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Objective and accurate classification of fear levels is a socially important task 
that contributes to developing treatments for Anxiety Disorder, Obsessive–
compulsive Disorder, Post-Traumatic Stress Disorder (PTSD), and Phobia. This 
study examines a deep learning model to automatically estimate human fear 
levels with high accuracy using multichannel EEG signals and multimodal 
peripheral physiological signals in the DEAP dataset. The Multi-Input CNN-LSTM 
classification model combining Convolutional Neural Network (CNN) and Long 
Sort-Term Memory (LSTM) estimated four fear levels with an accuracy of 98.79% 
and an F1 score of 99.01% in a 10-fold cross-validation. This study contributes to 
the following; (1) to present the possibility of recognizing fear emotion with high 
accuracy using a deep learning model from physiological signals without arbitrary 
feature extraction or feature selection, (2) to investigate effective deep learning 
model structures for high-accuracy fear recognition and to propose Multi-Input 
CNN-LSTM, and (3) to examine the model’s tolerance to individual differences in 
physiological signals and the possibility of improving accuracy through additional 
learning.
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1. Introduction

In recent years, as affective computing (Picard and Healey, 1997), which aims to provide a 
function to dynamically adjust interaction with a computer according to the user’s emotions, 
has been attracting attention, the importance of human emotion recognition as a fundamental 
technology is increasing. Emotion recognition is a technology that can be applied to various 
fields such as healthcare, education, criminal investigation, marketing, and entertainment, so 
many experts from multiple fields are conducting research (Chanel et al., 2011; Oh et al., 2017; 
Bertacchini et al., 2018; Yang et al., 2018; Sajjad et al., 2020). It is expected that the global market 
for emotion recognition will continue to expand in the future (Markets and Markets, 2017).

Emotion recognition methods can be roughly divided into two types according to the 
signals used. The first is emotion recognition using external behavioral signals such as speech 
(Schuller, 2018), facial expressions (Byoung, 2018), and body gestures (Gunes and Piccardi, 
2007). This method has the advantage that it is easy to collect signal data because it is possible 
to use common devices embedded in PCs and smartphones, and open data containing such 
information exist on the Internet (Sidorova, 2007; Liu et al., 2015; Yoon et al., 2019). Emotion 
recognition accuracy using external behavioral signals is improving year by year by introducing 
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deep learning to these collected large amounts of signal data. However, 
emotion recognition based on external behavioral signals has 
problems with privacy and the installation location of the device.

The second is emotion recognition using internal physiological 
signals. Internal physiological signals include Electroencephalography 
(EEG), Electromyogram (EMG), Galvanic Skin Response (GSR), 
Respiration, Temperature, Electrooculogram (EOG), Electrocardiogram 
(EKG), etc. (Shu et al., 2018; Dzedzickis et al., 2020). Emotion recognition 
using internal physiological signals is more effective when compared to 
speech and gestures (Zhang et al., 2020). The method requires expensive 
equipment and strict measurement conditions, which are not widely used 
at present, but it is possible to overcome this disadvantage by improving 
the technology in the future.

We focus on the level classification of fear emotion, one of the 
research topics of emotion recognition using internal physiological 
signals. This paper discusses a deep learning model for estimating 
human fear levels with high accuracy using multichannel EEG and 
multimodal peripheral physiological signals contained in the DEAP 
dataset (Koelstra et al., 2012). Objective and accurate classification of 
fear levels is a socially important task that contributes to developing 
treatments for Anxiety Disorder, Obsessive–compulsive Disorder, 
Post-Traumatic Stress Disorder (PTSD), and Phobia. Problems have 
been reported in treating these diseases that patients’ self-reported 
fears do not match the treatment, resulting in aggravation of disability 
and ineffectiveness.

This study aims to approach the above issues and contribute to the 
following; (1) to present the possibility of recognizing fear emotion 
with high accuracy using a deep learning model from physiological 
signals without arbitrary feature extraction or feature selection, (2) to 
investigate effective deep learning model structures for high-accuracy 
fear recognition and to propose Multi-Input CNN-LSTM combining 
Convolutional Neural Network (CNN) and Long Sort-Term Memory 
(LSTM), and (3) to examine the model’s tolerance to individual 
differences in physiological signals and the possibility of improving 
accuracy through additional learning.

2. Related work

Many studies in recent years have investigated the Dynamic 
Difficulty Adjustment (DDA) mechanism in computer games to 
enable game-playing experiences tailored to individual characteristics 
(Zohaib, 2018). Several studies have attempted to predict the 
emotional level of players to adjust to game difficulty. Liu et al. (2009) 
examined the affective model that recognizes anxiety levels during 
games. Fifteen participants played the anagram game and the ping 
pong game and assessed their anxiety using a 9-point Likert scale. The 
authors collected Photoplethysmography, EKG, Heart Sound, GSR, 
EMG, and Skin Temperature signals during the games and derived 43 
features. Regression Tree, K-Nearest Neighbors (KNN) (Altman, 
1992), Bayes Network, and Support Vector Machine (SVM) (Cortes 
and Vapnik, 1995) were trained using these features and evaluated by 
Leave-One-Out Cross-Validation (LOO-CV). A Regression Tree-
based model yielded an accuracy of 88% offline and 78% real-time 
with a three-level classification of anxiety. In addition, the effects on 
the gaming experience were evaluated and compared by applying 
performance-based DDA and affect-based DDA to the same computer 
game. The difficulty level varied based on the player’s grades for the 

performance-based DDA and anxiety levels for the affect-based 
DDA. The study found that affect-based DDA provides players with 
better performance and a more rewarding gaming experience. 
Orozco-Mora et al. (2022) examined the feasibility of distinguishing 
between different stress levels while playing a virtual reality video 
game. The authors extracted 15 features from EMG, EKG, and GSR 
acquired when 27 participants played a shooting game to survive by 
killing zombie enemies. The used classification algorithms were SVM 
with a Linear and a Radial Basis Function kernel, KNN, Decision Tree, 
Random Forest (RF) (Breiman, 2001), and Multi-Layer Perceptron. 
This study could distinguish four stress levels (three difficulty levels 
and a resting stage) with an accuracy of 91.80% using KNN in five-fold 
cross-validation.

