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It has both scientific and practical benefits to substantiate the theoretical

prediction that personality (Big Five) traits systematically modulate gaze behavior

in various real-world (working) situations. Nevertheless, previous methods that

required controlled situations and large numbers of participants failed to

incorporate real-world personalitymodulation analysis. One cause of this research

gap is the mixed e�ects of individual attributes (e.g., the accumulated attributes of

age, gender, and degree of measurement noise) and personality traits in gaze data.

Previous studies may have used larger sample sizes to average out the possible

concentration of specific individual attributes in some personality traits, and may

have imposed control situations to prevent unexpected interactions between

these possibly biased individual attributes and complex, realistic situations.

Therefore, we generated and analyzed real-world gaze behavior where the e�ects

of personality traits are separated out from individual attributes. In Experiment

1, we successfully provided a methodology for generating such sensor data on

head and eye movements for a small sample of participants who performed

realistic nonsocial (data-entry) and social (conversation) work tasks (i.e., the

first contribution). In Experiment 2, we evaluated the e�ectiveness of generated

gaze behavior for real-world personality modulation analysis. We successfully

showed how openness systematically modulates the autocorrelation coe�cients

of sensor data, reflecting the period of head and eyemovements in data-entry and

conversation tasks (i.e., the second contribution). We found di�erent openness

modulations in the autocorrelation coe�cients from the generated sensor data

of the two tasks. These modulations could not be detected using real sensor data

because of the contamination of individual attributes. In conclusion, our method

is a potentially powerful tool for understanding theoretically expected, systematic

situation-specific personality modulation of real-world gaze behavior.
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personality traits, Big Five, gaze behavior, eye and head movements, generative AI,
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1 Introduction

The rationale for this study is the importance of examining how

personality traits alter behaviors in real-life situations. Personality

traits, including one of the most common sets of traits, the “Big

Five,” refer to distinctive and relatively stable characteristics of a

person, such as patterns of thoughts, feelings, and behaviors (i.e.,

behavioral patterns) (Allport and Odbert, 1936; McCrae and Costa,

1987, 2008; Goldberg, 1990). The Big Five describes an individual’s

personality in five traits: openness, conscientiousness, extraversion,

agreeableness, and neuroticism. Recent interactionism emphasizes

that these traits systematically modulate behavioral patterns

according to different situations (Fleeson, 2004, 2007; Funder,

2006; Baumert et al., 2017; Schmitt and Blum, 2020), which is

the theoretical ground of this study. For example, previous studies

have shown that extraversion contributes to improved teamwork,

while openness promotes broader skill acquisition (Barrick et al.,

2001; Wilmot et al., 2019; Laible et al., 2020). The analysis of real-

world personality modulation is important because, based on these

theories and findings, it may enable the assignment of situations or

tasks in a manner that fits individuals’ personality traits.

In particular, one promising topic is the analysis of

real-world personality modulation of gaze behavior (cf.

Kaspar and König, 2012; Kröger et al., 2020). As gaze behavior

functions as the fundamental input to cognitive processing

(Yarbus, 1967; Just and Carpenter, 1976; Land et al., 1999;

Henderson, 2003; Orquin and Loose, 2013), this analysis has

revealed how different personalities input visual information

for cognitive processing in different ways (Isaacowitz, 2005;

Rauthmann et al., 2012; Risko et al., 2012; Lea et al., 2018;

Rubo et al., 2023). In line with the interactionist theory,

such personality modulations may facilitate the situational

behaviors that individuals with certain personalities perform

well (e.g., higher openness indicating broader skill acquisition).

Therefore, real-world personality modulation analysis of gaze

behavior may provide an understanding of the functions of

personalities in cognitive processing as well as suggestions

for designing situations (e.g., skill training tasks) that suit

different personalities.

Previous studies have shown that individuals with higher

curiosity, a component of openness, tend to move their gaze

with a more liberal basis in scene viewing (Risko et al., 2012).

Individuals with higher openness also tend to make longer

fixations on abstract animations, reflecting deeper interpretations

(Rauthmann et al., 2012). Furthermore, openness has been shown

to correlate positively with a stronger preference for face image

(Rubo et al., 2023). However, previous methodologies on gaze

behaviors have had the shortcomings of controlled experimental

situations and large numbers of participants: These methods

controlled the situation by presenting fixed or meaningless images

at a fixed location (i.e., situation control) to a large number of

participants (50-250) (Kröger et al., 2020). Since the ideal real-

world personality modulation analysis uses realistic situations with

only a small number of participants, we do not know whether

theoretically expected situation-specific personality modulations

are empirically observed in real-world situations. This is the

research gap that is addressed by the current study.

The need for situation control and many participants in

previous studies may be attributable to sparse and biased gaze

behavior data (Figure 1A). As gaze behavior consists of a repetitive

pattern between saccades (i.e., rapid head and eye movements) and

fixations (i.e., few/slight movements) (Just and Carpenter, 1976;

Bulling et al., 2010; Sağlam et al., 2011), the mean periods of

the degree of these movements may reflect the saccade frequency

(the mean duration of fixations). If the head and eye movements

occur with higher frequency as openness increases (Risko et al.,

2012), then higher openness as the target personality trait may lead

to a shorter periodicity, i.e., the time interval (lag) at which the

autocorrelation coefficient peaks, across individuals. In contrast,

individual attributes, such as demographic attributes and the state

of the measurement device for each participant, may change the

entire autocorrelation pattern of each individual discontinuously

(cf. Vinciarelli and Mohammadi, 2014; Junior et al., 2019;

Phan and Rauthmann, 2021). In that case, the autocorrelation

matrix of target personality trait degrees and individuals (i.e.,

individual attributes uniquely accumulated in individuals) should

be sparse and could be biased, making target personality-related

differences undetectable. Previous studies may have used larger

sample sizes to average out the sparsity-related bias, such as the

concentration of specific individual attributes in some personality

traits, and may have controlled the experimental scenarios to

prevent unexpected interactions between these possibly biased

individual attributes and complex, realistic situations.

