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A fundamental objective in Auditory Sciences is to understand how people learn 
to generalize auditory category knowledge in new situations. How we generalize 
to novel scenarios speaks to the nature of acquired category representations 
and generalization mechanisms in handling perceptual variabilities and novelty. 
The dual learning system (DLS) framework proposes that auditory category 
learning involves an explicit, hypothesis-testing learning system, which is 
optimal for learning rule-based (RB) categories, and an implicit, procedural-
based learning system, which is optimal for learning categories requiring pre-
decisional information integration (II) across acoustic dimensions. Although 
DLS describes distinct mechanisms of two types of category learning, it is yet 
clear the nature of acquired representations and how we  transfer them to 
new contexts. Here, we  conducted three experiments to examine differences 
between II and RB category representations by examining what acoustic and 
perceptual novelties and variabilities affect learners’ generalization success. 
Learners can successfully categorize different sets of untrained sounds after only 
eight blocks of training for both II and RB categories. The category structures 
and novel contexts differentially modulated the generalization success. The II 
learners significantly decreased generalization performances when categorizing 
new items derived from an untrained perceptual area and in a context with more 
distributed samples. In contrast, RB learners’ generalizations are resistant to 
changes in perceptual regions but are sensitive to changes in sound dispersity. 
Representational similarity modeling revealed that the generalization in the more 
dispersed sampling context was accomplished differently by II and RB learners. II 
learners increased representations of perceptual similarity and decision distance 
to compensate for the decreased transfer of category representations, whereas 
the RB learners used a more computational cost strategy by default, computing 
the decision-bound distance to guide generalization decisions. These results 
suggest that distinct representations emerged after learning the two types of 
category structures and using different computations and flexible mechanisms in 
resolving generalization challenges when facing novel perceptual variability in new 
contexts. These findings provide new evidence for dissociated representations 
of auditory categories and reveal novel generalization mechanisms in resolving 
variabilities to maintain perceptual constancy.

OPEN ACCESS

EDITED BY

Florian Kattner,  
Health and Medical University Potsdam, 
Germany

REVIEWED BY

Greg Ashby,  
University of California, Santa Barbara, 
United States  
Christopher Richard Cox,  
Louisiana State University, United States

*CORRESPONDENCE

Gangyi Feng  
 g.feng@cuhk.edu.hk  

Suiping Wang  
 wangsuiping@m.scnu.edu.cn

RECEIVED 27 December 2022
ACCEPTED 31 August 2023
PUBLISHED 27 September 2023

CITATION

Gan Z, Zheng L, Wang S and Feng G (2023) 
Distribution-dependent representations in 
auditory category learning and generalization.
Front. Psychol. 14:1132570.
doi: 10.3389/fpsyg.2023.1132570

COPYRIGHT

© 2023 Gan, Zheng, Wang and Feng. This is an 
open-access article distributed under the terms 
of the Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted which 
does not comply with these terms.

TYPE Original Research
PUBLISHED 27 September 2023
DOI 10.3389/fpsyg.2023.1132570

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1132570﻿&domain=pdf&date_stamp=2023-09-27
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132570/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132570/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132570/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1132570/full
mailto:g.feng@cuhk.edu.hk
mailto:wangsuiping@m.scnu.edu.cn
https://doi.org/10.3389/fpsyg.2023.1132570
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1132570


Gan et al. 10.3389/fpsyg.2023.1132570

Frontiers in Psychology 02 frontiersin.org

KEYWORDS

auditory category learning, generalization, representation nature, dual learning system, 
information integration, rule-based learning

Introduction

Category learning ability allows us to learn to group items based 
on shared features or common regularities across individual examples. 
The grouping knowledge acquired during learning is considered 
abstract category representations guiding us to categorize items in new 
scenarios (Kruschke, 1996; Smith and Minda, 1998, 2002; Love et al., 
2004; Wills et al., 2006). Successful generalization of learned category 
knowledge requires coping with various novel variabilities of within- 
and between-category exemplars. Failure to do so would affect critical 
decisions in our lives and even survival (e.g., under-generalization: 
missing detecting early signatures of serious diseases, or over-
generalization: categorizing poison mushrooms as eatable). Therefore, 
category learning requires forming mental representations to support 
an appropriate level of generalization. However, we are not yet fully 
understand the nature of these category representations and the 
differences in representational characteristics when learning categories 
with different structures.

Category representations are formed in the process of interacting 
with category members, where the structure and distributional 
patterns of the category members affect the learning process and the 
nature of acquired category representations (Ashby and Maddox, 
2005, 2011; Chandrasekaran et al., 2014a,b). Previous behavioral and 
neuroimaging studies suggest that at least two distinct learning 
systems are involved in category learning across visual (e.g., Ashby 
and Maddox, 2005, 2011; Smith and Grossman, 2008) and auditory 
modalities (Chandrasekaran et al., 2014a,b; Feng et al., 2021b). An 
explicit, hypothesis-testing learning system is considered to be optimal 
for learning rule-based (RB) categories, where those categories can 
be categorized based on verbalized rules. In contrast, an implicit, 
procedural-learning-based system is hypothesized to be optimal for 
learning category structures requiring pre-decisional information 
integration (II) across multiple dimensions (Ashby and Maddox, 2005; 
Ashby and Valentin, 2017).

Previous studies have demonstrated various factors that 
differentially affect the learning of II and RB category structures. For 
example, feedback types (instant vs. delayed; with vs. without 
feedback) affect learning II categories more than RB’s (Maddox et al., 
2003; Maddox and Ing, 2005); category-response mapping is more 
critical and specific for II category learning than that of RB (Ashby 
et al., 2003; Maddox et al., 2004b, 2007, 2010). In contrast, RB category 
learning is more affected by executive-function-related factors, e.g., 
concurrent working memory task (Waldron and Ashby, 2001; Filoteo 
et al., 2010), stress (Ell et al., 2011), feedback processing interference 
(Maddox et  al., 2004a), number of categories (i.e., limitation of 
working memory) (Maddox et al., 2004c). These findings support the 
dual learning system (DLS) framework that distinct neural and 
cognitive systems are involved in learning II and RB categories.

Different category learning tasks recruiting distinct learning 
systems provides a helpful framework to reason that distinct natures 
of category representations emerged after learning (due to the 

engagement of different learning processes and distinct mechanisms 
support learners to generalize acquired representations to categorize 
new items that are different from training samples in various levels of 
similarity). However, these predictions have not been systematically 
tested to date, as we know, and there is no detailed description of the 
representation nature and generalization mechanisms underlying the 
DLS. In the present study, we aim to test these predictions and reveal 
the abstraction levels of category representations of II and RB 
categories by modeling learners’ categorization responses with 
representational similarity models and examining how well learners 
generalize the acquired category knowledge to novel contexts.

Generalization and categorization require accessing our learned 
category knowledge to guide the judgment of within- and between-
category members. Types and degrees of sampling variabilities affect 
how well we generalize the learned category knowledge. To resolve 
generalization challenges imposed by stimulus novelties and 
variabilities, we must form category representations abstracted from 
individual exemplars-specific features at appropriate levels (Raviv 
et  al., 2022). The abstract form of category representations was 
previously considered prototypes or rules. Prototype-based 
representation theories propose that category membership is 
determined by the distance or similarity between members and a 
category prototype abstracted from individual training samples 
(Posner and Keele, 1968; Reed, 1972; Rosch, 1973; Homa et al., 1981; 
Smith and Minda, 2000). Rule or regularity derived from the 
hypothesis-testing-based learning process is another abstract form of 
category representations. A rule may refer to a dimensional boundary 
(e.g., Category A consists of larger items, while Category B consists of 
smaller ones; a decision is based on the dimension of size) or complex 
combinations of features (simultaneous presentation of features a and 
b belongs to Category A, while the presentation of features a and c 
belongs to Category B) (Erickson and Kruschke, 1998; for other 
instantiations of RB models, please see Ashby and Maddox, 1992; 
Maddox and Ashby, 1993). RB and prototype-based hypotheses would 
predict that surface variations in a new context are less likely to affect 
the generalization of these abstract representations.

Successful generalization may also depend on exemplar-specific 
representations acquired from the physical and perceptual properties 
of training samples (Erickson and Kruschke, 1998, 2002). Exemplar-
based representation theories assume that categorizing new stimuli 
are based on the similarities between new items and previously-
experienced individual exemplars in a psychological space (Medin 
and Schaffer, 1978; Estes, 1986; Nosofsky, 1986, 2011). The emergence 
of exemplar- or feature-specific representations has been considered 
dominant in learning categories with a II structure. For example, in 
the visual domains, II category learners performed significantly less 
accurately when categorizing new items sampled from untrained 
locations in the stimulus space (Casale et al., 2012). Similarly, changes 
in stimulus dimensions significantly affected generalization 
performances even though the dimensions are irrelevant to 
categorization (Filoteo et  al., 2010; Grimm and Maddox, 2013). 
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Rosedahl et  al. (2018) reported a more striking finding: learners 
exposed to items presented in one visual field failed to categorize the 
same items presented in another, suggesting visual-field-dependent 
representations emerged after learning visual II categories. However, 
other studies revealed a different pattern that II category learners can 
generalize learned representations to categorize items from untrained 
perceptual locations in the visual domain (Nosofsky et al., 2005; Seger 
et al., 2015). These mixed findings suggest that the abstractness of II 
category representations are required further investigation.