Stress recognition research as one of emotional recognition has 
been attracted historically because stress causes various health 
problems (Quick et  al., 1987) and reduces work performance 
(Baddeley, 1972). Healey and Picard (2005) present methods for 
collecting and analyzing physiological signals during real-world 
driving tasks to determine a driver’s stress level. EKG, EMG, hand and 
foot GSR, and Respiration were recorded while 24 drives the rest (low 
level), highway (medium level), and city (high level). The driver’s three 
stress levels were recognized with an accuracy of 97.40% in LOO-CV 
using the linear discriminant function with 22 features obtained from 
these signals. The dataset used in the study is partially available on the 
website PHYSIONET (Healey and Picard, 2010). Deng et al. (2013) 
proposed the feature selection method based on the performance and 
the diversity between two features. The same features as in Healey and 
Picard (2005) were extracted from the seven complete and three 
partially incomplete driver datasets in Healey and Picard (2010), and 
the feature sets were selected by the proposed method. Evaluating 
feature selection results by the Leave-One-Out index based on 
combinatorial fusion (Hsu et al., 2006), the highest correct rate was 
87.69% for a 5-feature set. The results showed much better 
performance than when using randomly selected features. Ghaderi 
et al. (2015) tried to get high accuracy for the different numbers of 
biological sensors, features, and time intervals. The authors divided 
the complete data of seven drivers in Healey and Picard (2010) into 
segments for 100, 200, and 300 s intervals, then extracted 78 features. 
The best of them selected by the feature selection algorithm of Weka 
(Witten and Frank, 2005) were classified using SVM and KNN. The 
high classification result was obtained by KNN with five features from 
three sensors (Respiration, EMG, hand GSR) for 300 s state, with an 
accuracy of 99% in cross-validation. Increasing the number of sensors 
and features used did not improve the accuracy.

Research aimed at treating anxiety disorders such as phobias 
predicts the degree of anxiety or fear. Providing therapy scenarios 
according to the individual emotion level makes exposure therapy 
more effective. Šalkevicius et al. (2019) presented the anxiety level 
prediction framework for a virtual reality exposure therapy system. 
The GSR, Blood Volume Pulse, and Skin Temperature signals of 30 
participants were collected during the presentation in front of virtual 
listeners and split into four classes based on the subject’s anxiety level 
measured by the Subjective Unit of Distress Scale (SUDS) (Wolpe, 
1969). The statistical features were extracted from collected signals 
and performed feature selection by RF. The signal fusion-based SVM 
classifier achieved an accuracy of 80.1% in Leave-One-Subject-Out 
(LOSO) and 86.3% in 10 × 10-fold cross-validation. The model 
outperformed models that used standalone signals. Bălan et al. (2019) 
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presented an approach toward classifying fear levels from physiological 
recordings stored in the DEAP database using various feature 
extraction methods, feature selection methods, and machine learning 
methods. The features were the 32-channel EEG (raw values/Power 
Spectral Densities in the alpha, beta, and theta frequency ranges/
Approximate Entropy/Petrosian Fractal Dimension/Higuchi Fractal 
Dimension), eight peripheral physiological recordings. The Machine 
Learning methods applied were four Deep Neural Networks with 
different numbers of hidden layers and neurons per layer, SVM, RF, 
Linear Discriminant Analysis, and KNN. The feature selection 
techniques were Fisher selection, Principal Component Analysis, and 
Sequential Feature Selector. Training and cross-validating a classifier 
were repeated 10 times using the dataset divided into 70% training 
and 30% test, and the average accuracy was calculated for each 
method. The highest accuracy of 85.74% was obtained using RF based 
on the alpha, beta, and theta amplitudes with no feature selection. 
Bălan et  al. (2020) proposed a Virtual Reality game that can 
automatically adjust exposure scenarios according to the level of fear. 
The acrophobic subjects experienced various scenarios and evaluated 
their fear level with SUDS by exposing them to different heights of 
buildings in the real world and virtual environment. Eight participants 
participated in the preliminary experiment to collect training data, 
and four in the main experiment to collect test data. With the EEG 
log-normalized powers of the 16 channels in the alpha, beta, and theta 
frequencies, the GSR, and Heart Rate signal obtained in the 
experiment as input, the study predicted the current fear level on four 
scales and judged the next exposure scenario in real-time by KNN, 
SVM with Linear kernel, RF, Linear Discriminant Analysis, and Deep 
Neural Networks with varying numbers of hidden layers and neurons. 
The used model was the most accurate of the trained models on 
training data, created by the 10-fold cross-validation. When applying 
the test user’s data to the classifiers trained on other subjects’ data, the 
highest accuracy was 52.75% using KNN. In the case of applying each 
subject’s test data to each classifier trained on the same subject’s data 
from the preliminary experiment, the highest accuracy was 42.50% 
using SVM.

Most emotion recognition researches use peripheral physiological 
signals alone or a combination of EEG and peripheral physiological 
signals. Peripheral physiological sensors worn on the body have the 
disadvantage of restricting the user’s movement and clothing. The 
EEG sensor is suitable for emotion recognition in tasks where 
movement and clothing are essential. Integrating EEG sensors into 
hats and headbands can be easily attached and detached. The following 
studies classify the emotional level using only EEG. To ensure the 
safety of high-altitude workers, Hu et al. (2018) used a deep CNN to 
detect the degree of fear of heights. The experiment was conducted in 
a virtual environment, with 60 participants working at height. The 
study extracted the energy features from EEG data collected during 
work, converted it into a two-dimensional spectral image, and used 
VGG-16 (Simonyan and Zisserman, 2014) to predict the degree of 
acrophobia on four scales from these images. Validated by 31-fold 
cross-validation, the result was an accuracy of 88.77%. Wang et al. 
(2020) used the EEG-based Functional Brain Networks, a complex 
network based on EEGs, to identify the severity of acrophobia. EEGs 
were collected from 76 subjects walking on a board hanging from a 
tree in a virtual environment. The subjects were divided into three 
groups based on Acrophobia Questionnaire and SUDS scores. The 
authors obtained Functional Brain Networks by computing the 
functional connectivity between each pair of channels using 

Synchronization Likelihood (Stam and Van Dijk, 2002) and used these 
networks to train five CNNs. The CNN with ResNet (He et al., 2016) 
performs the best, and accuracy reached 98.46% in six-fold cross-
validation. Schaaff and Schultz (2009) investigated two feature 
extraction approaches to build an emotion recognition system from 
EEG. Five-channel EEG and scores of pleasure levels measured by 
Self-Assessment Manikin (Bradley and Lang, 1994) were collected 
from five subjects using pictures from the International Affective 
Picture System (IAPS) (Lang et  al., 2008) to induce pleasant/
unpleasant and neutral. To automatically recognize pleasure levels, 
SVM with a Radial Basis Function kernel was trained by frequency 
components ranging from 5 to 40 Hz extracted by the Fast Fourier 
Transform and the combination features of peak alpha frequency, 
alpha power, and cross-correlation. For the approach that combines 
features from peak alpha frequency, alpha power, and cross-
correlation, the study obtained an accuracy of 48.89% in LOO-CV.

