiry tasks. For example, comparing a 
specific student’s performance with the typical patterns of high-
performing students can reveal on which problem solving stage the 
student needs to improve efficiency; comparing high- and 
low-performing students’ process patterns can also reveal on which 
aspects the low-performing students need to polish, e.g., how to 
allocate time and effort in different problem-solving stages in order to 
improve overall performance in scientific inquiry tasks.

5.3. Precision of process features

The temporal features of preparation time and execution time 
roughly estimate the process of action planning and that of action 
execution, respectively. In addition to individual differences, other 
factors may “contaminate” these features, especially in complex tasks 
requiring careful thinking and multiple answer formulation stages; 
e.g., students may change part of their answers during the problem 
solving process, and execution time may cover the time of 
answer change.

Answer change is part of action execution. In all four tests, most 
students conducted answer change through drag-and-drop actions. 
For example, in the fair test 1, the minimum number of drag-and-
drop actions for correctly answering the question is 3, but only 11% 
of the students conducted exactly 3 drag-and-drop actions, and more 
than 50% conducted 3 to 6 actions; in the exhaustive test 1, the 
minimum number of saved conditions for a correct answer is 4, but 
only 23% of the students saved exactly 4 cases, and more than 90% 
saved 4–6 cases. In addition, answer change actions are often 
intertwined with answer formulation actions, indicating that the 
purpose of such actions is to correct execution error and stick to 
planned actions. In this sense, answer change is part of action 
execution, and their durations should be included into execution time.

However, students might occasionally clear all the answers and 
re-answer the question from scratch. In this case, they could spend 
some time to re-plan their actions, but such time is embedded in the 
current definition of execution time. In the four tests, very few (<1%) 
students went through such re-planning and re-execution process, but 
in complex tasks, such cases may be ample. To better clarify such 
cases, we  need to improve the precision of process features by 
examining drag-and-drop action sequences and their time stamps to 

clearly identify whether a student re-planned. We  leave such 
modification to future work.

5.4. Procedure of process data use

In addition to the process features and insights on scientific 
problem solving, this study lays out a general procedure of using 
process data to study test-takers’ performance or competency:

Discover or define process features that could (potentially) inform 
test-takers’ performance or competency. This step is often based on 
prior hypotheses or existing studies;

Demonstrate correlation or relatedness between process features and 
test-takers’ performance. This step is critical in two aspects. First, it 
verifies whether the features are related to performance in the target 
dataset. Second, it bridges the first and third steps; only after 
relatedness or correlation between test-takers’ performance and the 
process features is validated would analyses on these features and 
derived understandings become meaningful.

Understand or characterize test-takers’ performance, or incorporate 
process features into scoring rubrics, cognitive or measurement models. 
Understanding test-takers’ performance is based on defined or 
discovered features in the first step. In our study, the proposed features 
characterize high- and low-performing (or common vs. abnormal) 
test-takers. The observed consistent patterns of process features also 
pave the way for incorporating those features into scoring rubrics, e.g., 
specific values or ranges of values of process features correspond to 
various scales of scores. Moreover, the quantitative process features as 
in our study could serve as important components in cognitive or 
measurement models to predict, classify, or interpret test-takers’ 
performance.

6. Conclusion

This study proposes three process features and an analytical 
procedure of process data use. Based on four scientific inquiry tasks, 
we investigate how students apply the control-of-variables strategy in 
typical fair and exhaustive tests and how the process features 
characterize high- and low-performing students in these tasks. 
Although (meta)cognitive processes cannot be observed directly from 
process data, the proposed features have proven values in elucidating 
the planning and executing stage of problem solving, characterizing 
students’ performance patterns, and revealing relatedness among 
capacities (the control-of-variables strategy), test properties (the fair 
and exhaustive tests), and performance (answers, scores, and 
answering process). Our study demonstrates that process data provide 
unique windows to interpret students’ performance beyond scores, 
and that a combination of analytical procedures and process data helps 
infer students’ problem-solving strategies, fill in the gap in early 
studies, and stimulate future work on process features reflecting 
problem-solving performance.
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