Here we designed novel generalization paradigms to examine the 
nature and abstractness of representations that emerged after learning 
auditory categories with II and RB structures. We  generated well-
controlled non-speech auditory category structures with the same 
perceptual dimensions (i.e., spectral and temporal modulations). These 
dimensions are fundamentals of complex acoustic signals like music 
and speech. We  sampled sounds from two-category II and RB 
structures in the two-dimensional space, where the RB structure 
prefers categorization using an explicit criterion on the spectral-
modulation dimension (high vs. low), and the II structure requires 
learning to integrate information from the two dimensions 
simultaneously (a diagonal category bound). Importantly, we devised 
four generalization tests (see Figure 1 for a graphical illustration) by 
sampling new sounds that were different from the training samples in 
different degrees to probe the abstractness of the learned category 
knowledge. The four tests consist of a baseline generalization control 
test (CT) without inducing new variations, but the items were not 
exposed in the training sessions; a “fundamental frequency (F0)” test 

where a change in a new acoustic dimension (i.e., F0) irrelevant to the 
categorization was induced; a “Dispersity” test where the dispersity of 
the generalization sounds increased compared to the training samples 
while the sampling range in the perceptual space remains unchanged; 
and a “Location” test where the generalization sounds were sampled 
from an untrained region of the perceptual space. We consider CT as 
the baseline test of generalization because the sounds in this test were 
generated from the same sampling distribution as the training samples. 
Thus, any differences in performance between CT and the other three 
tests are presumable due to the differences between training and 
generalization samples in sound properties. Successful generalization 
to the four tests requires learners to form and transfer representations 
with different abstraction levels, ranging from generalizing category 
knowledge across items with surface acoustic differences (in the F0 
test) to items with different distributional patterns (i.e., in the Dispersity 
and Location tests).

According to the DLS framework, learning RB categories is 
dominated by an explicit learning system associated with working 
memory and executive hypothesis-testing functions (Chandrasekaran 
et al., 2014a,b; Feng et al., 2021b). Thus, DLS predicts that RB category 
representations are abstracted from individual training samples and 
their associated acoustic and perceptual features. RB learners can 
generalize the learned category knowledge to untrained items with 
different types of novel variabilities. If this is the case, we  would 
predict that RB learners perform equally well across the four 
generalization tests. In contrast, II auditory category learning is 
hypothesized to be dominated by an implicit learning system that 

FIGURE 1

Ripple sounds of II and RB category structures used for training (A) and generalization tests (B). Two categories of sounds are plotted in different colors 
(Category 1: red, Category 2: blue) in a two-dimensional (i.e., spectral and temporal modulation dimensions) space. The red dashed lines represent the 
optimal boundaries separating the two categories. Dashed ellipses represent the coverage regions of the stimuli. Sampling parameters (i.e., F0 and 
dispersity [SD]) are listed at the top of each graph. Two spectrograms of the samples were plotted in the subgraph A. F0, fundamental frequency; SD, 
standard deviation of each within-category sampling distribution ([SDlong, SDshort]).
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maps sounds onto categories via corticostriatal systems 
(Chandrasekaran et  al., 2014a,b; Feng et  al., 2021b). This implicit 
sound-to-category mapping learning is not consciously penetrable 
and requires accessing and integrating information from multiple 
dimensions (Ashby et al., 2003; Maddox et al., 2007; Smith et al., 2015; 
Rosedahl et al., 2018). Therefore, the DLS predicts that II category 
knowledge tightly pertains to sample-specific features and the relative 
weighting of the features in the perceptual space. If this hypothesis is 
correct, we would predict that II learners will decrease generalization 
performances in F0, Dispersity, and Location tests compared to the 
baseline CT test. The degree of decrease in generalization performance 
depends on the abstractness of the acquired representations. If the 
emergent II representations are strictly specific to exemplar features, 
any surface-level changes will affect generalization performance. 
However, if the representations are not strictly exemplar-specific, II 
learners could resist certain degrees of acoustic and perceptual 
changes. Thus, the generalization performance will be as a function of 
the four tests (e.g., baseline > F0 > Dispersity > Location).

We conducted three auditory category learning experiments to 
test this representational DLS model and the above predictions, 
focusing on the nature of II and RB category representations and 
generalization mechanisms. Across three experiments, we  also 
examined whether categorization-based training (Exp.  2.1) and 
providing feedback (Exp. 2.2) could facilitate category learning and 
generalization and alter the nature of emergent representations 
compared to observational training (Exp.  1). Numerous studies 
showed that category training procedures modulate learning outcomes 
(e.g., Ashby et al., 1999, 2002; Goudbeek et al., 2008, 2009; Levering 
and Kurtz, 2015). Compared to observational training, categorization 
training could facilitate category learning by learning to attend to 
discriminative features between categories while ignoring within-
category item variabilities (Hsu and Griffiths, 2010; Levering and 
Kurtz, 2015). In addition, providing immediate feedback was 
considered a prerequisite for learning II categories (Maddox et al., 
2003; Maddox and Ing, 2005). Specifically, feedback facilitates 
performances in learning auditory and speech categories (Goudbeek 
et  al., 2009). Participants were constrained to use a sub-optimal 
strategy to learn categories without feedback (Ashby et al., 1999). 
We examined to which extent the two factors augment the differences 
between II and RB category representations. In addition to the 
categorization accuracies averaged across trials, we modeled trial-by-
trial categorization responses with representational similarity analysis 
(RSA) (Kriegeskorte et al., 2008) for each generalization test to reveal 
the nature of emergent representations of each category structure. 
With pre-defined representational models, RSA enables us to reveal 
to what extent different stimulus-related information besides category 
knowledge is acquired during training and utilized in generalization 
when facing different stimulus changes.

Materials and methods

Participants

A total of 104 adults (88 females, age range = 18–27 years) were 
recruited from South China Normal University communities for three 
auditory-category learning and generalization experiments. For each 
experiment, participants were assigned to one of the training groups 

according to the category structures (i.e., II or RB). Two participants 
in Exp.  1 were removed from further analyses because they 
misunderstood the task instruction (i.e., performed categorization). 
There were 35 participants left (II group: mean age = 21.12, SD = 2.74, 
N = 17; RB group: mean age = 19.39, SD = 1.69, N = 18). Two 
participants in Experiment 2 were removed because they missed more 
than one-third of test trials in at least three generalization tests. There 
are 32 participants in Exp. 2.1 (II group: mean age = 19.50, SD = 1.37, 
N = 16; RB group: mean age = 20.31, SD = 1.58, N = 16), and 33 
participants in Exp. 2.2 (II group: mean age = 19.75, SD = 1.98, N = 16; 
RB group: mean age = 20, SD = 2.15, N = 17). All participants reported 
normal hearing and had normal or corrected-to-normal vision. No 
participant reported a history of neurological disorders or reading 
disabilities. All materials and protocols were approved by the ethics 
review board of the School of Psychology at South China Normal 
University and the Joint Chinese University of Hong Kong – New 
Territories East Cluster Clinical Research Ethics Committee. Written 
informed consent was obtained before the experiment.

Stimulus construction

The ripple sounds were generated by modulating a broadband 
noise stimulus along spectral and temporal dimensions. The frequency 
band of this broadband noise ranges from 150 Hz (i.e., the fundamental 
frequency, F0) to its fifth octaves (i.e., 4.8 kHz). The spectral 
modulation is an energy modulation along the frequency of the 
sounds with a sinusoidal envelope, ranging from 0.1 to 2 cycle/octave. 
The larger values of the cycle/octave indicate more energy fluctuations 
in the frequency dimension (Figure  1; see detailed graphical 
illustration of spectral modulation in Supplementary Figure S1). The 
temporal modulation is a frequency modulation of the phase change 
of the sinusoidal envelope, with a range from 4 to 10 Hz. This means 
that the phase of the sinusoidal envelope changes over time at a rate 
that varies between 4 and 10 cycles per second (Hz). The larger 
temporal modulation values (e.g., 10 Hz) indicate a faster change of a 
frequency component in time (see detailed graphical illustration of 
temporal modulation in Supplementary Figure S1). We selected these 
modulation ranges since they are strongly represented in the human 
auditory cortex (Schönwiesner and Zatorre, 2009) and reflect the 
complexity of natural spectro-temporal variations in speech (Elliott 
and Theunissen, 2009). Meanwhile, previous studies show that the 
spectral and temporal modulation dimensions are independent of 
each other at multiple levels of processing (Depireux et  al., 2001; 
Langers et al., 2003; Schönwiesner and Zatorre, 2009). The change in 
F0 is also independent of the changes in spectral and temporal 
modulations. All sounds were synthesized with in-house scripts with 
MATLAB (Mathworks, Natick, MA, USA), and the RMS amplitude 
was normalized to 80 dB.

Two sets of ripple sounds were generated for category training 
based on predefined two-categories II and RB structures, respectively. 
We created two bivariate distributions in a normalized two-dimensional 
stimulus space along the positive diagonal to sample sounds of the II 
categories. This normalized space ranges from 0 to 1 along spectral and 
temporal modulation dimensions. The centers of two II categories are 
in the locations of [temp. = 0.39, spec. = 0.61] and [temp. = 0.61, 
spec. = 0.39]. The standard deviation (SD) is 0.15 for the longer axis and 
0.05 for the shorter axis with an orthogonal design. The optimal 
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category bound is along the positive diagonal (Figure 1A upper panel, 
red dashed lines). To estimate the relationship between participants’ 
decision bound and their categorization accuracy, we conducted a 
simulation by varying the angles of the bound for categorization. 
We found that if a participant uses a vertical or horizontal line as the 
category bound to categorize, the maximal performance the 
participants can achieve is 83%. Achieving higher performances 
require procedure-based learning and a shift in decision strategy.