EEG is often corrupted with artifacts from sources such as the 
eyes, muscles, and cardiac activity. Therefore, EEG-based emotion 
classification is required not to blink or move to avoid artifact 
generation or to detect and remove artifacts. Bălan et  al. (2020) 
removed the artifact in real-time by replacing it with the average value 
of the data recorded during the previous 5 s when detecting a value 
negative or exceeding one and one-half than the average value for 5 s. 
Wang et al. (2020) recorded electrooculograms to remove eye artifacts. 
Ghosh et al. (2023) proposed a method that can automatically detect 
and remove artifacts using KNN and LSTM.

Being traditionally used by statistical machine learning models 
and SVM for emotion recognition, the use of Deep Neural Network 
models has increased recently due to their high recognition accuracy 
(Zhang et al., 2020). Although the studies of emotion-level recognition 
are everything described above as far as we investigated, few of them 
use the Deep Learning model approach based on Deep Neural 
Networks. In many cases, the Machine Learning model approach is 
more accurate than the Deep Learning model approach for emotion-
level recognition (Bălan et  al., 2019, 2020; Petrescu et  al., 2021). 
However, the Machine Learning model approach is required feature 
extraction and feature selection to improve accuracy. Although Deep 
Learning methods can achieve high accuracy without these methods, 
there is currently little research that has achieved high accuracy in 
emotion-level classification without feature extraction or feature 
selection. This study aims to develop a Deep Learning model to 
estimate fear levels more accurately than other works with automatic 
feature extraction and feature selection using multichannel EEG 
signals and multimodal peripheral physiological signals in the DEAP 
dataset (Koelstra et al., 2012).

3. Materials and methods

Figure 1 shows the flowchart of the proposed method. This section 
is divided into subsections along this figure to explain the details of 
the proposed method.

3.1. DEAP dataset

One of the dimensional models for quantitatively defining 
emotional states is the Valence-Arousal-Dominance (VAD) model 
(Russell and Mehrabian, 1977). VAD represents the type of emotion 
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and its intensity by using three numerical value dimensions, valence 
(displeasure–pleasure), arousal (calmness–excitement), and 
dominance (being controlled–in control). Fear defines as low valence, 
high arousal, and low dominance (Demaree et al., 2005). As publicly 
available datasets containing internal physiological signals for emotion 
recognition, the most common are ASCERTAIN (Subramanian et al., 
2018), DEAP (Koelstra et  al., 2012), DECAF (Abadi et  al., 2015), 
MAHNOB-HCI (Soleymani et al., 2012), MIT (Picard et al., 2001), 
SEEPD-IV (Zheng et al., 2019), and WESAD (Schmidt et al., 2018). 
Fear level classification requires the dataset to record fear labels by 
level or labels for valence, arousal, and dominance. The datasets with 
these labels are DEAP, DECAF, and MAHNOB-HCI. This paper uses 
the DEAP dataset to classify fear levels because this dataset includes 
more signals than others. EEG was processed by removing eye artifacts 
with blind source separation, applying a bandpass frequency filter 
from 4.0 to 45.0 Hz, and averaging over a common reference.

The DEAP dataset is an open physiological dataset for analyzing 
human affective states and is used in many studies. This dataset 
consists of EEG and peripheral physiological signals from 32 
participants (50% male and 50% female, 19–37 years old, mean age 
26.9) as they watched 40 music videos of 60 s. Participants rated each 
video in terms of the arousal, valence, liking, and dominance of each 
video using Self-Assessment Manikin (Bradley and Lang, 1994) on a 
continuous 9-point scale. The collected physiological signal is 
32-channel EEG (FP1, AF3, F3, F7, FC5, FC1, C3, T7, CP5, CP1, P3, 
P7, PO3, O1, Oz, Pz, FP2, AF4, Fz, F4, F8, FC6, FC2, Cz, C4, T8, CP6, 
CP2, P4, P8, CP6, CP2, P4, PO4, and O2) and 8-channel peripheral 
physiological signals. Peripheral physiological signals include EOG 

(horizontal and vertical), EMG (zygomaticus and trapezius), GSR, 
Respiration, Plethysmograph, and Skin Temperature, hereafter called 
PPS. The preprocessed public dataset stores 32 files, one file for each 
subject, and each file contains the data array of 40 videos × 40 channels 
(32 EEG + 8 PPS) × 8064 readings and the label array of 40 videos × 4 
labels (valence, arousal, dominance, and liking). The data were 
downsampled to 128 Hz and segmented into 60-s trials, and a 3-s 
pre-trial baseline was removed. EEG was processed by removing eye 
artifacts with blind source separation, applying a bandpass frequency 
filter from 4.0 to 45.0 Hz, and averaging over a common reference.

This paper uses all signals in the DEAP dataset because those are 
known to be related to fear. When humans feel fear, Blinking Rate 
(Choi et al., 2015), Heart Rate (detectable by plethysmograph) (Hubert 
and de Jong-Meyer, 1990; Kometer et  al., 2010), Respiration Rate 
(Harris, 2001), and GSR such as Skin Conductance Response, 
non-specific Skin Conductance Response Rate, and Skin Conductance 
Level (James, 1884; Berridge, 1999; Drummond, 1999) increases. 
Temperature decreases (Dimberg and Thunberg, 2007). In EEG, beta 
power increases in the left temporal lobe (Kometer et al., 2010; Park 
et al., 2011). GSR, Heart Rate, and EEG beta waves are essential in 
predicting fear levels (Bălan et al., 2020).