To fill the research gap, an effective procedure would generate

gaze behavior data interpolated from the minimum to the

maximum degree of the target personality trait for all individuals

(Figure 1B). With such an interpolated dataset, we could, for

example, compare differences in the mean periods of the head and

eye movements attributable to degrees of the target personality

trait (e.g., openness), while excluding the possibility of biased

differences in the entire autocorrelation patterns due to individuals.

Accordingly, we could extract target personality-related differences

even with a few participants in realistic situations. This may be

understood by comparing it to building a machine learning model

to classify wolves, which often appear in snowy landscapes, and

huskies, which often appear in sunny landscapes, in photographs

(Ribeiro et al., 2016). To train a model that extracts the feature

differences between the animals, instead of the landscapes, we may

manually control the numbers of snowy and sunny landscapes for

wolves and huskies, or synthesize the wolves and huskies in all the

snowy and sunny landscapes, before training (Zhang et al., 2018).

The “synthesis” or generation, is helpful in our case because the

“landscapes,” or individual attributes, are not easily manipulated.

The first contribution of the current study is to provide

a methodology for generating interpolated gaze behavior.

Experiment 1 constructed and evaluated semi-supervised

Information Maximizing Generative Adversarial Networks (ss-

InfoGAN) (Goodfellow et al., 2014; Chen et al., 2016; Spurr et al.,

2017; Lin et al., 2020) (Figure 2). Our ss-InfoGAN consists of a

generator, which generates gaze behavior from latent codes of the

Big Five (i.e., labels of personality traits) and person-IDs (i.e., labels

of individuals), and a discriminator, which discriminates between

generated and real gaze behavior. Whereas the discriminator

learns to correctly identify whether input gaze behavior is “real”

Frontiers in Psychology 02 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1144048
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Yamashita et al. 10.3389/fpsyg.2023.1144048

A B

FIGURE 1

(A) Sparse and biased gaze behavior data and (B) Interpolated gaze behavior data. The upper two panels of (A, B) represent the autocorrelation matrix

of the gaze behaviors. The vertical axis represents individuals (individual attributes), and the horizontal axis represents degrees of a target personality

trait, as reflected by changes in color. The lower two panels represent the averaging analyses of the gaze behaviors above per degree of that

personality trait.

or “generated,” the generator learns to output gaze behavior

that deceives the discriminator to make judgments of “real”

(Goodfellow et al., 2014). This adversarial training enables the

generator to generate gaze behavior similar to real data. Further,

the discriminator outputs estimates of the real Big Five degree

labels (ĉBF) and estimates of the real person-ID labels (ĉP) from real

gaze behavior; these estimates are trained to be close to the real Big

Five degree labels (cBF) and the real person-ID labels (cP). We also

trained the generator so that the continuous and categorical latent

codes (c′BF and c′P), which are the inputs to generate gaze behavior,

could be correctly estimated (ĉ′BF and ĉ′P) in the output path of the

estimates of the real Big Five degrees (ĉBF) and the real person-ID

labels (ĉP) in the discriminator. As a result, we expected to generate

gaze behavior while virtually changing the Big Five degrees (i.e.,

the virtual version of the Big Five degrees; c′BF) and the individuals

(i.e., the virtual versions of the person-ID; c′P), resulting in the

interpolated gaze behavior (Chen et al., 2016; Spurr et al., 2017).

The second contribution of the current study is to evaluate

the effectiveness of interpolated gaze behavior for real-world

personality modulation analysis of a small number of participants

in realistic situations. In line with the interactionist theory,

Experiment 2 examined whether the expected situation-dependent

personality modulations would be more clearly observed in the

interpolated gaze behavior than in the real gaze behavior. We

analyzed the autocorrelation coefficient of head and eyemovements

as an example of the feature that could be tested for interpretation

consistent with previous studies, cf. openness-related differences in

the saccade frequency (the fixation duration) (Rauthmann et al.,

2012; Risko et al., 2012).

The remainder of this paper is organized as follows. Section 2

presents Experiment 1, which provides the method for generating

interpolated gaze behavior and the results of its evaluation

(i.e., the first contribution of the present study). Section 3

describes Experiment 2, which evaluates the effectiveness of

interpolated gaze behavior in real-world personality modulation

analysis (the second contribution). Section 4 presents the

discussion and conclusions. Note that this paper is a revised

version of Chapter 4 of the first author’s doctoral dissertation

(Yamashita, 2023).

2 Experiment 1

To address the research gap, Experiment 1 first provides a

methodology for generating interpolated gaze behavior (the first

contribution). For this purpose, we first collected gaze behavior in

a realistic office-work setting, which was obtained from relatively

small samples of 10-20 people. In contrast to previous studies

using controlled experiments that required 50-250 participants,

our participants performed realistic nonsocial (i.e., data entry) and

social (i.e., conversation) tasks (Dotti et al., 2018) in which they

were expected to exhibit different gaze behavior depending on

their personality traits (Isaacowitz, 2005; Rauthmann et al., 2012;

Risko et al., 2012; Lea et al., 2018; Rubo et al., 2023). The number
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FIGURE 2

Overview of our ss-InfoGAN. Squares represent the data (behavior data or labels), arrows represent the data flow, and lines connecting the two data

represent pieces of estimation training that bring the two label values closer together.

of participants was small, falling within the range of a typical eye

movement study (Winkler and Subramanian, 2013).