We randomly sampled 480 ripple sounds for the II category 
structure. Values along each dimension were logarithmically mapped 
onto temporal and spectral modulation dimensions. The RB category 
sounds were generated by rotating the II samples by 45° anticlockwise, 
and the centers of the two categories were shifted to [temp. = 0.55, 
spec. = 0.35] and [temp. = 0.55, spec. = 0.65]. The optimal category 
bound for the RB sounds perpendicular to the spectral modulation 
dimension at 0.45 cyc/oct (Figure 1A lower panel, red dashed lines).

To uncover the representation nature of auditory II and RB 
categories, we examined the extent to which the learners generalized the 
learned category-related knowledge to four different sets of 
generalization sounds that deviated from the training samples in acoustic 
and distributional properties (see Figure 1B for a graphical illustration). 
In the control test (CT), we used new sounds that were sampled from the 
same distribution as the training samples, but were not exposed during 
the training process. The CT acts as a baseline to measure generalization 
effects of other tests. If there is a decrease in generalization performance 
in subsequent tests compared to the CT, it could be due to changes in 
acoustic or distributional factors. In the “fundamental frequency (F0)” 
test, we introduced a new acoustic dimension (i.e., F0) that was irrelevant 
to the categorization. The F0 of these new sounds was changed from 
150 Hz (a default setting for training and other test sounds) to 250 Hz. 
This manipulation is similar to changing from a male to a female speaker 
to produce sounds. In the Dispersity test, we increased the sampling 
dispersity (i.e., more sampling variations for each category than the 
training sounds). The sampling dispersity increased in both the long 
(parallel to the optimal boundary) and short (orthogonal to the 
boundary) axes (from [SDlong = 0.15, SDshort = 0.05] to [SDlong = 0.22, 
SDshort = 0.07]) compared to the training set, while the coverage areas in 
the stimulus space (i.e., Figure 1, dashed ellipse) remain unchanged. 
Increasing the dispersity of sounds results in an equal number of sounds 
that are closer and farther from the optimal categorization bound 
compared to CT. Thus, the difference in categorization performance 
between Dispersity and CT conditions can be attributed to the difference 
in sampling dispersity. In the Location test, we sampled novel sounds 
where their center was outside the coverage range of the training 
samples. The category distributions were moved away along the optimal 
bound to the left edge of the training samples, resulting in new centers 
of the two categories (i.e., the coordinate of the centers; II category 1: 
[temp. = 0.11, spec. = 0.32], category 2: [temp. = 0.32, spec. = 0.11]; RB 
category 1: [temp. = 0.15, spec. = 0.35], category 2: [temp. = 0.15, 
spec. = 0.65]). The new centers were 2.67 SDs away from the centers of 
the training samples. Note that changing the location of the center also 
links with decreased sampling dispersity in this test because preserving 
sampling dispersity would introduce sounds in the auditory locations 
that are not sensitively perceived by human auditory systems. Therefore, 
we reduce the dispersity of the sounds in the Location test. Nevertheless, 
we assume training with more dispersed samples and testing on less 
dispersed samples would not hurt the categorization performance. Thus, 
any decrease in categorization performance in the Location condition is 

due to the change in perceptual location. These four types of 
manipulation were applied equally to II and RB categories to generate 
four generalization tests (Figure 1B). We generated 240 sounds for each 
generalization test.

Training and generalization procedures

We conducted three experiments by manipulating the training 
procedure to examine whether categorization and providing feedback 
could facilitate category learning and generalization. In Exp.  1, 
participants were asked to learn to associate category labels with 
sounds via observational training (OT) procedure (Figure 2A, left 
panel). For each training trial, a fixation cross was presented for 
200 ms, followed by a category label (i.e., “类别 1” or “类别 2”) 
displayed on the screen. One second after the category label appeared, 
a sound was presented for 500 ms. Participants were instructed to 
learn the associations between sounds and category labels without 
making any categorization response. After each trial, a jittered inter-
trial interval (randomly sampling between 1 and 2 s) was added to 
minimize the effects of temporal prediction. Each participant 
completed eight blocks of OT. Each training block consists of 60 trials.

Participants were asked to complete the four generalization tests 
twice, one immediately following training and another 1 week after 
(Figure  2B). The CT was always performed first to minimize the 
influence from other tests. The order of the other three tests (i.e., F0, 
Dispersity, and Location) was counterbalanced across participants. 
Each generalization test consists of two blocks (60 trials/block). The 
training and testing were conducted in a sound-attenuated booth 
using E-Prime software (Psychology Software Tools, Inc., Sharpsburg, 
PA, USA). The sounds were presented over headphones (Sennheiser 
HD280 pro) at a comfortable listening level.

In Exp. 2.1, participants first completed four blocks of OT (session 
1) and performed another four blocks of categorization training with 
no feedback (CT-NF) in session 2 (Figure 2B). The OT procedure was 
the same as Exp. 1. In the CT-NF blocks, for each trial, a fixation cross 
was presented for 200 ms, followed by a ripple sound for 500 ms. 
Participants were instructed to categorize sounds into one of the two 
categories (Figure 2A, middle panel). In Exp. 2.2, the same training 
paradigm was used as the Exp. 2.1 except for providing corrective 
feedback for each categorization response (i.e., CT-WF, see Figure 2A 
right panel) in the training session 2. Exp. 2.2 consisted of four blocks 
of OT and then four blocks of CT-WF (Figure 2B). Visual feedback (i.e., 
“正确” “Right” or “错误” “Wrong”) was displayed for 500 ms after each 
response. If participants failed to respond within 2 s following the sound 
onset, cautionary feedback was presented (i.e., “No response”). A 
jittered inter-trial interval was added after each trial. The generalization 
test is a categorization task without providing feedback, the same 
procedure as the CT-NF. The generalization test procedure was the 
same across the three experiments.

Data analysis

Representation modeling
Although categorization accuracy provides an overall performance 

for each generalization test, it does not tell us how participants’ sound-
by-sound variabilities in response patterns and category confusions 
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associate with category knowledge acquired during training and 
utilized in generalization. Therefore, we employed a representational 
similarity analysis (RSA) approach (Kriegeskorte et al., 2008; Feng 
et al., 2021c) to examine the degree of category-related representations 
applied to each test and whether there are stimulus-related information 
emerged in aid of generalization.

We calculated representation similarities between three 
pre-defined representation models and categorization response 
confusions produced by individual participants to uncover the nature 
of emergent representations in generalization. We first constructed 
three representation models (see Figure 3A) based on binary category 
labels, bound-based decision distance, and center-based perceptual 
similarity of the training stimuli, respectively. These models reflect 
three types of category- or stimulus-related information that the 
learners could acquire during category learning. These models are 
operationally defined by representational dissimilarity matrices 
(RDMs). Each model RDM was fitted with the behavioral response 
RDMs derived from trial-by-trial categorization responses 
(Figure 3B).

The category model represents abstract category labels, and the 
corresponding RDM was designed to have only two dissimilarity 
values: 0 if two sounds are from the same category or 1 if they are from 
different categories. For the bound-based decision distance model, to 
quantify the dissimilarity between each pair of sounds, we used a 
two-step process. Firstly, we calculated the Euclidean distance between 
each sound and the optimal bound in the normalized stimulus space, 
resulting in an N × 1 distance array (where N is the number of sounds). 
Secondly, we separated pairs of items into two groups based on their 
category memberships. For within-category pairs (i.e., items from the 

same category), we calculated the difference in distance for each pair 
of sounds to represent dissimilarity. In other words, if two sounds have 
a similar distance to the bound, they are considered more similar (i.e., 
have lower dissimilarity) in the RDM. For between-category pairs (i.e., 
items from different categories), we added up their distances to bound 
to determine their pairwise dissimilarities. In other words, if two 
between-category sounds are both far from the bound, this pair has 
high dissimilarity in the RDM.

To create the center-based perceptual similarity model, 
we calculated the Euclidean distance between each sound and the 
center of each category in a 2-dimensional stimulus space. This was 
done in two steps. Firstly, we calculated two sound-to-category-center 
distances for each sound item – one for the within-category center and 
the other for the between-category center (see Figure 3A, the 
rightmost panel). We then used an equation to convert the Euclidean 
distance to perceptual similarity (PS):

 PS ei
Di C= − , .

C denotes within- or between-category center. Di C,  denotes 
Euclidean distance between sound i  and a category center; e Di C− ,  
denotes the PS of sound i to a category center. There are two PSs were 
calculated for each sound item. Secondly, we divided pairs of items 
into two groups based on their category memberships and then 
calculated their dissimilarities to construct the model RDM. To 
represent the dissimilarity of each within-category pair, we computed 
the average within-category PS of two items and subtracted the result 
from 1. We followed the same method for between-category pairs, 

FIGURE 2

Illustration of training paradigms (A) and experimental procedures (B) used to train participants to learn auditory categories in the three experiments. 
(A) Three category training paradigms. The time windows for categorization response and visual feedback are highlighted in red. (B) Training and 
generalization procedures for the three experiments.
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averaging two items’ between-category PSs and then subtracting the 
result from 1. The reasoning for this model RDM is that participants 
could form center-based category representations (i.e., two category 
centers), and the category representation content of individual items 
are based on the PSs between the items and the two centers (i.e., 
within- and between-category PSs). Based on this model logic, each 
item’s category representation content can be quantified and compared 
with other items in a perceptual space, resulting in the center-based 
perceptual RDM. If this model is supported by the data, we predict 
that categorization responses are similar (i.e., same response) when 
two items have similar PSs in the space, which results in a high 
correlation between the model RDM and participants’ response RDMs.

The bound-based decision distance RDM and perceptual 
similarity RDM were then normalized by scaling between 0 and 1. 
These model RDMs were constructed based on training samples and 
applied to fit categorization-response RDMs for each generalization 
test. Higher model fittings indicate the more robust transfer of the 
category-and sound-related knowledge acquired in training to the 
generalization tests.