3.2. Data annotation

As mentioned in section 3.1, fear defines as low valence, high 
arousal, and low dominance. The DEAP dataset is scored on the 
continuous 9-point scale for each arousal, valence, and dominance, 

FIGURE 1

The flowchart of the proposed method.
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but this study requires the 4-point scale for fear level. Therefore, 
we relabeled the data based on the following rule (Bălan et al., 2019). 
Table 1 shows the value of valence, arousal, and dominance labels in 
the DEAP dataset corresponding to the four-level fear in this study.

3.3. Data preprocessing

After relabeling, the imbalanced dataset was obtained, which 
consisted of seven for No fear, 60 for Low fear, 42 for Medium fear, and 
35 for High fear. These data were from 28 of the 32 subjects in the 
DEAP dataset. These subjects had data at any of the four levels, while 
the remaining four had no data at any level. This dataset is quite 
unbalanced, but there is currently no balanced open dataset on fear as 
far as we know. The data numbers were increased from 144 to 1728 by 
dividing the 60-s data into 12 parts so that each piece of data takes 5 s 
and 40 channels × 672 readings.

3.4. Classification model construction

As fear level classification models, Bălan et al. (2019) used RF with 
an accuracy of 85.74%, and Bălan et al. (2020) used kNN with an 
accuracy of 52.75% to classify four levels in cross-validation. The data 
of both studies is the EEG signal converted to the alpha, beta, and 
theta frequencies. Petrescu et al. (2021) reported a binary classification 
of fear with an average accuracy of 92.40% during 10 repeated 7:3 
holdouts by reducing the dimensionality with Principal Component 
Analysis of the GSR and Plethysmographs of the DEAP dataset for 
inputting to SVM. With the MANHOB dataset (Soleymani et  al., 
2012), Miranda et al. (2021) performed binary classification of fear 
with an accuracy of 96.33% with five-fold cross-validation using a 
classifier composed of SVM and kNN, whose inputs were temporal, 
frequency, and non-linear based features derived from ECG, Skin 
Temperature, and GSR signals of only female participants of 
the dataset.

This study tries to input the raw EEG and PPS into a Deep 
Learning model and classify them in four classes. Alhagry et  al. 
(2017) recognized low/high arousal, valence, and liking from raw 
EEG signals stored in the DEAP dataset with high accuracy using 
LSTM. This paper does not describe the conversion of the input data, 
and it is thought that the data was input to the LSTM in its original 
format. Following this result, this study adopted LSTM as a 
classification model and input data in the same original format but 
could not obtain sufficient classification accuracy. To solve this 

problem, we introduced a deep CNN at the pre-input stage of the 
LSTM. Bălan et al. (2019) reduced data readings from 672 to 1 by the 
arithmetic mean before inputting it into the RF model. In our 
proposed method, the 2D Average Pooling layer placed after the 2D 
Convolutional layer has a similar role. In the research on using 
accelerometers to recognize human activity (Zeng et al., 2014), the 
three accelerometer channels (in the X, Y, and Z axes) are input to 
different Convolutional layers. Following this method, EEG and PPS 
were input separately.

Figure  2 shows the network architecture of the Multi-Input 
CNN-LSTM model proposed in this paper. This network was a 
model that combined two CNNs and one LSTM and comprised two 
input layers，2 × 7 Convolutional units，2 × 2 LSTM units， a 
Concatenate layer, a Flatten layer, a Fully Connected layer, and an 
output layer. The first CNN and the second CNN were entered with 
632 × 32 × 1 EEG data and 632 × 8 × 1 PPS data, respectively. The 
Convolutional unit consisted of a 2D Convolutional layer, a Batch 
Normalization layer (Loffe and Szegedy, 2015; Li et al., 2019), a 
Rectified Linear Unit (ReLU) function (Nair and Hinton, 2010), and 
a 2D Average Pooling layer (Scherer et al., 2010). The kernel sizes 
were 9 × 1, 9 × 1, 7 × 1, 3 × 1, 3 × 1, 5 × 1, 5 × 1 in the first CNN, and 
5 × 1, 9 × 1, 5 × 1, 7 × 1, 7 × 1, 5 × 1, 7 × 1 in the second CNN. In all 
Convolutional layers, the strides were 1 × 1 and the padding was 
‘same.’ The 2D Convolution layer repeats the process of sliding 
filters in the direction of the readings axis across the input and 
converting all values in the field to which the filter is applied to a 
single value by convolution and then creating a feature map that 
summarizes the presence of the detected feature. The 2D Average 
Pooling layers downsample the data from 672 to 1 by applying a 
sliding window processing in the direction of the readings axis to 
each feature map obtained by convolutional and averaging each 
feature map within the window. This operation yields 1 reading × 
64 filters (because the last convolutional layer has 64 filters) per 
channel. The LSTM unit consisted of a Bidirectional LSTM 
(Bi-LSTM) layer (Graves and Schmidhuber, 2005) with one 
timestep and a ReLU function. LSTM has a memory cell that stores 
long-term memory and three gates that process based on the 
certain-time input and the output from the hidden layer that 
received the previous-time input: the input, forget, and output gate. 
The input gate determines new information stored in the memory 
cell, the output gate determines the output value, and the forget gate 
determines the information discarded from the memory cell. This 
process classifies the features extracted by CNN. The Deep Learning 
model was constructed using Keras (Keras Documentation, 2015) 
library.

TABLE 1 The contrast between the four-level fear in this study (New Label) and the labels for valence, arousal, and dominance in the DEAP dataset 
(Original Label).