We measured the Big Five traits of participants using a

Japanese sentence-based self-questionnaire, the Trait Descriptors

Personality Inventory (TDPI) (Iwai et al., 2019). We also measured

time series data of head and eye movements from a commercial

wearable device called JINS MEME, which has head-mounted

motion sensors (i.e., accelerometers and gyrometers) and eye

movement sensors (i.e., electrooculography) (Ishimaru et al., 2014).

With this dataset, we then constructed and evaluated ss-

InfoGAN (Chen et al., 2016; Spurr et al., 2017) to generate

interpolated gaze behavior (sensor data). Given the definitions of

interpolated sensor data, we conducted three tests—real data test,

generated data test, and real and generated data test—to evaluate

whether generated feature changes that depend on the virtual

target personality trait (c′BF) within each participant could mimic

real feature changes acquired from real participants with different

degrees of that trait (cBF) (cf. Figures 1, 2) (Salimans et al., 2016;

Spurr et al., 2017). Since analysis could not proceed without Big

Five modulation of the collected sensor data, the real data test first

examined whether there was a modulation of features by the target

personality trait (cBF) in the real sensor data. We did not have a

strong hypothesis about modulation by the real Big Five because

few previous studies used realistic tasks. Nevertheless, openness,

in particular, may modulate sensor data because openness (or

curiosity) has been reported to significantly affect gaze behavior

in multiple laboratory-controlled studies (Rauthmann et al., 2012;

Risko et al., 2012; Rubo et al., 2023). The generated data test

then examined whether there was modulation of features by

the virtual target personality trait (c′BF) in the generated sensor

data. The sensor data generated while changing the virtual target

personality trait should have specific and detectable feature changes

(Spurr et al., 2017). Finally, the real and generated data test

examined whether the above two modulations shared similarities.

The features of real sensor data modulated by the real target

personality trait (cBF) should be similar to those of the generated

sensor data modulated by the virtual target personality trait (c′BF).

In these three tests, we calculated Pearson’s correlation

coefficient r, which is most commonly used as an accuracy

indicator in detecting relative, not absolute, personality modulation

of behaviors (Chang and Lin, 2011; Phan and Rauthmann, 2021).

A ceiling of around r ≈ 0.30-0.50 for correlations between

estimated and measured personality is typical in this field

(Phan and Rauthmann, 2021). Therefore, we expected to obtain

positive correlations within this range in these tests. We performed

statistical hypothesis testing on correlations in the real data but not

on correlations in the generated data. Since the sample size of the

generated data is arbitrarily large, it is not appropriate to apply a

statistical test, but it is appropriate to report descriptive statistics to

show the effect size (Lantz, 2013).

2.1 Materials and methods

2.1.1 Data collection
2.1.1.1 Participants

Participants in the experiment were university students with

normal or corrected-to-normal vision (N = 20, 10 women;

age range: 19-25 years [mean 21.9 years]). We obtained valid

sensor data from 14 participants, because battery failure in the

sensor device prevented proper data transfer for 6 participants

(N = 14, 6 women, mean 21.8 years).1 All received payment

1 Because of time constraints, we collected valid data for only 13

participants in the baseline task.
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for their participation. The studies involving human participants

were reviewed and approved by the Ethics Committee, Graduate

School of Informatics, Kyoto University (KUIS-EAR-2019-004).

The patients/participants provided their written informed consent

to participate in this study. Note that we used data from our

previous paper (Yamashita et al., 2022). See also the author’s note.

2.1.1.2 Apparatus and stimuli

We collected Big Five and sensor data on the head and

eye movements of the participants. We measured the Big Five

by using TDPI (Iwai et al., 2019). The participants rated their

degree of fit to 20 questions on a seven-point scale, with four

questions for each trait (Iwai et al., 2019). We used the JINS

MEME wearable device (Ishimaru et al., 2014), which is similar

in size to ordinary glasses, to obtain 50 Hz sensor data on head

movements (accelerometers: ACC X, Y, and Z; gyrometers: GYRO

X, Y, and Z) and eyemovements (absolute potential of left electrode:

EOG L; vertical potential difference: EOG V; horizontal potential

difference: EOG H). Since our goal was to analyze participants

in realistic situations, we did not impose strong controls on the

placement of the stimuli or the posture of the participants. In the

data-entry task, participants were seated approximately 60 cm from

a 59× 33 cm monitor.

2.1.1.3 Procedure and design

Each participant performed four tasks, data entry, conversation,

baseline, and proofreading, and performance on the former three

was analyzed for this study. Each task took about ten minutes.

The total procedure lasted approximately 60 min, including

task preparation. The fourth task required participants to read

documents using controlled stimuli, and these data were not used

in the current study. All tasks were performed in a random order,

except that the conversation task was fixed at the end because the

topic of the conversation task was how participants felt about the

other tasks.

In the nonsocial (data entry) task, participants were instructed

to post data from paper accounting documents to files in a

spreadsheet program on a PC. Specifically, they were instructed to

enter as many text elements as possible, such as a company’s name,

income, and spending from different paper forms into appropriate

positions in the table files. In the social (conversation) task, the

participants were instructed to converse with an experimenter

about their impressions of the experiment. No participants

knew the experimenter personally, and the participants’ goal was

essentially to pass the time with safe small talk until the set time

had elapsed. This conversation task was intended to be similar to

an interaction with others in the workplace in which the interacting

people are not so close to each other.

In the baseline task, the participants were instructed to freely

pass the time alone in the laboratory during a break. We assumed

that there would be no Big Five modulation of these sensor data

because of the lack of a common situation (see Section 1). Using

this task, we confirmed that the results of the social and nonsocial

tasks were not derived from a situation in which the Big Five could

be estimated by any data input.