To calculate the model fit of each model in each generalization 
test, we  first computed a response RDM based on trial-by-trial 
responses for each block of the tests. Suppose two sounds are 

responded with the same key, their dissimilarity equal 0, otherwise 1. 
We sorted items in the response RDM based on their category labels 
and location in the stimulus space (see Figure 3B for representative 
response RDMs). To fit the response RDMs, we  generated the 
pre-defined model RDMs based on the sampling distributions of II 
and RB structures used in training sessions separately. To avoid 
sampling bias due to a limited number of sounds in each block, 
we conducted sampling simulations with 10,000 iterations for each 
model RDM. A model RDM was generated for each simulation and 
correlated with the response RDMs with Spearman correlation. 
Average correlation rho was computed for each test and subject. 
We  also examined the unique contribution of each model with a 
partial correlation approach to control for the variance of the other 
two models.

Simulation and control RSA modeling
To demonstrate the RSA procedure and logic as well as 

distinctions of the three models, we generated simulated behavioral 
categorization responses and response confusion matrices based on 
the model information. We simulated three types of learners based on 
the knowledge (i.e., binary category, bound-based distance, and 
center-based PS) they learned and utilized for generalization. To 

FIGURE 3

Representational similarity analysis procedure for modeling response confusion patterns to reveal the nature of emergent representations in 
generalization. (A) Three representation models were pre-defined based on category labels, bound-based decision distance, and center-based 
perceptual similarity. (B) Illustration of a response confusion matrix and representative examples of response confusion matrices for the four 
generalization tests.
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simulate different levels of performances, we also varied the learners’ 
categorization accuracies across three levels, that is “poor” (mean 
accuracy = 0.5, range = 0.30–0.75; similar to random responders), 
“normal” (mean accuracy = 0.80, range = 0.60–0.95; similar to the 
performances of the participants that we recruited), and “good” (mean 
accuracy = 0.95, range = 0.80–1). We then generated categorization 
responses based on binary category, bound-based distance, and 
center-based PSs information, respectively, to achieve the three levels 
of performance. We  conducted the simulation 10,000 times (i.e., 
categorized 10,000 items) to generate responses. The responses and 
errors made by these learners are visualized in Supplementary Figure S2 
with a mean accuracy level of 0.8. For the “binary category” learners, 
errors occurred randomly in the perceptual space for each category. 
For the “bound-based distance” learners, errors occurred close to the 
category boundary. For the “center-based perceptual similarity” 
learners, errors were made based on two item-to-category-center PSs 
(i.e., within-and between-category PSs). We  then converted the 
simulated responses to behavioral RDMs and conducted RSA to 
correlate them back to each of the source model RDMs (see 
Supplementary Figure S2 for detailed simulation results).

To identify participants who may use explicit rules to categorize 
sounds in the II-structure condition, we  conducted control RSA 
modeling with two additional hypothetical RB models. The two RB 
models and corresponding RDMs were generated based on the 
Euclidean distances between each sound and a horizontal or vertical 
category bound, respectively (refer to non-optimal Uni-X and Uni-Y 
models; see Supplementary Figure S3 for graphical illustration). 
We fitted the behavioral response data during training (the last two 
blocks) and in the control test (CT) for each experiment with the two 
uni-dimensional bound-based RDMs to identify learners who 
dominantly used an explicit rule in the II-structure condition. 
We compared the model fittings of the two non-optimal RDMs with 
those of the optimal bound-based decision bound RDM (i.e., the 
RDM created based on the diagonal bound). If a participant’s model 
fitting either during training or in the CT was higher for the two 
non-optimal RDMs than the optimal bound-based RDM, we classified 
those participants as learners who dominantly used RB strategies and 
removed them from further analyses.

Mixed effects modeling
We analyzed participants’ categorization accuracy (ACC), 

response time (RT), and RSA model fits using linear mixed-effects 
regression (LMER) analysis. We aim to examine the effects of the 
generalization test and category structure (II vs. RB learners) on 
generalization ACC, RT, and model fit for each experiment. The 
LMER specification of the model was as follows: lmer 
[Y ~ generalization_test * category_structure + (1|subject)], Y denotes 
ACC, RT, or RSA model fit. The fixed effects of interest were the 
category structure and four generalization tests. When collapsed data 
across the three experiments, training procedure was another fixed 
factor added into the LMER model to examine the main effect and 
interaction effects. We  also directly compared the effects of 
generalization tests (i.e., F0 vs. CT; Dispersity vs. CT; Location vs. CT) 
across the three experiments to examine whether the training 
procedure modulates generalization performances. The LMER 
analyses were performed with the software R (version 4.1.0). 
We analyzed the variances of the LMER models to reveal the statistical 
significance of the fixed factors and the interaction effects. We used 

‘lme4’ package (version 1.1.31) for the mixed-effects modeling. Effect 
sizes were estimated using the ‘effectsize’ package in R.1

Results

Learner identification

Across the three experiments, participants in the II condition 
achieved categorization performances significantly higher than 83% 
(a benchmark for II learners) at the group level in the immediate CT 
tests (Exp.1: M = 0.863 [SD = 0.344]; Exp. 2.1: M = 0.875 [SD = 0.331]; 
Exp. 2.2: M = 0.894 [SD = 0.308]). To identify individual learners who 
used an explicit rule in the II conditions, we conducted control RSA 
to model participants’ response data during training (the last two 
blocks) and the control test (CT) for each experiment with two 
uni-dimensional bound-based distance models. The two models and 
their RDMs were generated based on unidimensional rules with 
horizontal and vertical category bounds, respectively (i.e., non-optimal 
Uni-X and Uni-Y RDMs, see Supplementary Figure S3 for illustration). 
We compared the model fittings of the two non-optimal RDMs with 
those of the optimal bound-based RDM (a diagonal bound) to identify 
RB learners in the II condition. Those random responders were also 
identified based on both their categorization accuracy (ACC ≤ 0.53, 
not significantly better than chance, determined by a permutation 
test) and model fit (rho ≤ 0 for the optimal bound-based distance 
model). We removed seven participants across all three experiments 
who dominantly used uni-dimensional bounds (i.e., Uni-X or 
Uni-Y > optimal bound-based model in model fittings) in the II group 
(Exp.  1, N = 3; Exp.  2.1, N = 1; Exp.  2.2, N = 3). For the RB group, 
we conducted similar control RSA modeling to exclude participants 
who dominantly used non-optimal Uni-X bound to categorize sounds. 
Eight participants were removed in the RB conditions from further 
analyses (Exp. 1, N = 3; Exp. 2.1, N = 4; Exp. 2.2, N = 1). After removing 
those participants, there were 28 participants in Exp. 1 (II group: mean 
age = 21.07, SD = 2.74, N = 14; RB group: mean age = 19.40, SD = 1.76, 
N = 15), 27 participants in Exp.  2.1 (II group: mean age = 19.60, 
SD = 1.35, N = 15; RB group: mean age = 20.17, SD = 1.59, N = 12), and 
29 participants in Exp. 2.2 (II group: mean age = 19.31, SD = 1.70, 
N = 13; RB group: mean age = 20.13, SD = 2.16, N = 16). These six 
groups of participants were matched in age (chi-square = 9.029, 
p = 0.108) and gender [F(5,79) = 1.538, p = 0.188] across the 
three experiments.

Experiment 1

Both II and RB learners performed significantly above chance 
(0.5) for the four tests conducted immediately after training at the 
group level (Bonferroni-corrected ps < 0.001, see Figure 4A). For II 
learners, planned comparisons revealed that the categorization 
accuracies in Dispersity and Location tests were both significantly 
lower than CT [Dispersity vs. CT: t(13) = −4.405, p = 0.002, Cohen 
d = 0.584; Location vs. CT: t(13) = −5.186, p < 0.001, Cohen d = 1.191], 

1 https://easystats.github.io/effectsize/
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while no significant difference was found between F0 and CT 
[t(13) = −0.163, p = 1, Cohen d = 0.016]. On the contrary, for RB 
learners, the categorization accuracy was significantly decreased in F0 
[t(14) = −3.343, p = 0.014, Cohen d = 0.852], but not in Dispersity 
[t(14) = −2.077, p = 0.170, Cohen d = 0.449] or Location test [t(14) = 0.219, 
p = 1, Cohen d = 0.057], compared with that of CT (see detailed 
pairwise comparisons in Table 1; all value of ps from the planned 
comparisons were Bonferroni-corrected; the same applies hereinafter).

The representation modeling of the category model showed 
similar patterns as the generalization accuracy (see Figure 4B; Table 2). 
The model fits were all significantly higher than chance (i.e., rho > 0) 
across the four tests and two learner groups (Bonferroni-corrected 
ps < 0.001), indicating category knowledge were transferred to the 
generalization tests immediately after training. Planned comparisons 
revealed the same significance patterns as that of the categorization 
accuracy. For II learners, we found significantly decreased category 
representations in both Dispersity [t(13) = −4.205, p = 0.003, Cohen 
d = 0.802] and Location tests [t(13) = −4.827, p < 0.001, Cohen d = 1.356]. 
For RB learners, we  only found significantly decreased category 
representation in the F0 test [t(14) = −3.270, p = 0.016, Cohen d = 0.699]. 
No other comparison was found significant (see Table 2 for details).