New Label Original Label

Valence Arousal Dominance

0: No fear (7, 9) (1, 3) (7, 9)

1: Low fear (5, 7) (3, 5) (5, 7)

2: Medium fear (3, 5) (5, 7) (3, 5)

3: High fear (1, 3) (7, 9) (1, 3)
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3.5. Model training and validation

Bălan et al. (2019) used 10-fold cross-validation for the Deep 
Learning models. To compare their models, we selected 10-fold cross-
validation for validating our proposed model. In 10-fold cross-
validation, all data was divided into 10 dataset groups. One dataset 
was selected for the trained model evaluation. The rest of the nine 
were used for the model training. This process was repeated for all 10 
datasets and calculated the average accuracy. Each dataset was 
standardized for each channel by subtracting the median and dividing 
by the difference between the data in the top 10% and the bottom 10%. 
The scikit-learn library (Pedregosa et  al., 2011) was used for 
standardization. As mentioned earlier, the data used in this paper is 
imbalanced. When the class ratio is unbalanced, data in the minority 
class is hard to predict. In training data, the data in the minority 
classes were oversampled using Synthetic Minority Over-sampling 
Technique (SMOTE) (Chawla et al., 2002) to fit the number of data in 
the majority class. The number of training and test data per dataset 
was 2592 and 172–173. The training data was split into 80% training 
data and 20% validation data in a stratified fashion and was input into 
the training model. The Adaptive Moment Estimation (ADAM) 
(Diederik and Kingma, 2015) was used as an optimizer. The number 
of epochs and batch size were set to 300 and 16. If the categorical 
cross-entropy loss of validation data stopped decreasing during 15 
epochs, the learning rate was reduced by 1/5. If it stopped decreasing 
during 40 epochs, the network stopped training.

The kernel size, the filter size, the number of units in the LSTM 
layer and fully connected layer, and the dropout rate were optimized 
to maximize the average accuracy for all folds (models) in the 
10-fold cross-validation. The dataset used in this study is highly 
imbalanced in the fear-level classification tasks. Overfitting is a 
significant problem in the Deep Neural Network, especially using 
an imbalanced dataset. To avoid overfitting, the dropout rates of the 
dropout layers were optimized for each inner fold by dividing each 

outer fold in 10-fold cross-validation into inner folds. The 
parameters of the inner hold that achieved the highest accuracy of 
inner holds for each outer fold were applied to each outer fold 
model. Figures 3, 4 show the box plots of the dropout rates of the 
Dropout layers and the learning rate when the number of inner 
folds is five. The values of five inner holds for each outer hold are 
plotted in each box. These results indicate that at least 1728 fear data 
used in this paper in the DEAP dataset have not only class 
imbalances and also high variability. The hyperparameter 
optimization was determined using Optuna (Akiba et al., 2019). 
Ultimately, the hyperparameters obtained when the outer fold was 
10 (10-fold cross-validation) and the inner fold was three were 
applied to the model since the accuracy was highest in the three 
inner folds.

4. Results and discussion

This paper uses accuracy and macro-averaged F1 score as the 
metrics to evaluate the proposed model performance. The result is 
rounded off to the third decimal place.

4.1. Model design

Tables 2–4 show the network architecture of models tried in this 
paper and the verification results. This section fixes hyperparameters 
in all models for performance comparison. The accuracy of LSTM 
in Table  2 and CNN-LSTM in Table  3 indicates that feature 
extraction using Convolutional layers and Average Pooling layers 
improves the accuracy. Multi-Input CNN-LSTM using Max Pooling 
layers instead of Average Pooling layers results in an accuracy of 
86.51% and an F1 score of 86.93%. Average Pooling extracts features 
more smoothly than Max Pooling, which is presumed to improve 

FIGURE 2

The network architecture of the Multi-Input CNN-LSTM model proposed in this paper. BN is the Batch Normalization, DO is the Dropout, and FC is the 
Fully Connected.
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accuracy by reducing noise in the data. LSTM scores a better 
accuracy rate than Multilayer Perceptron (MLP). The result 
supports that LSTM is effective for emotion classification using 
physiological signals. LSTM in this paper sets the timestep 
parameter as ‘1,’ and the LSTM advantage of learning temporal 
correlations from several sequential data inputs does not work in 
such a case. Table  2 shows that LSTM, without this advantage, 
worked the same way as MLP but could train better because of the 
role of the input and output gates operating between layers. The 

recognition accuracies in Tables 2, 3 were the best score with the 
effort of changing the number of features (average values) to 
be calculated by dividing 672 input readings of LSTM and the effort 
of changing the number of output readings of the final layer of 
CNN. A comparison between MLP and CNN from Tables 2, 3 
shows that CNN improves the accuracy without LSTM. The CNN 
with Average Pooling layers performs a filter bank signal 
decomposition on the raw EEG signal, like or more expressive than 
an Fast Fourier Transform (FFT).

FIGURE 3

Shows the box plots of the dropout rate of the Dropout layers. 1st and 2nd Drop layers are DO1 and DO2 in Figure 2. The horizontal axis is the outer 
hold, and the vertical axis is the dropout rate. The values of five inner holds for each outer hold are plotted in each box.

FIGURE 4

Shows the box plots of the learning rate. The horizontal axis is the outer hold, and the vertical axis is the learning rate. The values of five inner holds for 
each outer hold are plotted in each box.
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TABLE 2 The network architecture of MLP and LSTM models tried in this paper.

Model Layer Output shape Activation With BN Accuracy F1 score

MLP

Input 1 × 40 FALSE

88.48 86.86
Dense 1 × 800 ReLU TRUE

Dense 400 ReLU TRUE

Dense 4 Softmax FALSE

LSTM

Input 1 × 40 FALSE

89.41 88.74
Bi-LSTM 1 × 800 ReLU TRUE

Bi-LSTM 400 ReLU TRUE

Dense 4 Softmax FALSE

Conv-AP is the 2D Convolutional layer and 2D Average Pooling layer, and BN is the Batch Normalization layer. The kernel sizes of 2D Convolutional layers are 9 × 1.

TABLE 3 The network architecture of CNN and CNN-LSTM models tried in this paper.