2.1.2 Data generation
We constructed an ss-InfoGAN to generate interpolated

data by disentangling the relationships among the sensor data,

the personality traits (Big-Five labels, cBF(1-5) and c′BF(1-5)), the

individual attributes (person-ID labels, cP(1-14) and c′P(1-14)), and

the elapsed time on a task (time labels, cT and c′T) (Figures 2, 3).

Through this method, we could estimate the degrees of the real Big

Five (cBF(1-5)) from the real sensor data and also generate sensor

data while changing the degrees of the virtual Big Five (c′BF(1-5)).

The former function was used for validation of the model, while

the latter function was used for our main purpose. Note that the

time labels (cT and c′T) were added as a latent code only to provide

sufficient variation in the generated data. The codes on which our

implementation was based can be found on GitHub (Chen et al.,

2016; Lin et al., 2020).2 Wemodified these implementations, which

were originally used for image datasets, as described below.

2.1.2.1 Input (real data) preprocessing

The smoothed JINS MEME 50 Hz real sensor data from

head and eye movements were divided using a window of 512

points (10.24 seconds) that moved in increments of 128 points

(2.56 seconds). That is, we obtained 10.24-second pieces of 50

Hz sensor data in which eye movement events (e.g., saccades and

fixations) could be observed (Ishimaru et al., 2014, 2016, 2017).

Input data in arrays of 9 × 512 (for the sensor data modality and

time, respectively) were then standardized for each modality, each

participant, and each task to have a mean of 0 and a standard

deviation of 1.

We used the following three types of labels along with each

piece of sensor data. First, the real Big-Five labels (cBF(1-5))

consisted of standardized Big Five values, with a mean of 0 and a

standard deviation of 1 within each trait. Second, the real person-

ID labels (cP(1-14)) consisted of one-hot vectors of the number of

participants (14 in this study). Finally, the real time labels (cT)

indicated the elapsed time on a task; here, the start and end points of

a task were set to -1 and 1, respectively, and the values were meant

to increase evenly.

2.1.2.2 Model architecture

The generator consisted of one fully connected layer and four

deconvolution layers, as shown in Figure 3A. The input, which

consisted of arrays of 20 latent codes (5 for Big-Five: c′BF(1-5); 14 for

person-ID: c′P(1-14); and 1 for time: c′T) and arrays of 10 noise latent

variables (z1-10), was transformed into multi-dimensional (9×512)

generated sensor data. The generator used the ReLU activation

function (Radford et al., 2016) except for the output layer that used

the linear function. Batch normalization was used except for the

output layer (Radford et al., 2016).

Figure 3B shows the discriminator, which consisted of four

convolution layers followed by one or two fully connected layers.

The input data of the multi-dimensional (9×512) real or generated

sensor data were transformed into a one-dimensional output that

discriminated between real or generated data and 20 outputs that

were estimates by the three types of real labels (ĉBF(1-5), ĉP(1-14), and

ĉT) of the real sensor data input or estimates by the latent codes

2 https://github.com/Natsu6767/InfoGAN-PyTorch, https://github.com/

�xmlzn/InfoGAN-CR (accessed May 22, 2023).
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A

B

FIGURE 3

(A) Generator architecture and (B) discriminator architecture.

(ĉ′BF(1-5), ĉ
′

P(1-14), and ĉ′T) of the generated sensor data input. In the

convolution layers, reflection padding was used (Zhu et al., 2017).

LeakyReLU activation function (Maas et al., 2013; Xu et al., 2015)

was used except for the output layer, with multiplication by 0.2

when the input value range was less than zero (Radford et al., 2016).

The activation functions were sigmoid for discriminating between

generated and real data, linear for estimating the continuous latent

codes (ĉBF(1-5), ĉ
′

BF(1-5), ĉT, and ĉ′T), and softmax for estimating the

multi-categorical latent codes (ĉP(1-14) and ĉ′P(1-14)) (Chen et al.,

2016; Lin et al., 2020). Spectral normalization was used for all layers

except the output layer (Miyato et al., 2018).

2.1.2.3 Model training

Using data in a random order, we performed 200 epochs

of training with a mini-batch size of 256. We used Adam

(Kingma and Ba, 2014; Radford et al., 2016) with the “translation”

model construction technique (Zhao et al., 2020) to minimize

loss. Adam was used with α = 0.005,β1 = 0.5,β2 = 0.9 for

the discriminator and α = 0.001,β1 = 0.5,β2 = 0.9 for the

generator (Heusel et al., 2017). Binary cross-entropy loss was used

for discriminating between generated and real data, negative log-

likelihood loss was used for estimating the continuous latent codes

(ĉBF(1-5), ĉ
′

BF(1-5), ĉT, and ĉ′T), and cross-entropy loss was used for

estimating the multi-categorical latent codes (ĉP(1-14) and ĉ′P(1-14))

(Chen et al., 2016; Lin et al., 2020). To improve the generated data

quality, we incorporated a translation technique in which, for 50%

of the real and generated data, we divided the time series of sensor

data at random points and flipped one of them in the time direction

(Zhao et al., 2020). We minimized the term of the mean squared

difference in accuracy between the original and translated data

(Zhao et al., 2020). The detailed training procedure is as follows.

In each epoch, we optimized first the discriminator and then

the generator. To optimize the discriminator, we first generated

the sensor data by using the generator with latent codes of c′BF(1-5),

c′P(1-14), and c′T and noise latent variables z1-10 as the input. Latent

codes c′BF(1-5) (Big-Five) were sampled from a normal distribution

with a mean of 0 and a standard deviation of 1. The one-hot

vectors for latent codes c′P(1-14) (person-ID) were sampled randomly

with the probability of 1/14 for each unit to take the value 1.