We conducted the same generalization tests 1 week after training 
to examine whether the categorization performances and 
representational properties change over time. For II learners, no 
planned comparison in accuracy was found significant [F0 vs. CT: 
t(13) = −1.192, p = 0.764, Cohen d = 0.148; Dispersity vs. CT: 
t(13) = −2.523, p = 0.076, Cohen d = 0.496; Location vs. CT: 
t(13) = −2.335, p = 0.109, Cohen d = 0.597] although the overall 
performance patterns were similar with the immediate tests 
(Figure  4C). However, the category model fits were significantly 

decreased in the Dispersity test [Dispersity vs. CT: t(13) = −3.728, 
p = 0.008, Cohen d = 0.642] but not in the other two tests [Location 
vs. CT: t(13) = −2.649, p = 0.060, Cohen d = 0.722; F0 vs. CT: 
t(13) = −1.323, p = 0.626, Cohen d = 0.229]. For the RB learners, the 
patterns of categorization performances and model fit differed from 
those found in the immediate tests. Accuracies were significantly 
decreased only in the Dispersity test [Dispersity vs. CT: t(14) = −3.389, 
p = 0.013, Cohen d = 0.528] (see Figure 4C; Table 1 for details). The 
category model fits showed the same decreasing pattern [Dispersity 
vs. CT: t(14) = −3.009, p = 0.028, Cohen d = 0.718]. However, 
significantly increased category model fits were found in the Location 
test [t(14) = 3.235, p = 0.018, Cohen d = 0.866]. These findings suggest 
that the representational properties of RB categories change over time 
after training.

Experiment 2

Overall performances during training
During categorization training, participants from both learner 

groups performed significantly better than chance in training session 
2 (see Supplementary Figure S4). Specifically, the categorization 
accuracy in the last training block (i.e., block 8) was significantly 
better than chance for both II [Exp.  2.1: t(14) = 16.358, p < 0.001, 
Cohen d = 5.973; Exp. 2.2: t(12) = 28.118, p < 0.001, Cohen d = 11.028] 
and RB learners [Exp. 2.1: t(11) = 14.568, p < 0.001, Cohen d = 5.947; 
Exp. 2.2: t(15) = 7.308, p < 0.001, Cohen d = 2.584]. II and RB learners 
performed similarly well at the end of training [Exp. 2.1: t(25) = −0.245, 
p = 1, Cohen d = 0.095; Exp.  2.2: t(27) = 1.619, p = 0.234, Cohen 
d = 0.117].

FIGURE 4

Generalization performances and RSA model fits of the category model across four generalization tests in Exp. 1. (A,B) Generalization accuracy and 
model fit of the immediate test session. (C,D) Generalization accuracy and model fit of the test session conducted 1  week after training. Red lines with 
arrows indicate significant differences between CT and the other three tests. Asterisks represent the above-chance statistical significance (Bonferroni-
corrected value of ps  <  0.05) of each generalization test for each measure.
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Generalization performances in Exp. 2.1
This experiment examines whether categorization training 

without feedback could modulate the effect of generalization (i.e., F0/
Dispersity/Location vs. CT). As shown in Figure 5A, both learner 
groups performed significantly above chance in the four tests 
conducted immediately after training (all Bonferroni-corrected 
ps < 0.01). For the II learners, planned comparisons showed 
significantly decreased categorization accuracy in Dispersity 
[t(14) = −6.855, p < 0.001, Cohen d = 1.004] and Location tests 
[t(14) = −5.728, p < 0.001, Cohen d = 1.607] compared to CT. Changes 
in F0 did not affect generalization [F0 vs. CT: t(14) = −0.374, p = 1, 
Cohen d = 0.084]. Changes in sampling dispersity also affected 
generalization performances for RB learners [Dispersity vs. CT: 
t(11) = −3.413, p = 0.017, Cohen d = 0.564], whereas the other two 
factors did not affect generalization [F0 vs. CT: t(11) = −0.421, p = 1, 
Cohen d = 0.055; Location vs. CT: t(11) = 1.296, p = 0.664, Cohen 
d = 0.221]. These generalization patterns were similar to those found 
in Exp. 1.

The category model fits were significantly better than chance 
across tests and learner groups (Figure 5B). For II learners, similar to 
the accuracy data, we found significantly decreased category model 
fits in Dispersity and Location tests compared to CT [Dispersity vs. 
CT: t(14) = −6.965, p < 0.001, Cohen d = 1.134; Location vs. CT: 
t(14) = −6.356, p < 0.001, Cohen d = 1.980]. Increased sampling 
dispersity also significantly affected category representations for RB 

learners [Dispersity vs. CT: t(11) = −3.990, p = 0.006, Cohen d = 0.606]. 
No other contrasts between tests reached significance (see Table 2 
for details).

Generalization tests performed 1 week after training were all 
significantly above chance across learner groups (Figure 5C). Similar 
to the immediate tests, for II learners, changes in sampling dispersity 
and locations in the perceptual space significantly affected 
generalization performances [Dispersity vs. CT: t(14) = −2.738, 
p = 0.048, Cohen d = 0.682; Location vs. CT: t(14) = −4.839, p < 0.001, 
Cohen d = 1.322], but not for the F0 changes [F0 vs. CT: t(14) = 0.085, 
p = 1, Cohen d = 0.026]. In contrast, RB learners’ generalization 
performances were not affected by these factors [F0 vs. CT: t(11) = 0.542, 
p = 1, Cohen d = 0.110; Dispersity vs. CT: t(11) = −1.412, p = 0.557, 
Cohen d = 0.273; Location vs. CT: t(11) = 0.747, p = 1, Cohen d = 0.165], 
which was different from the patterns of immediate tests.

The representation modeling results are consistent with the 
generalization accuracy findings (see Figure 5D; Table 2): II learners, 
Dispersity vs. CT [t(14) = −3.364, p = 0.014, Cohen d = 0.809); Location 
vs. CT (t(14) = −5.769, p < 0.001, Cohen d = 1.332]. No other comparison 
was found significant.

Generalization performances in Exp 2.2
In this experiment, we  aim to examine to which extent 

categorization training with feedback facilitates category learning and 
modulates the effects of generalization. However, we did not find a 

TABLE 1 Planned comparisons between generalization tests in categorization accuracy for each experiment.

Category 
structure

Generalization 
test (vs. CT)

df Immediate test One week after training

t-value Corrected 
p-value

Cohen d t-value Corrected 
p-value

Cohen d

Exp. 1 (OT)

II F0 13 −0.163 1 0.016 −1.192 0.764 0.148

Dispersity 13 −4.405 0.002 0.584 −2.523 0.076 0.496

Location 13 −5.186 0.001 1.191 −2.335 0.109 0.597

RB F0 14 −3.343 0.014 0.852 0.256 1 0.035

Dispersity 14 −2.077 0.17 0.449 −3.389 0.013 0.528

Location 14 0.219 1 0.057 2.352 0.102 0.368

Exp. 2.1 (CT-NF)

II F0 14 −0.374 1 0.084 0.085 1 0.026

Dispersity 14 −6.855 <0.001 1.004 −2.738 0.048 0.682

Location 14 −5.728 <0.001 1.607 −4.839 0.001 1.322

RB F0 11 −0.421 1 0.055 0.542 1 0.11

Dispersity 11 −3.413 0.017 0.564 −1.412 0.557 0.273

Location 11 1.296 0.664 0.221 0.747 1 0.165

Exp. 2.2 (CT-WF)

II F0 12 0.107 1 0.034 −2.529 0.079 0.34

Dispersity 12 −4.729 0.001 0.728 −4.595 0.002 0.841

Location 12 −6.407 < 0.001 1.681 −5.365 0.001 1.323

RB F0 15 −1.483 0.476 0.319 −0.338 1 0.059

Dispersity 15 −2.022 0.184 0.329 −3.318 0.014 0.437

Location 15 0.167 1 0.03 1.739 0.307 0.305

The p-values were Bonferroni-corrected. The bold values denote significantly above chance (Bonferroni-corrected value of ps < 0.05).
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significant difference in categorization performances between Exp. 2.1 
and Exp. 2.2 at the end of training [II learners: t(26) = 1.653, p = 0.110, 
Cohen d = 0.626; RB learners: t(26) = −0.817, p = 0.421, Cohen d = 0.312] 
and in the immediate CT [II learners: t(26) = 0.720, p = 0.478, Cohen 
d = 0.273; RB learners: t(26) = 0.456, p = 0.652, Cohen d = 0.174].

In the immediate tests, II and RB learners performed significantly 
above chance across tests (Figure  6A, all Bonferroni-corrected 
ps < 0.001). For II learners, similar to the Exp.  2.1, categorization 
accuracy and category model fits were both significantly decreased in 
Dispersity [accuracy: t(12) = −4.729, p = 0.001, Cohen d = 0.728; model 
fit: t(12) = −5.941, p < 0.001, Cohen d = 0.791] and Location tests 
[accuracy: t(12) = −6.407, p < 0.001, Cohen d = 1.681; model fit: 
t(12) = −6.617, p < 0.001, Cohen d = 1.742] compared to CT. For RB 
learners, no planned comparison in accuracy or model fit reached 
significance (see Tables 1, 2 for details).

For the generalization tests performed 1 week after training, 
categorization accuracies and model fits of the category model were 
all significantly better than chance across learner groups 
(Figures  6C,D). Similar to the immediate test, II learner’s 
categorization accuracies and model fits were significantly decreased 
in Dispersity [accuracy: t(12) = −4.595, p = 0.002, Cohen d = 0.841; 
model fit: t(12) = −4.956, p < 0.001, Cohen d = 0.925] and Location tests 
[accuracy: t(12) = −5.365, p < 0.001, Cohen d = 1.323; model fit: 
t(15) = −7.639, p < 0.001, Cohen d = 1.566] compared to CT. For RB 
learners, categorization accuracies and model fits were both affected 

by the dispersity changes [accuracy: Dispersity vs. CT: t(15) = −3.318, 
p = 0.014, Cohen d = 0.437; model fit: t(15) = −3.839, p = 0.005, Cohen 
d = 0.512], which is different from the immediate generalization. In 
contrast, the model fits were significantly increased in Location 
compared to CT [t(15) = 4.198, p = 0.002, Cohen d = 0.632]. These 
findings indicated better category knowledge transferred in Location, 
but worse in Dispersity conditions. No other planned comparison 
reached significance (see Tables 1, 2 for details).