Model Layer Output shape Activation With BN Pool size Accuracy F1 score

CNN

Input 672 × 40 × 1 FALSE

95.14 95.03

Conv-AP 336 × 40 × 16 ReLU TRUE 2 × 1

Conv-AP 168 × 40 × 32 ReLU TRUE 2 × 1

Conv-AP 84 × 40 × 64 ReLU TRUE 2 × 1

Conv-AP 42 × 40 × 128 ReLU TRUE 2 × 1

Conv-AP 21 × 40 × 128 ReLU TRUE 2 × 1

Conv-AP 7 × 40 × 128 ReLU TRUE 3 × 1

Conv-AP 1 × 40 × 128 ReLU TRUE 7 × 1

Flatten 1 × 5120 FALSE

Dense 1 × 800 ReLU TRUE

Dense 400 ReLU TRUE

Dropout 400 FALSE

Dense 40 ReLU FALSE

Dropout 40 TRUE

Dense 4 Softmax FALSE

CNN-LSTM

Input 672 × 40 × 1 FALSE

96.12 96.23

Input 672 × 40 × 1 FALSE

Conv-AP 336 × 40 × 16 ReLU TRUE 2 × 1

Conv-AP 168 × 40 × 32 ReLU TRUE 2 × 1

Conv-AP 84 × 40 × 64 ReLU TRUE 2 × 1

Conv-AP 42 × 40 × 128 ReLU TRUE 2 × 1

Conv-AP 21 × 40 × 128 ReLU TRUE 2 × 1

Conv-AP 7 × 40 × 128 ReLU TRUE 3 × 1

Conv-AP 1 × 40 × 128 ReLU TRUE 7 × 1

Flatten 1 × 5120 FALSE

Bi-LSTM 1 × 800 ReLU TRUE

Bi-LSTM 400 ReLU TRUE

Dropout 400 FALSE

Dense 40 ReLU FALSE

Dropout 40 TRUE

Dense 4 Softmax FALSE

Conv-AP is the 2D Convolutional layer and 2D Average Pooling layer, and BN is the Batch Normalization layer. The kernel sizes of 2D Convolutional layers are 9 × 1.
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Tables 2, 3 applies all physiological signals of 40 channels in the 
DEAP dataset for classification evaluation to this point. When 
inputting only 32-channel EEG without 8-channel PPS, CNN-LSTM 
scores the higher F1 score of 97.91%. Inputting only PPS to 
CNN-LSTM is an F1 score of 89.22%. At first glance, these results 
show that using PPS causes a loss of accuracy. This paper considered 
that feature extraction from all physiological signals, including both 
EEG and PPS, would be the key to improving the accuracy of fear 
emotion recognition. Our trial and error to improve accuracy led 
to finding a way to improve accuracy over using EEG alone, in 
which the model splits 32-channel EEG and 8-channel PPS into two 
CNNs and then merges them into one LSTM. The recognition 
accuracies of the Multi-Input CNN-LSTM and Multi-Input CNN 

in Table 4 were an F1 score of 98.04 and 96.66% in order. These 
results demonstrate the effectiveness of multi-input for emotion 
recognition model design.

4.2. Comparison of classification 
accuracies using three evaluation methods

Table 5 shows the comparison results between our proposed 
and previous studies’ methods in cross-validation. The Multi-
Input CNN-LSTM achieved an accuracy of 98.79% and an F1 
score of 99.01% for the four-level fear classification. These results 
were obtained when the inner hold was set to three. The accuracy 

TABLE 4 The network architecture of Multi-Input CNN and CNN-LSTM models tried in this paper.

Model Layer Output shape Activation With BN Pool size Accuracy F1 score

CNN

Input 672 × [32/8] × 1 FALSE

96.99 96.66

Conv-AP 336 × [32/8] × 16 ReLU TRUE 2 × 1

Conv-AP 168 × [32/8] × 32 ReLU TRUE 2 × 1

Conv-AP 84 × [32/8] × 64 ReLU TRUE 2 × 1

Conv-AP 42 × [32/8] × 128 ReLU TRUE 2 × 1

Conv-AP 21 × [32/8] × 128 ReLU TRUE 2 × 1

Conv-AP 7 × [32/8] × 128 ReLU TRUE 3 × 1

Conv-AP 1 × [32/8] × 128 ReLU TRUE 7 × 1

Concatenate 1 × 40 × 128 FALSE

Flatten 1 × 5120 FALSE

Dense 1 × 800 ReLU TRUE

Dense 400 ReLU TRUE

Dropout 400 FALSE

Dense 40 ReLU FALSE

Dropout 40 TRUE

Dense 4 Softmax FALSE

CNN-LSTM

Input 672 × [32/8] × 1 FALSE

97.97 98.04

Conv-AP 336 × [32/8] × 16 ReLU TRUE 2 × 1

Conv-AP 168 × [32/8] × 32 ReLU TRUE 2 × 1

Conv-AP 84 × [32/8] × 64 ReLU TRUE 2 × 1

Conv-AP 42 × [32/8] × 128 ReLU TRUE 2 × 1

Conv-AP 21 × [32/8] × 128 ReLU TRUE 2 × 1

Conv-AP 7 × [32/8] × 128 ReLU TRUE 3 × 1

Conv-AP 1 × [32/8] × 128 ReLU TRUE 7 × 1

Concatenate 1 × 40 × 128 FALSE

Flatten 1 × 5120 FALSE

Bi-LSTM 1 × 800 ReLU TRUE

Bi-LSTM 400 ReLU TRUE

Dropout 400 FALSE

Dense 40 ReLU FALSE

Dropout 40 TRUE

Dense 4 Softmax FALSE

Conv-AP is the 2D Convolutional layer and 2D Average Pooling layer, and BN is the Batch Normalization layer. The kernel sizes of 2D Convolutional layers are 9 × 1.
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was highest in three inner folds, and the result in five inner folds 
mentioned in section 3.5 was an accuracy of 98.15% and an F1 
score of 98.29%. Optuna, a hyperparameter optimization tool, was 
used to avoid overfitting, which can be  problematic with 
unbalanced datasets. Our model is about 13% more accurate than 
the best model RF in Bălan et al. (2019) and 14% more accurate 
in conditions without feature extraction. Even the simple Deep 
Neural Network (DNN) (MLP in Table 2) we constructed is more 
accurate than previous studies’ DNN. Figure 5 shows the Receiver 
Operating Characteristic (ROC) Curve and Area Under the Curve 
(AUC) values of the Multi-Input CNN-LSTM model proposed in 
this paper.

K-fold cross-validation cannot confirm how accurately to predict 
the unknown user’s fear level because data inclusion of the same 
person in the training and test data is allowed. Although this method 
evaluates the model performance when the user provides enough 
training data, assuming the incorporation of this model into 
applications, it is hard to collect much data on new users for training 
the model before they use the application.

Therefore, this paper evaluated our proposed system using Leave-
One-Subject-Out cross-validation (LOSO), a user-independent 

verification method, and Calibration, a unique method based on 
LOSO that evaluates when assuming the actual use start case of a 
new user.