Finally, the latent code c′T (time) and the noise latent variables z1-10
were sampled from a uniform distribution with a range of [−1, 1].

The generated sensor data were input to the discriminator, and

in the path for discriminating between generated and real data,

back-propagation was done so that the output approached 0 (i.e.,

“generated”). Next, the real data was input to the discriminator,

and back-propagation was done so that the output approached

1 (i.e., “real”). In the path for estimating the latent codes, back-

propagation was done so that the output (ĉBF(1-5), ĉP(1-14), and ĉT)

approached the degrees of the real Big-Five labels (cBF(1-5)), the

person-ID labels (cP(1-14)), and the time labels (cT).

In optimizing the generator, sensor data were generated with

the same generation process used in optimizing the discriminator.

In the path for discriminating between generated and real data,

back-propagation was done so that the output approached 1 (i.e.,

“real”). In the path for estimating the latent codes, the error

was back-propagated so that the output (ĉ′BF(1-5), ĉ
′

P(1-14), and ĉ′T)

approached latent codes (c′BF(1-5), c
′

P(1-14), and c′T), which were the

source of the generated sensor data in the generator. In addition to

the generator, training was performed on the two fully connected

layers in the discriminator that were relevant for output of the latent

codes (ĉ′BF(1-5), ĉ
′

P(1-14), and ĉ′T).

Figure 4 shows the errors in the training processes. We found

that, in the later epochs, the probabilities of “real” judgment for
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FIGURE 4

Training errors (solid line: data entry; dashed line: conversation; dotted line: baseline).

the real data (60-70%) and for the generated data (30-40%) were

stable, which suggests that adversarial training was established.

We also generally found significant decreases in training errors

for latent codes ĉ′BF(1-5) and ĉ′P(1-14) and the Big-Five and person-

ID labels (ĉBF(1-5) and ĉP(1-14)); the only exception was the latent

code ĉ′T and the time label (ĉT), whose role was only to increase

the variation in the generated data. Accordingly, the model

construction progressed appropriately.

2.2 Results

We designed and conducted three tests: real data test, generated

data test, and real and generated data test (cf. the tested data and

labels in Figure 3) (Salimans et al., 2016; Spurr et al., 2017). First,

we expected modulation of the real sensor data features by the

real Big Five labels (cBF(1-5)), especially by openness (cBF(1)). To

examine this, we trained the whole ss-InfoGAN on the real sensor

data and a limited number of real labels that excluded the real Big-

Five labels of one participant, we input the real sensor data of the

excluded participant to the trained discriminator, and we compared

the actual values of cBF(1-5) and the output estimated values of

ĉBF(1-5) for that excluded participant. This process was repeated

14 times until all participants had been excluded (i.e., leave-one-

out cross-validation: LOOCV) (Yarkoni and Westfall, 2017). We

then examined whether there was a significant positive, between-

individual correlation coefficient r between the actual (cBF(1-5))

and estimated (ĉBF(1-5)) degrees of the real Big Five labels. If

there was a modulation of real sensor data features by the target

personality trait (cBF(1-5)), the ss-InfoGAN should extract those

relationships, and therefore we should see a significant positive

correlation between the actual (cBF(1-5)) and estimated (ĉBF(1-5))

degrees of the real Big Five labels in the real data test.

For the data-entry and conversation tasks, the actual (cBF(1))

and estimated (ĉBF(1)) degrees of real openness showed a significant

between-individual positive correlation of about r = 0.6 in the later

epochs of the real data test (Figure 5). On the other hand, for the

baseline task, the actual (cBF(1-5)) and estimated (ĉBF(1-5)) degrees

for all the Big Five labels showed no significant correlations (all

ps > 0.05). Scatterplots of the actual (cBF(1)) and estimated (ĉBF(1))

degrees of openness in the final epoch are shown in Figure 6. In the

subsequent analysis, only significant relationships with openness

are reported.

Second, we expected modulation of the generated sensor data

features by virtual openness (c′BF(1)). To examine this, we conducted

the generated data test. The training procedure was carried out

using the data of all participants. In light of our definition

of interpolated data (Figure 1B), we evaluated the sensor data

generated while keeping person-ID (c′P(1-14)) constant and changing

the target personality trait of openness (c′BF(1)). Sensor data was

thus generated by simulating 100 cases in which each participant

had randomly different degrees of virtual openness (c′BF(1)) (100 ×

14 cases). We calculated within-individual correlation coefficients

between the actual (c′BF(1)) and estimated (ĉ′BF(1)) degree of virtual
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FIGURE 5

Correlation coe�cients in data-entry, conversation, and baseline tasks in the real data test. The red background indicates the region of significant

positive correlation.

openness for each participant. If there was modulation of the

generated sensor data features by virtual openness (c′BF(1)), the

ss-InfoGAN should extract those relationships, and therefore we

should see a strong positive correlation between the actual (c′BF(1))

and estimated (ĉ′BF(1)) degrees of virtual openness in the generated

data test.

The actual (c′BF(1)) and estimated (ĉ′BF(1)) degrees of virtual

openness showed a strong within-individual positive correlation

of about r = 0.7-0.8 in the later epochs of the generated data

test (Figure 7). These results suggest that the generated sensor data

changed depending on virtual openness (c′BF(1)) even within each

individual. Scatterplots of the actual (c′BF(1)) and estimated (ĉ′BF(1))

degrees of virtual openness in the final epoch are shown in Figure 8

(data entry: mean r = 0.77 [SD = 0.05]; conversation: mean

r = 0.83 [SD = 0.04]). No statistical tests were performed because

it is not appropriate to conduct statistical tests on arbitrarily large

sample sizes (see Section 2, Paragraph 4).