Statistical summaries across the three 
experiments

The above results reported for each experiment highlighted the 
effects of generalization (i.e., F0/Dispersity/Location vs. CT) and 
distinct patterns of these effects for II and RB learners. To directly 
compare generalization effects across learner groups, experiments 
(i.e., training procedures), and types of generalization, we used CT as 
a baseline to compute the generalization effects induced by changes in 
F0, sampling dispersity, and location in the perceptual space. The three 
types of generalization effects (i.e., F0 – CT; Dispersity – CT; Location 
– CT) were calculated for each learner, experiment, and test, which 
enables the direct comparisons in generalization effects between 
learner groups (II vs. RB), generalization types (F0 vs. Dispersity vs. 
Location), and training procedures (OT vs. CT-NF vs. CT-WF) even 

TABLE 2 Planned comparisons between generalization tests in the model fitting of the category model for each experiment.

Category 
structure

Generalization 
test (vs. CT)

df Immediate test 1  week after training

t-value Corrected 
p-value

Cohen d t-value Corrected 
p-value

Cohen d

Exp. 1 (OT)

II F0 13 0.323 1 0.044 −1.323 0.626 0.229

Dispersity 13 −4.205 0.003 0.802 −3.728 0.008 0.642

Location 13 −4.827 0.001 1.356 −2.649 0.06 0.722

RB F0 14 −3.27 0.017 0.699 1.342 0.603 0.289

Dispersity 14 −1.485 0.479 0.3 −3.009 0.028 0.718

Location 14 1.154 0.804 0.311 3.235 0.018 0.866

Exp. 2.1 (CT-NF)

II F0 14 0.305 1 0.067 0.383 1 0.111

Dispersity 14 −6.965 < 0.001 1.134 −3.364 0.014 0.809

Location 14 −6.356 < 0.001 1.98 −5.769 < 0.001 1.332

RB F0 11 −0.786 1 0.123 0.918 1 0.209

Dispersity 11 −3.99 0.006 0.606 −1.23 0.733 0.303

Location 11 1.625 0.397 0.272 2.815 0.05 0.71

Exp. 2.2 (CT-WF)

II F0 12 0.278 1 0.081 −2.17 0.152 0.318

Dispersity 12 −5.941 < 0.001 0.791 −4.956 0.001 0.925

Location 12 −6.617 < 0.001 1.742 −7.639 < 0.001 1.566

RB F0 15 −1.545 0.429 0.329 0.197 1 0.031

Dispersity 15 −2.441 0.083 0.372 −3.839 0.005 0.512

Location 15 1.56 0.419 0.243 4.198 0.002 0.632

The p-values were Bonferroni-corrected. The bold values denote corrected p-values < 0.05.
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though the baseline categorization performances differed across 
conditions. A three-factor LMER was conducted to reveal the main 

effects of learner group, generalization type, training procedure, and 
their interaction effects on the generalization effects.

FIGURE 5

Generalization performances and RSA model fits of the binary category model across four generalization tests in Exp. 2.1 with categorization training 
without feedback. (A,B) Generalization accuracy and model fit of the immediate test session. (C,D) Generalization accuracy and model fit of the tests 
conducted 1  week after training. Red lines with arrows indicate significant differences between CT and the other three tests. Asterisks represent the 
above-chance statistical significance (Bonferroni-corrected value of ps  <  0.05) of each generalization test for each measure.

FIGURE 6

Generalization performances and RSA model fits of the category model across four generalization tests in Exp. 2.2 with feedback-based categorization 
training. (A,B) Generalization accuracy and model fit of the immediate test session. (C,D) Generalization accuracy and model fit of the tests conducted 
1  week after training. Red lines with arrows indicate significant differences between CT and the other three tests. Asterisks denote above-chance 
significance (Bonferroni-corrected value of ps  <  0.05).
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For the immediate generalization performances (Figure  7A), 
we found significant main effects of learner group [F(1, 85) = 16.431, 
p < 0.001, partial η2 = 0.16] and generalization type [F(2, 170) = 20.584, 
p < 0.001, partial η2 = 0.19], and a significant learner-group-by-
generalization-type interaction effect [F(2, 170) = 74.694, p < 0.001, partial 
η2 = 0.47] indicating distinct patterns of the generalization effects 
between II and RB learners. No other effects were found significant. 
Similarly, for category model fits (Figure 7B), we found significant 
main effects of learner group [F(1, 85) = 27.434, p < 0.001, partial 
η2 = 0.24] and generalization type [F(2, 170) = 19.829, p < 0.001, partial 
η2 = 0.19], and a significant learner-group-by-generalization-test 
interaction effect [F(2, 170) = 81.029, p < 0.001, partial η2 = 0.49]. Since 
neither the main effect of training procedure nor any interaction effect 
related to training procedure was found significant, we conducted ad 
hoc comparisons with data collapsed across the three experiments.

Consistent with the results reported in each experiment, changes 
in sampling dispersity and location in the perceptual space 
significantly affected generalization performances for II learners 
[accuracy: Dispersity vs. CT, t(41) = −9.253, p < 0.001, Cohen d = 2.019; 
Location vs. CT, t(41) = −9.937, p < 0.001, Cohen d = 2.169; category 
model fit: Dispersity vs. CT, t(41) = −9.676, p < 0.001, Cohen d = 2.112; 
Location vs. CT, t(41) = −10.294, p < 0.001, Cohen d = 2.246]. However, 
changes in F0 did not affect generalization performances [accuracy: 
t(41) = −0.248, p = 1, Cohen d = 0.054; category model fit: t(41) = 0.514, 
p = 1, Cohen d = 0.112]. For RB learners, categorization accuracy and 
the robustness of category representations in generalization were 
significantly affected by the changes in F0 [accuracy: t(42) = −3.128, 

p = 0.010, Cohen d = 0.675; category model fit: t(42) = −3.222, p = 0.007, 
Cohen d = 0.695] and sampling dispersity [accuracy: t(42) = −4.153, 
p < 0.001, Cohen d = 0.896; category model fit: t(42) = −4.180, p < 0.001, 
Cohen d = 0.901].

Furthermore, the generalization effect of Location (i.e., Location 
vs. CT) in categorization accuracy (Figure 7A) was more salient for II 
than RB learners [t(83) = −8.372, p < 0.001, Cohen d = 1.816], suggesting 
that changes in location of the perceptual space affected generalization 
of II category knowledge more than that of RB. For category model 
fits (Figure  7B), generalization effects of sampling dispersity 
[t(83) = −3.589, p = 0.002, Cohen d = 0.779] and location of perceptual 
space [t(83) = −9.529, p < 0.001, Cohen d = 2.067] were both more 
salient for II learners than that of RB. In contrast, the generalization 
effect of F0 was more robust for RB than II learners [t(83) = 2.469, 
p = 0.047, Cohen d = 0.536].

Generalization effects were similar between the immediate tests 
and tests conducted 1 week after training (Figures  7C,D). Two 
intriguing differences were found between the tests conducted a week 
separately. Firstly, the generalization effect of F0 was not significant 
for RB learners 1 week after training, neither for accuracy [t(42) = 0.266, 
p = 1, Cohen d = 0.058] nor category model fits [t(42) = 1.450, p = 0.463, 
Cohen d = 0.313], which may indicate of a category representation 
transformation or abstraction after training. The second difference is 
that both accuracy and category model fits in Location for the RB 
learners were significantly higher than that in CT 1 week after training 
[accuracy: t(42) = 2.624, p = 0.036, Cohen d = 0.569; category model fit: 
t(42) = 5.892, p < 0.001, Cohen d = 1.271], which may indicate the 

FIGURE 7

Changes in generalization accuracy (A,C) and RSA model fits of the binary category model (B,D) for the generalization tests performed immediately 
(A,B) and 1  week after training (C,D) for the three experiments. Red asterisks under the curly brackets denote significant differences between CT and 
the other three tests, with data collapsed across the three experiments. Red lines denote significant differences between II and RB learners, with data 
collapsed across all experiments. White asterisks denote significant differences between CT and each of the other three tests for each experiment. 
*p  <  0.05; **p  <  0.01; **p  <  0.001; corrected p values.
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increasing transfer of category knowledge to sounds from the 
untrained location of perceptual space during a week after training.

We further examined what stimulus- or category-related 
knowledge was represented and utilized in generalization and to 
which extent these representations changed due to the changes in F0, 
sampling dispersity, and locations of perceptual space. Thus, we used 
three predefined representation models (i.e., category, bound-based 
decision distance, and center-based perceptual similarity models) to 
fit learners’ response RDMs and compared the model fits between CT 
and the other three tests to reveal the representation changes.

For all the generalization tests, each of the three representation 
models was significantly correlated with learners’ response RDMs 
(Supplementary Figure S5), indicating that these models all contribute 
to explaining learners’ categorization response patterns. The category 
model explained the most variances among the three models across 
all tests except for the Dispersity tests. We  further calculated the 
unique contribution of each model in explaining the response 
confusion patterns by controlling for the variances of the other two 
models using the partial correlation approach and compared these 
model fits between tests and learners (Figure 8).