In LOSO, one of the 28 subjects’ data is selected for the trained 
model evaluation, while the rest subjects’ data is for the model 
training. The training data was split into 80% training data and 20% 
validation data in a stratified fashion as in the 10-fold cross-validation. 
This process is repeated until all subjects are selected. Table 6 shows 
the number of test data, accuracy, and F1 score per test subject in 
LOSO. The result of the average value calculation is an accuracy of 
27.77% and an F1 score of 16.50%, a significant decrease from the 
10-fold cross-validation result. Since the training data is for 27 
subjects, the model should learn all class features no matter who is the 
test subject.

Therefore, the cause of the accuracy loss seems to be that the 
test data has different characteristics from the training data due 
to individual differences in the data. If the model learns even a 
few properties of the test subjects’ data, this problem could 
be solved.

Calibration extracts partial data from the test dataset of a 
selected evaluation subject and adds the extracted data to the 
training dataset of LOSO, the rest of the 27 subjects. This paper 
added 20 and 40% of each test dataset to the training data. The 
training data was split into 80% training data and 20% validation 
data in a stratified fashion. Due to the difference in the data for 
each subject, the number of additional train data varied from 3 to 
29 in the 20% case and from 5 to 58 in the 40% case. This data 
addition is equivalent to setting up the model by showing a music 
video to new users for 15–145 s in the 20% case and 25–290 s in 
the 40% case. Tables 7, 8 show the number of test data, accuracy, 
and F1 score per test subject in Calibration 20% (Cal20) and 
Calibration 40% (Cal40) in order. From Tables 7, 8, the 
classification result was an accuracy of 90.89%/95.07% and an F1 
score of 82.05%/94.24% at 20%/40%, which significantly 
improved. As a result of the model learning the test subject’s data 
and accommodating individual differences, Cal20 was more 
accurate than LOSO. Cal40 further improved accuracy by training 
more data than Cal20. The LOSO result indicates that our 
proposed model needs help estimating the fear level of new users. 
The Calibration results show that tens of seconds of user setup 
before use can improve estimation accuracy significantly.

The LOSO result that input validation data instead of test data into 
the trained model was an accuracy of 99.34% and an F1 score of 
99.34%. This result shows that the low accuracy of the test data in 
LOSO is not because the model does not fit the training data well 
enough but because the test subjects’ data has different characteristics 

TABLE 5 The comparison between our proposed and previous studies’ methods in cross-validation.

Method Feature extraction Accuracy F1 score

Multi-Input CNN-LSTM (Ours) – 98.79 99.01

RF (Bălan et al., 2019) – 84.01 83.85

RF (Bălan et al., 2019) Alpha, beta and theta Power Spectral Densitys 85.74 85.33

DNN (Ours) – 85.24 83.00

DNN (Bălan et al., 2019) Alpha, beta and theta Power Spectral Densitys 68.98 68.46

DNN (Ours) is MLP in Table 2.

FIGURE 5

The Receiver Operating Characteristic (ROC) Curve and Area Under 
the Curve (AUC) values of the Multi-Input CNN-LSTM model 
proposed in this paper.
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from other subjects’ data (the training data). The 40-channel fear 
physiological signal in the DEAP dataset used in this paper can differ 
significantly in individuals. Further verification is required to 
determine whether these individual differences are attributed to 
32-channel EEG or 8-channel PPS. Channel selection with high 
relevance to fear could be an excellent solution to avoid individual 
differences and improve LOSO accuracy.

Figure 6 shows the confusion matrix of the four evaluation 
methods. Even though the proposed model achieved higher 
classification accuracy than the other studies in the 10-fold cross-
validation, many misclassifications occurred in LOSO. From 
another point of view, the proposed model cannot accommodate 
the characteristics of individual differences the DEAP dataset 

has. While Calibration succeeded in reducing misclassification, 
the misclassification between Low fear and Medium fear caused 
by the data characteristics was noticeable. This tendency is also 
true for the 10-fold cross-validation. Discovering a more 
expressive model structure that can adequately accommodate 
individual differences will also be  a fundamentally important 
 problem.

Because the DEAP is not a fear-specific emotion database, not 
all subjects have data for all fear levels. In particular, only six have 
data of No fear (see Table 6). In LOSO of Figure 6, No fear has 0% 
accuracy, and others also have low accuracy. These indicate that the 
poor number of subjects for each level leads to low recognition 
accuracy in LOSO. The model would accommodate individual 

TABLE 6 The number of test data, accuracy, and F1 score per test subject in LOSO for four-level classification.

Subject Number of Data Accuracy F1 score

0 1 2 3 Total

1 12 0 0 0 12 0.00 0.00

2 12 12 12 48 84 21.43 16.07

3 0 48 12 0 60 20.00 13.16

4 0 12 12 0 24 45.83 29.33

5 0 0 12 0 12 0.00 0.00

6 0 24 48 0 72 41.67 27.95

7 0 12 12 12 36 22.22 16.00

8 0 48 12 0 60 5.00 2.94

9 0 24 36 12 72 26.39 18.21

10 0 24 12 0 36 33.33 18.60

11 12 24 0 48 84 14.29 8.11

12 0 0 12 36 48 54.17 26.32

13 0 12 0 60 72 0.00 0.00

14 0 12 24 0 36 33.33 31.43

15 12 36 36 12 96 20.83 15.28

16 0 12 0 24 36 27.78 18.96

17 0 84 36 0 120 38.33 14.11

18 0 60 0 0 60 80.00 44.44

19 0 12 0 0 12 66.67 40.00

20 0 24 48 0 72 0.00 0.00

21 0 24 60 0 84 29.76 14.98

22 0 48 0 24 72 41.67 26.15

23 24 0 0 0 24 0.00 0.00

24 0 12 96 36 144 10.42 9.91

26 0 60 0 0 60 55.00 17.74

29 0 12 0 48 60 41.67 19.60

30 0 48 24 0 72 18.06 12.63

31 12 36 0 60 108 29.63 20.02

Total 84 720 504 420 1728

Average 27.77 16.50

Accuracy and F1 score are shown as a percentage.
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differences by using a database with a sufficient number of users per 
level. Such a database would be helpful to classify fear in more than 
four levels.