Finally, changes in the generated sensor data that depend on

the degree of virtual openness (c′BF(1)) should mimic the real sensor

data differences obtained from participants with different degrees

of real openness (cBF(1)). To examine this, we conducted the real

and generated data test. We prepared an additional, untrained

model with the same architecture as the discriminator. We trained

this model only to estimate the degrees of real openness (cBF(1))

from the real sensor data on an individual basis using the same

optimization setting as the discriminator (except for the estimation

output). That is, we obtained a model that outputs the estimated

real openness (ĉBF(1)) using the actual real openness of the real
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FIGURE 6

Scatterplots for data-entry, conversation, and baseline tasks in the real data test. Small points represent openness values for each piece of sensor

data, and di�erent colors represent points of di�erent individuals. The variability of the measured values within the same individual was due to

random noise. Red points represent averaged openness values for each individual.

FIGURE 7

Mean correlation coe�cients for data-entry and conversation tasks in the generated data test. Error bars represent standard deviations (SD).

sensor data (cBF(1)). We then input the generated sensor data

(100 × 14 cases), which was unknown to this additional model.

In light of our definition of ideal interpolated data (Figure 1B),

we calculated within-individual correlations between the actual

(c′BF(1)) and estimated (ĉ′BF(1)) degrees of virtual openness for each

participant. If the modulation of generated sensor data features by

virtual openness (c′BF(1)) and the modulation of real sensor data

features by real openness (cBF(1)) share similarities, we should see a

strong positive correlation between the actual (ĉBF(1)) and estimated

(ĉ′BF(1)) degrees of virtual openness in the real and generated

data test.

The actual (c′BF(1)) and estimated (ĉ′BF(1)) degrees of virtual

openness showed a strong within-individual positive correlation

of about r = 0.5-0.6 in the later epochs of the real and generated

data test (Figure 9). Scatterplots of the actual (c′BF(1)) and estimated

(ĉ′BF(1)) degrees of virtual openness in the final epoch are shown in

Figure 10 (data entry: mean r = 0.61 [SD = 0.05]; conversation:

mean r = 0.54 [SD = 0.07]). Again, no statistical tests were

performed (see Section 2, Paragraph 4).

2.3 Discussion

To address the research gap, we conducted personality

modulation analysis using a few participants in realistic

situations. As the first contribution of the current study,

we proposed the method of generating interpolated gaze

behavior for this purpose. Overall, the results of the three

evaluation tests suggest that our ss-InfoGAN successfully

generated the sensor data for all participants while arbitrarily
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FIGURE 8

Fourteen scatterplots for data-entry and conversation tasks in the generated data test. Points represent openness values for each piece of sensor

data, and di�erent colors represent points of di�erent individuals.

changing the degree of openness but keeping other individual

attributes unchanged, or the interpolated sensor data (cf.

Figure 1B).

The real data test examined whether the real Big Five traits

modulated real gaze behavior. We confirmed that the discriminator

path trained to estimate real openness from real sensor data

of known participants could estimate openness of unknown

participants in data-entry and conversation tasks. These results

suggest that openness modulates gaze behavior in realistic data-

entry and conversation tasks. Furthermore, we observed no

correlation in the baseline task, with the same implementation

and measurement. This suggests that the correlations in the data-

entry and conversation tasks were not derived from errors in

measurement or implementation.

The generated data test examined whether virtual openness

modulated generated gaze behavior. We confirmed that the

discriminator path involving the estimation of real openness

could estimate virtual openness from generated sensor data

within each participant in data-entry and conversation tasks.

These results suggest that virtual openness modulates gaze

behavior in generated sensor data even while keeping individual

attributes fixed.
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FIGURE 9

Mean correlation coe�cients for data-entry and conversation tasks in the real and generated data test. Error bars represent SD.

The real and generated data test examined whether the

above two modulations share similarities. We confirmed that an

additional discriminator, trained only to estimate real openness

from real sensor data between individuals, could estimate virtual

openness from the generated sensor data within each participant.

These results suggest that openness modulations have similar

effects on gaze behavior with real and generated sensor data.

Most importantly, these results collectively suggest that we

successfully generated ideal interpolated data. We defined the

ideal dataset as that interpolated from the minimum to the

maximum degree of the target personality trait of openness for

all individuals (Figure 1B). Accordingly, we conducted three tests

in which the real data training was conducted on a between-

individual basis, while the generated data estimation was conducted

on a virtually within-individual basis. The discriminator-trained

relationships were between real openness per individual and real

sensor data per individual. In contrast, the discriminator-estimated

relationships were between the changes in virtual openness within

an individual and the changes in generated sensor data virtually

within an individual. Similarities of openness modulations between

real and generated sensor data in these tests suggest that the target

personality trait of openness might be arbitrarily changeable during

fixing of individual attributes in our ss-InfoGAN. Therefore, we

conclude that our ss-InfoGAN successfully generated interpolated

gaze behavior.

Typical examples of real and generated sensor data are shown

in Figures 11, 12. The figures indicate that the generated data

preserved important properties of the time series of the real

sensor data from head and eye movements. As accelerometers

are sensitive to gravity, ACC values seemed to monitor the head

orientation relative to gravity (head posture), as in previous

studies (Meyer et al., 2018). For the GYRO values, transient

increases/decreases were detected when rotations of the head

posture occurred, sometimes in association with eye movements

(Sağlam et al., 2011). As for the EOG values, only transient

increases/decreases, reflecting saccades (i.e., rapid eye movements),

were detected, as in previous studies (Bulling et al., 2010). The

relationships across modalities were also preserved. For example,

the patterns for ACC X had a shape that was roughly inverted in

terms of the magnitudes of sensor values from ACC Y, which were

similar to those from ACC Z. These relationships are thought to

depend on the spatial arrangement of the sensors. We confirmed

that a lack of variations in the generated sensor data caused by the

failure of GAN training (i.e., “mode collapse”) (Bau et al., 2019) did

not occur.