For generalization tests performed immediately after training, the 
F0 change did not affect the transfer of the three types of category-
related representations for both learner groups (Figure 8A, left panel). 
However, RB learners’ category representations increased 1 week after 
training in the F0 test (Figure 8A, right panel) and were significantly 
higher than CT [t(42) = 3.264, p = 0.007, Cohen d = 0.704]. This increase 
in category representations was accompanied by a decrease in the 
representation of decision-bound distance [t(42) = −2.869, p = 0.019, 
Cohen d = 0.619].

Compared to CT, increased sampling dispersity in the Dispersity 
test affected category representations for both II and RB learners in 
tests conducted both immediately and 1 week after training [Figure 8B; 
II learners: immediate test, t(41) = −7.685, p < 0.001, Cohen d = 1.677; 
1 week after training, t(41) = −6.532, p < 0.001, Cohen d = 1.425; RB 
learners: immediate test, t(42) = −3.128, p = 0.010, Cohen d = 0.675; 
1 week after training, t(42) = −4.467, p < 0.001, Cohen d = 0.963]. More 
decrease in category representations was found for II than RB learners 

[immediate test, t(83) = −4.956, p < 0.001, Cohen d = 1.075; one week 
after training: t(83) = −2.956, p < 0.012, Cohen d = 0.641]. In the 
immediate test, the decreased category representations was 
accompanied by increased representations of decision distance 
[t(41) = 4.011, p < 0.001, Cohen d = 0.875] and perceptual similarity 
[t(41) = 2.539, p < 0.045, Cohen d = 0.554] only for II learners, but not 
for RB learners [decision distance model: t(42) = 0.032, p = 1, Cohen 
d = 0.007; perceptual similarity model: t(42) = −1.321, p = 0.581, Cohen 
d = 0.285]. More increased representations of decision distance 
[t(83) = 3.101, p = 0.008, Cohen d = 0.673] and perceptual similarity 
[t(83) = 2.764, p = 0.021, Cohen d = 0.600] were found for II than 
RB learners.

Changes in  locations of perceptual space in Location test 
modulated the degrees of category representations for both II and RB 
learners, but in opposite directions [Figure 8C; II, immediate test: 
t(41) = −6.701, p < 0.001, Cohen d = 1.462; 1 week after training: 
t(41) = −4.469, p < 0.001, Cohen d = 0.975; RB, immediate test: 
t(42) = 3.670, p = 0.002, Cohen d = 0.791; 1 week after training: 
t(42) = 6.552, p < 0.001, Cohen d = 1.413]. For II learners, decreased 
category representations were accompanied by decreased 
representations of decision distance [immediate test: t(41) = −3.518, 
p = 0.003, Cohen d = 0.768; 1 week after training: t(41) = −9.753, 
p < 0.001, Cohen d = 2.128] and perceptual similarity [immediate test: 
t(41) = −5.539, p < 0.001, Cohen d = 1.209; 1 week after training: 
t(41) = −7.162, p < 0.001, Cohen d = 1.563]. For RB learners, increased 
category representations were accompanied by decreased 
representations of decision distance [t(40) = −6.969, p < 0.001, Cohen 
d = 1.539] and perceptual similarity (t(40) = −3.337, p = 0.006, Cohen 
d = 0.737) only for the tests performed 1 week after training. More 
decreased representations of perceptual similarity were found for II 
than RB learners 1 week after training [t(81) = −2.470, p = 0.047, Cohen 
d = 0.542].

Regarding the categorization response time (RT, see 
Supplementary Figure S6), we  found a significant main effect of 
training procedure [F(2,85) = 7.242, p = 0.001, partial η2 = 0.15]. Faster 
categorization responses were shown in Exp. 2.2 [CT-WF vs. OT: 
F(1, 58) = 8.734, p = 0.005, partial η2 = 0.13; CT-WF vs. CT-NF: 

FIGURE 8

Representation modeling of categorization confusion matrices with three predefined representation models using data collapsed across the three 
experiments. The unique contribution of each model was calculated and subtracted from CT to reveal the generalization effects. (A) RSA Model fit 
differences between F0 and CT tests for both groups; (B) Model fit differences between Dispersity and CT tests; (C) Model fit differences between 
Location and CT tests. Colored asterisks at the bottom of each graph denote significant differences between CT and each of the other three tests. 
Arrow lines denote significant differences between II and RB learners in model fit (*p  <  0.05; **p  <  0.01; **p  <  0.001; corrected p values).
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F(1, 56) = 12.241, p < 0.001, partial η2 = 0.18]. This training procedure 
effect is independent of category structures, suggesting that 
categorization training with feedback facilitates categorization 
decisions in generalization contexts in general. We  also found a 
significant main effect of generalization test [F(3, 595) = 3.706, p = 0.012, 
partial η2 = 0.02] where learners required a longer time to categorize 
in the Dispersity test [Dispersity vs. CT: F(1, 255) = 8.041, p = 0.005, 
partial η2 = 0.03; F0 vs. CT: F(1, 255) = 0.008, p = 0.927, partial η2 < 0.001; 
Location vs. CT: F(1, 255) = 1.424, p = 0.234, partial η2 < 0.001]. We did 
not find a significant main effect of leaner group [F(1,85) = 2.330, 
p = 0.131, partial η2 = 0.03] but found a significant learner-by-test 
interaction effect [F(3,595) = 7.392, p < 0.001, partial η2 = 0.04]. For II 
learners, the main effect of generalization test was significant [F(3, 

294) = 7.882, p < 0.001, partial η2 = 0.07], where Dispersity and Location 
tests responded significantly longer than other tests [F0 vs. CT: F(1, 

126) = 0.837, p = 0.362, partial η2 < 0.001; Dispersity vs. CT: F(1, 

126) = 9.086, p = 0.003, partial η2 = 0.07; Location vs. CT: F(1, 126) = 8.385, 
p = 0.004, partial η2 = 0.06]. In contrast, for RB learners, the main 
effect of generalization test failed to reach significance [F(3, 301) = 2.309, 
p = 0.077, partial η2 = 0.02].

Discussion

Learners’ ability to generalize to novel testing situations directly 
speaks to the nature of representations acquired in training and the 
mechanisms supporting the cross-situation transfer of category 
knowledge. Here, with this experimental logic, we  designed four 
generalization tests with different types of novel items and conducted 
three category learning experiments with different training procedures 
to probe the differences in representation nature between II and RB 
categories. Across three experiments, we found distinct characteristics 
of the newly-acquired II and RB category representations indicated by 
generalization patterns and representation modeling. II and RB 
learners transferred category knowledge to the four tests to different 
extents. The II learners significantly decreased generalization 
performances and category representations in the Dispersity and 
Location tests but not in the F0 test compared to the baseline test, 
which suggests that the generalization of II category knowledge is not 
affected by surface acoustic changes in an irrelevant F0 dimension but 
less successful in categorizing new items sampled from an untrained 
perceptual area (i.e., the Location test) and in a context with more 
disperse samples (i.e., the Dispersity test). In contrast, RB learners’ 
generalizations are resistant to changes in perceptual regions (i.e., the 
Location test) and interference of the F0 change (especially for the 
representations after stabilization, i.e., 1 week after training), but they 
are sensitive to changes in increasing dispersity of exemplars (i.e., the 
Dispersity test). Representational similarity modeling further revealed 
that II and RB learners used different generalization mechanisms in 
the Dispersity test. II learners enhanced representations of perceptual 
similarity and decision distance to compensate for the decreased 
transfer of category-label representations, whereas RB learners used a 
more computational cost mechanism by default, computing the 
decision-bound distance to guide categorization decisions. These 
findings provide new insights into understanding the relationships 
between category learning, the nature of category representations, and 
how different learning and representation systems operate differently 
to achieve successful generalization.

We aim to examine the representation nature of II and RB 
categories, especially the abstractness of the category representations 
utilized in generalization. We  manipulated three factors in 
generalization, ranging from low-level surface acoustics to higher-
level exemplar dispersity and untrained perceptual location. Based on 
DLS models, especially the COVIS model in the visual domains, II 
representations are tightly linked to the exemplar-dependent or 
feature-specific information (e.g., visual field), and any changes in the 
low-level information affect generalization performances (Ashby et al., 
2003; Maddox et  al., 2004b, 2005, 2007; Rosedahl et  al., 2018). 
However, across the three experiments, we  demonstrate that II 
learners can resist changes in F0 for generalization tests performed 
immediately and 1 week after training, suggesting that auditory II 
category representations are not tightly linked to low-level dimensions 
irrelevant to discriminating category members. Changes in F0 analog 
changes in talker (e.g., Bradlow and Bent, 2008; Xie et al., 2021). This 
finding is consistent with previous auditory and speech category 
learning studies that showed talker-independent category 
representations emerged at both behavioral and neural levels during 
training (Bradlow and Bent, 2008; Feng et al., 2019, 2021c; Johnson 
and Sjerps, 2021; Xie et  al., 2021). In speech perception, native 
listeners can maintain perceptual constancy while facing various types 
of acoustic and perceptual variabilities (Bradlow and Bent, 2008; Feng 
et al., 2018, 2021a), suggesting exceptional generalization ability to 
overcome the “lack-of-invariance” challenge.

In comparison, RB learners’ generalization performances were not 
consistently affected by F0 changes. The generalization performances 
in the immediate F0 test were significantly less accurate than the 
control test, especially for Exp. 1 with observational training. However, 
the generalization was insensitive to F0 changes 1 week after training 
across the three experiments. These findings suggest that RB learners 
may undergo a transformation or abstraction process within a week 
after training to stabilize the category representations to overcome the 
variability induced by an irrelevant acoustic dimension. One 
speculation is that this post-training abstraction or stabilization 
process is specific for RB categories, where the F0 information could 
be efficiently integrated into the previously-acquired categorization 
rules so that the irrelevant acoustic information is eliminated before 
the decision (e.g., application of new filtering rules). Adopting a new 
rule to filter irrelevant information while maintaining attention to the 
relevant dimensions or features may require time and the support of 
executive systems (Diekelmann and Born, 2010; Genzel et al., 2014). 
The distinct patterns between II and RB learners in the F0 test suggest 
that the category structure we learn plays an important role in how the 
auditory perception system copes with novel acoustic variabilities.