This paper also checked the LOSO accuracy of two-level 
classification with fear (1 < =valence<=5, 5 < =arousal<=9, 
1 < =dominance<=5) and without fear (5 < valence<=9, 
1 < =arousal<5, 5 < =dominance<9) and resulted in an accuracy of 
51.02% and an F1 score of 41.42%. Table 9 shows the number of 
test data, accuracy, and F1 score per test subject in LOSO for 
two-level classification. The two-level is low accuracy despite 
having more subjects and data than the four-level. The fear level 
in this paper is defined based on the self-assessment score in the 
DEAP. This result suggests that subjects in the DEAP dataset may 
not correctly assess their fear level.

The dataset used in this study was previously processed by 
removing the eye artifact and baseline, applying a bandpass 
frequency filter from 4.0 to 45.0 Hz, and averaging over the 
common reference. This paper added standardization to the 
dataset. The LOSO adopting normalization instead of 
standardization improved the accuracy to 41.49% and the F1 
score to 25.27%. Standardization probably could have been more 
effective if there were no large-scale differences between the 
training and test data. Data preprocessing to compensate for 
differences between individuals would provide room for 
improvement in accuracy. Ahmed et  al. (2023) improved the 
LOSO classification accuracy by removing the baseline from the 
EEG signals in the DEAP dataset using an original method to 
correct for individual differences in the data. The 10-fold 

TABLE 7 The number of test data, accuracy, and F1 score per test subject in Calibration 20% for four-level classification.

Subject Number of data Accuracy F1 score

0 1 2 3 Total

1 9 0 0 0 9 100.00 100.00

2 9 10 10 38 67 94.03 89.20

3 0 38 10 0 48 97.92 66.22

4 0 9 10 0 19 100.00 100.00

5 0 0 9 0 9 100.00 100.00

6 0 19 38 0 57 73.68 72.85

7 0 9 9 10 28 89.29 89.28

8 0 38 10 0 48 87.50 45.58

9 0 19 28 10 57 87.72 86.83

10 0 19 9 0 28 100.00 100.00

11 10 19 0 38 67 74.63 53.85

12 0 0 9 29 38 100.00 100.00

13 0 9 0 48 57 98.25 66.32

14 0 9 19 0 28 67.86 65.71

15 9 28 29 10 76 90.79 90.21

16 0 9 0 19 28 100.00 100.00

17 0 67 29 0 96 86.46 84.38

18 0 48 0 0 48 100.00 100.00

19 0 9 0 0 9 100.00 100.00

20 0 19 38 0 57 70.18 45.99

21 0 19 48 0 67 85.07 77.43

22 0 38 0 19 57 85.96 81.90

23 19 0 0 0 19 94.74 48.65

24 0 9 77 29 115 78.26 50.31

26 0 48 0 0 48 100.00 100.00

29 0 10 0 38 48 100.00 100.00

30 0 38 19 0 57 85.96 85.42

31 9 29 0 48 86 96.51 97.17

Total 65 569 401 336 1371

Average 90.89 82.05

Accuracy and F1 score are shown as a percentage.
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cross-validation result without standardization was an accuracy 
of 98.84% and an F1 score of 98.95%. This paper achieved high 
classification accuracy with applying only minimal preprocessing 
by building a model that suited the data.

5. Conclusion

This paper succeeded in estimating human fear in four levels (No 
fear, Low fear, Medium fear, and High fear) using multichannel EEG 
and multimodal peripheral physiological signals stored in the DEAP 
dataset with an accuracy of 98.79% and an F1 score of 99.01% higher 
than the previous studies’ method in 10-fold cross-validation. The first 
contribution of this paper was to demonstrate the possibility of 
recognizing the fear emotion with high accuracy using a Deep 

Learning model from physiological signals with minimal 
preprocessing without arbitrary feature extraction or feature selection. 
The second contribution was to discover an effective model structure 
for fear emotion recognition, in which EEG and peripheral 
physiological signals are separately input to the CNN for feature 
extraction and then input to the LSTM. As the third contribution, this 
paper evaluated that the proposed model could cope with the 
characteristics of individual differences in physiological signals 
through a reasonable volume of additional learning. This paper’s 
limitation is examining whether the fear level is dividable into further 
details. DEAP dataset is not specific to the fear emotions, and a four-
level classification was appropriate from the viewpoint of the number 
of samples per fear level. Fear-specific datasets with sufficient samples 
for each detailed level are indispensable for developing better Deep 
Learning fear estimation models. We should collect more and more 

TABLE 8 The number of test data, accuracy, and F1 score per test subject in Calibration 40% for four-level classification.

Subject Number of data Accuracy F1 score

0 1 2 3 Total

1 7 0 0 0 7 100.00 100.00

2 7 7 7 29 50 100.00 100.00

3 0 29 7 0 36 97.22 95.31

4 0 7 7 0 14 100.00 100.00

5 0 0 7 0 7 100.00 100.00

6 0 14 29 0 43 81.40 80.89

7 0 7 7 7 21 90.48 90.28

8 0 29 7 0 36 91.67 83.90

9 0 14 22 7 43 97.67 98.08

10 0 14 7 0 21 100.00 100.00

11 7 14 0 29 50 88.00 86.00

12 0 0 7 21 28 85.71 83.63

13 0 7 0 36 43 100.00 100.00

14 0 7 14 0 21 95.24 94.43

15 7 21 22 7 57 91.23 89.26

16 0 7 0 14 21 100.00 100.00

17 0 50 22 0 72 98.61 98.34

18 0 36 0 0 36 100.00 100.00

19 0 7 0 0 7 100.00 100.00

20 0 14 29 0 43 81.40 78.82

21 0 14 36 0 50 98.00 97.46

22 0 29 0 14 43 95.35 94.49

23 14 0 0 0 14 100.00 100.00

24 0 7 57 22 86 87.21 84.41

26 0 36 0 0 36 100.00 100.00

29 0 7 0 29 36 100.00 100.00

30 0 29 14 0 43 90.70 90.05

31 7 21 0 36 64 92.19 93.33

Total 49 427 301 251 1028

Average 95.07 94.24

Accuracy and F1 score are shown as a percentage.
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fear data from Electroencephalography and annotate fear levels for 
machine learning labels.
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FIGURE 6

The confusion matrix of the four evaluation methods. The vertical axis is the true label, and the horizontal axis is the prediction label. The diagonal 
values represent the recall for each class, and the sum of the row is 100%. The contents of the parentheses indicate the number of data.
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