3 Experiment 2

As the second contribution of the current study, Experiment

2 evaluates the effectiveness of interpolated gaze behavior in

real-world personality modulation analysis of a small number of

participants in realistic situations. In line with the interactionist

theory, we expected to find situation-dependent personality

modulations of gaze behavior. Recent interactionists have

suggested that personality traits modulate behaviors differently but

systematically according to real-world situations (Fleeson, 2004,

2007; Funder, 2006; Baumert et al., 2017; Schmitt and Blum, 2020).

Furthermore, personality traits may also modulate gaze behavior

differently in realistic situations (Kaspar and König, 2012).

However, it was not previously possible to analyze personality

modulation of gaze behavior in realistic situations (Kröger et al.,

2020).

In this evaluation, we expected that feature differences in the

sensor data would be more clearly observed in the interpolated

gaze behavior than in the real gaze behavior. We suspected that

personality modulation analysis of real sensor data would be

affected by individual attributes, as the differences due to the degree

of a target personality trait (e.g., openness) may include those

due to individual attributes (Figure 1A). In contrast, interpolated

(generated) sensor data may enable the comparison of differences

due to the degree of a target personality trait (e.g., openness) after

excluding the possibility of bias in individual attributes (Figure 1B).

Therefore, we expected a clearer feature change according to the

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2023.1144048
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Yamashita et al. 10.3389/fpsyg.2023.1144048

FIGURE 10

Fourteen scatterplots for data-entry and conversation tasks in the real and generated data test. Points represent openness values for each piece of

sensor data, and di�erent colors represent points of di�erent individuals.

degree of openness in the generated (interpolated) sensor data than

in the real (sparse and biased) sensor data.

From the various features of head and eye movements

(Liversedge and Findlay, 2000; Bulling et al., 2010; Fang et al.,

2015; Steil and Bulling, 2015), we selected a very basic feature that

could be tested for interpretation consistent with previous studies.

Specifically, we calculated peaks of the autocorrelation coefficient

of these movements, which is the correlation between the value

at one point in time-series data and the value at a different point.

The peaks reflect the period of the time-series data and might

then include, for example, the saccade frequency (mean duration

of fixations) in sensor data. As noted in the Introduction, one

previous study has suggested that individuals with higher curiosity,

a component of openness, tend to make frequent saccades in scene

viewing (Risko et al., 2012), while another has reported that those

with higher openness tend to make infrequent saccades to abstract

animations (Rauthmann et al., 2012). We did not have strong

hypotheses on how openness modulations of saccade frequency

would differ between data-entry and conversation tasks because of

the lack of analyses of gaze behavior in realistic tasks. Nevertheless,

we at least expected that interpretations tied to these previous

reports would be possible.
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FIGURE 11

Example of real sensor data.

FIGURE 12

Example of generated sensor data.

3.1 Materials and methods

3.1.1 Data collection
We used the data from data-entry and conversation tasks

collected in Experiment 1.

3.1.2 Data generation
We used the ss-InfoGAN trained in Experiment 1. We

generated sensor data for all 14 participants (virtual person-ID;

c′P(1-14)) over the randomly sampled elapsed time (virtual time; c′T)

while arbitrarily changing the degree of openness (virtual openness;
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c′BF(1)). We repeatedly generated 100 sets of sensor data for each

degree of virtual openness (c′BF(1)), which was changed from an

approximately minimum value of -2 to a maximum value of 2 in

increments of 0.4. The latent codes corresponding to the other Big

Five traits (c′BF(2-5)) were fixed at 0. The latent codes corresponding

to the person-ID and time (c′P(1-14) and c′T) were fixed but sampled

in the same way as during training to eliminate differences in

individual attributes.

3.2 Results

The average autocorrelation coefficients were calculated for

each degree of openness from the time series of the overall

amplitudes of head and eye movements. We first smoothed

the generated sensor data, as we did with the real sensor data

in Experiment 1. Only the accelerometer indicates the absolute

direction of the head, while the gyrometer and EOG produce time-

series data reflecting the relative vertical and horizontal motion of

the head or eye. The accelerometer data was then differentiated and

transformed to the relative motion of the head direction. Since all

of these relative motions were standardized to an average value of

0, their absolute values could be taken to obtain time-series data

representing the degree to which motion occurred, regardless of

the direction of motion (up, down, left, or right). Accordingly,

the overall amplitudes were obtained by adding the above absolute

value of the time series of six sensor data components (ACC X, Y;

GYRO X, Y; EOG H, V) on a vertical plane relative to the gazing

object in front of the head/eye.

For the data-entry task, as shown in Figure 13, the

autocorrelation coefficients for each openness c′BF(1) were

highly disparate in the real (sparse and biased) data, with only a

slight downward trend in the autocorrelation coefficient as lag

increased. In contrast, the coefficient value peaked in the lag range

of 80-100 in the generated (interpolated) data. Also, the lag with

these peaks decreased with increasing openness.

For the conversation task, as shown in Figure 14, values that

varied slightly with openness were barely visible between lags 20-80

in the real data. In contrast, as openness increased, the peak of

the coefficient in the lag range of 20-40 shifted to around 80 (or

vanished) in the generated data. Note that no statistical tests were

performed due to the arbitrarily large sample size of generated

sensor data (see Section 2, Paragraph 4).

3.3 Discussion

As the second contribution of the current study, Experiment

2 evaluated interpolated gaze behavior in terms of real-

world personality modulation analysis. Previous studies on

this topic controlled experimental situations and used large

numbers of participants (Isaacowitz, 2005; Rauthmann et al., 2012;

Risko et al., 2012; Lea et al., 2018; Kröger et al., 2020;

Rubo et al., 2023), suggesting the difficulty in detecting real-

world personality modulations (Figure 1A) (Kröger et al., 2020).