One of the critical tests for the abstractness of emerged 
representations is to test the generalization to new sounds sampled 
from an untrained area of the stimulus space. We  found that 
significantly reduced generalization performances and decreased 
category model fittings to new sounds outside the range of training 
samples (i.e., in the new location test) for II learners across the three 
experiments. In contrast, increased generalization performances and 
enhanced category representations for the RB learners were found 
in the same test. This dissociated pattern suggests that II 
representations are tightly restricted to the perceptual areas where 
the training samples are covered. The trained locations in the 
stimulus space may be weighted differently than untrained areas, so 
the categorization performances are compromised when the 
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category knowledge is transferred from trained locations to 
untrained locations.

These results are consistent with previous findings from studies 
of visual category learning. For example, Smith et al. (2015) asked 
two groups of participants to learn RB and II categories, respectively, 
and required them to categorize new stimuli sampled from an 
untrained region of the stimulus space. They found that RB learners’ 
generalization was nearly seamless, whereas II learners failed to 
categorize the new items. Moreover, II representations are often 
linked with exemplar-associated sensorimotor features. Changes in 
the visual field have significant interferences of II categorization but 
not RB (Rosedahl et al., 2018), suggesting visual-field-dependent 
representations of II categories. Similarly, changing the response key 
to categorize items only affects the II categorization but not RB 
(Ashby et al., 2003), suggesting that visual II categories are tightly 
associated with their motor correspondences. Comparing these 
findings from visual domains, our findings in auditory category 
learning indicate that II auditory category representations are only 
tightly linked to the perceptual properties of the dimensions relevant 
to categorization instead of any other irrelevant dimensions (e.g., F0) 
inherent from the training samples. This representation mechanism 
of II auditory categories may help listeners precisely generalize 
category knowledge to novel items and scenarios with redundant and 
irrelevant acoustic information.

Another critical test of the representation nature is to examine 
the generalization performances to new sounds with distinct 
distributional patterns from the training samples. We found that 
reduced categorization accuracy and decreased category 
representations when learners generalized to a set of new sounds 
with a more dispersed distribution (i.e., the Dispersity test) 
compared to the training samples for both II and RB learners. These 
findings indicate that both II and RB category representations are 
sensitive to the within-category sound distributional pattern. DLS 
models predict that learning II and RB categories recruit distinct 
learning strategies and neurocognitive systems (Ashby and Maddox, 
2005, 2011; Chandrasekaran et al., 2014a,b). However, DLS models 
do not have detailed descriptions and predictions about whether the 
category representations are associated with the within-category 
distributional statists of the training samples. DLS model may 
predict that the generalization of II category representations is 
affected by changes in sound dispersity because II category 
representations are hypothesized to link with sample-specific 
features. This reasoning is supported by recent findings that II but 
not RB categories with a probabilistic distribution are learned worse 
than categories with a deterministic distribution (Roark and Holt, 
2018), suggesting II category representations are formed based on 
or along with distributional information. Any changes in the 
stimulus distributional pattern would affect II generalization 
performances. Even though the overall coverage in the perceptual 
space is the same for the training and generalization samples, the 
distributional patterns within each category are different. The 
training samples are normally distributed in the space (i.e., center-
based distribution pattern), whereas the generalization samples in 
the Dispersity test are more distributed. Thus, our results suggest 
that forming II category representations is a learning process that 
considers all types of variabilities in the perceptual space. Any 
changes in sample distribution or the locations in the perceptual 

space, whether within or outside the coverage of training samples, 
would affect the transfer of the II category knowledge.

A perceptual weighting mechanism may explain the II 
generalization decreases in the Dispersity and Location tests (Niv 
et al., 2015). Successful learning of II auditory categories requires 
integrating information from the spectral- and temporal-modulation 
dimensions. The integration ratio of the two dimensions is subject to 
the distributions of training samples. The distribution of the training 
samples provides statistical information about the category 
probabilities for the learners to weigh the two dimensions. Learners 
may gradually adjust the integration ratio or weights of the two 
dimensions as they expose to more samples. Higher perceptual 
weights would be assigned to the perceptual areas more frequently 
encountering samples. Transferring this weighting knowledge from 
trained areas to untrained areas (e.g., in the Location test) or from 
more trained areas to less trained areas (e.g., in the Dispersity test) in 
the stimulus space would be less successful because these weighting 
representations are acquired with the procedure-based learning 
system and tapped into the auditory cortex. In addition, sounds from 
untrained perceptual areas may not be weighted the same way in the 
stimulus space as the trained sounds, which may lead to incorrect 
categorization. This speculation is consistent with our recent 
neuroimaging findings. Feng et al. (2021a,b,c) examined the neural 
encodings of II and RB auditory categories during categorization 
training. They found that auditory and speech perception-related 
regions in the superior temporal cortex gradually increased the 
weightings of perceptual information for II sounds. In contrast, the 
same regions gradually decreased the perceptual representations for 
RB sounds. This putative perceptual weighting mechanism of II 
representations requires further examination.

We found that changes in sampling dispersity, rather than perceptual 
locations, affect the ability to categorize novel RB sounds. These findings 
may contradict predictions made by DLS models and recent studies 
(Maddox et al., 2005; Roark and Holt, 2018). RB category representations 
are considered to be abstract rules associated with executive functions 
and working memory capacity (Waldron and Ashby, 2001; Zeithamova 
and Maddox, 2006; DeCaro et al., 2008; Reetzke et al., 2016). The factor 
of sampling dispersity is not explicitly linked to these functions. One 
possibility is that categorization rules are derived from the probability 
distribution of training samples. Learners may use the knowledge of a 
probability distribution around the decision boundary learned during 
training to apply rules to categorize new RB sounds. Our representational 
similarity modeling results show that the bound-based distance model 
significantly correlates with categorization confusions (see 
Supplementary Figure S5), suggesting that the bound-based sample 
probability information is a necessary representation for generalization 
to more dispersed contexts. If the new RB sounds have different 
sampling dispersity, this can lead to the transfer of these probabilities 
and rules being less accurate, thus leading to a decrease in 
categorization performance.

It is also possible that RB-specific generalization mechanisms play 
a role in learners’ ability to categorize novel RB sounds. When 
encountering new RB sounds, learners may estimate the bound-based 
distance to assist with categorization. This may be especially true 
when there is no previous bound-based distance information can 
be retrived to aid in generalization. Computing bound-based distance 
in real-time for generalizations can be a computational cost strategy 
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as it requires effort and processing resources. The accuracy of 
computing the sound-to-boundary distance may be related to the 
sampling dispersity. When there are more distributed sounds within 
each category, there may be a less accurate estimation of the bound 
distance between each sound and a putative category bound. This can 
affect the categorization decision in the Dispersity test compared to 
the control test. Further studies are needed to investigate these 
possibilities systematically.

Regarding the training procedure, we did not find any significant 
differences in generalization accuracy or representational model fit 
across the three experiments. In addition, the training procedure did 
not affect the differences between II and RB in generalization 
performances. These findings suggest that categorization tasks and 
providing immediate feedback compared to the observation training 
may not additionally facilitate learning and generalization accuracies 
for both category structures. In contrast to the generalization 
accuracy and representation modeling, we found that categorization 
training with feedback (i.e., Exp.  2.2) facilitated learners’ 
categorization response time across generalization tests 
(Supplementary Figure S6), while this facilitation is not a tradeoff of 
categorization accuracies. These findings indicate that categorization 
training with feedback may facilitate learners’ categorization decision 
processes, such as more efficiency in accumulating information for 
category decisions compared to the observation training. Providing 
feedback and presenting category labels may play a similar role for 
RB’s hypothesis-testing and II’s associative learning processes, except 
that feedback-based training recruits reinforcement learning 
mechanisms to learn sound-to-category mappings (Ashby and 
Maddox, 2005). The feedback-dependent reinforcement learning may 
facilitate the formation of many-to-one corticostriatal projections 
from the auditory and prefrontal cortex to the striatum regions 
(Chandrasekaran et al., 2014a,b; Maddox and Chandrasekaran, 2014; 
Feng et  al., 2021b). The reinforcement-based mechanism may 
facilitate the retrieval of the category knowledge acquired during 
feedback-based categorization training, thus enhancing the decision 
processing in categorization. More investigations are needed to test 
this possibility.

Summary and conclusion

We examined the nature of II and RB auditory category 
representations by accessing the ability of learners to generalize new 
category knowledge to novel testing situations. Four generalization 
tests with various novel items were designed, and three category 
learning experiments with different training procedures were 
conducted to compare the characteristics of newly acquired II and 
RB category knowledge. II learners demonstrated decreased 
generalization performance and category representation when 
generalizing to untrained perceptual areas and in contexts with 
more dispersed samples; on the other hand, RB learners showed 
resistance to changes in perceptual regions but sensitivity to 
increasing dispersity of sounds. II and RB learners used different 
strategies for generalization when facing the more variable context, 
with II learners enhancing representations of perceptual similarity 
and decision distance while RB learners employed a more 
computational cost strategy to guide categorization decisions. These 
findings shed light on the relationship between category learning 
and representation nature and the varying strategies used by 

different learning and representation systems to achieve 
successful generalization.
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