Indeed, in the current study, we failed to find feature differences

(autocorrelation differences) associated with openness in

the real (sparse and biased) sensor data of 10-20 people in

realistic data-entry versus conversation tasks. Recognizing these

difficulties, we alternatively analyzed interpolated gaze behavior

(Figure 1B) (Vinciarelli and Mohammadi, 2014; Junior et al., 2019;

Phan and Rauthmann, 2021). Consequently, we did find task

differences associated with openness in the generated (interpolated)

sensor data. It is crucial that Experiment 1 already showed that

these feature differences in the sensor data generated by changing

the degree of virtual openness reflect differences in the real sensor

data due to the degree of real openness. That is, we found the

interpolated sensor data to be effective in personality modulation

analysis even with a small number of participants in realistic

situations.

These results suggest that openness may modulate real-

world gaze behavior situation-dependently. The lag with the peak

coefficient was reduced with increasing openness for the data-entry

task. The coefficients suggest that immediately after a head or eye

movement (e.g., saccade) occurs once, subsequent movements are

unlikely to occur again (e.g., fixation) (cf. Just and Carpenter, 1976;

Bulling et al., 2010; Sağlam et al., 2011), resulting in a negative

coefficient in the lag range of 60-80. After this period, the possibility

of eye movements occurring again might arise, with the average

period of these eye movements appearing as the peak of the

autocorrelation coefficient in the lag range of 80-100. Accordingly,

the current results suggest that the saccade frequency (mean

fixation duration) increased (decreased) with increasing openness

in the data-entry task. These findings may be consistent with a

previous study using a scene-viewing task (Risko et al., 2012).

Such a clear repetitive saccade-fixation pattern did not occur

for the conversation task. Nevertheless, the coefficient peak at

the shorter lag shifted to a longer lag or vanished as openness

increased. Accordingly, the saccade frequency (mean fixation

duration) may have decreased (increased) with increasing openness

in the conversation task. They may be consistent with a study using
an abstract animation (Rauthmann et al., 2012).

Given these, we theoretically propose that openness
may modulate gaze behavior depending on the type of

cognitive processing required to perform the task. Previous

studies have shown that eye movements change depending

on the external or internal attention (Smilek et al., 2010;
Annerer-Walcher et al., 2021). Also, significant relationships have

been suggested between openness and these types of attention
(Marty-Dugas and Smilek, 2019). Accordingly, when the main task

is processing external visual stimuli, such as scene viewing in a

previous study (Risko et al., 2012) and data entry in the current

study, higher openness may lead to a more liberal switching of
the gazing location with frequent spatial and temporal frequency.

In contrast, when the main task is thinking internally, such as

watching an abstract animation (i.e., interpreting meaningless

visual stimulus) in a previous study (Rauthmann et al., 2012) and

conversation (i.e., gathering auditory information and making

responses) in the current study, higher openness may increase

the fixation duration at each fixation point. The longer duration

may reflect the deepened cognitive processing of the gazing

object (Just and Carpenter, 1976; Siegenthaler et al., 2014). Taken

together, the consideration that openness modulates the shortening

or lengthening of fixation time, depending on external and internal

processing, is a hypothesis worth considering. Future studies are
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FIGURE 13

Autocorrelation coe�cients for real (sparse and biased) and generated (interpolated) sensor data for data-entry task. Low-openness data are shown

in purple and high-openness data in yellow. The value of one lag unit corresponds to one unit of time in the 50 Hz sensor data.

FIGURE 14

Autocorrelation coe�cients for real (sparse and biased) and generated (interpolated) sensor data for conversation task. Low-openness data are

shown in purple and high-openness data in yellow. The value of one lag unit corresponds to one unit of time in the 50 Hz sensor data.

warranted to examine this hypothesis in a more comprehensive

range of situations. Extensive future studies have the potential

to reveal the complete picture of situation-specific personality

modulations of gaze behavior in real-world activities.

4 General discussion

Despite the importance of real-world personality modulation

of gaze behavior, previous methods of investigation have required

unrealistic situation control and large numbers of participants

(cf. the research gap). We assumed that these shortcomings may

have been attributable to the sparse and biased nature of gaze

behavior, and we addressed the research gap by investigating

interpolated gaze behavior. The first contribution of this study

was to provide a methodology for generating interpolated sensor

data (Experiment 1). The second contribution was to evaluate the

effectiveness of the interpolated (generated) data in analyses of a

small number of participants in realistic situations (Experiment 2).

Experiment 1 suggests that interpolated gaze behavior could

be the first step in real-world personality modulation analysis.

As previously noted, previous methods in this field have

required controlled situations and a large number (50-250) of

participants, which prevented real-world analysis (Isaacowitz, 2005;

Rauthmann et al., 2012; Risko et al., 2012; Lea et al., 2018;

Rubo et al., 2023). Other studies in related fields that have used

estimation rather than analytical techniques have also produced

comparable effects in similar settings (Hoppe et al., 2015, 2018;

Cuculo et al., 2018; Berkovsky et al., 2019; Millecamp et al., 2021;

Sarsam et al., 2023). Several studies estimated with high accuracy

the degrees of the Big Five traits in well-controlled situations

(Cuculo et al., 2018; Berkovsky et al., 2019; Sarsam et al., 2023). The

remaining studies estimated them from gaze behavior in realistic

tasks only with low accuracy (i.e., accuracy significantly higher than

chance level) (Hoppe et al., 2015, 2018; Millecamp et al., 2021).

In light of these previous studies, we conclude that the significant

openness modulation represented in sensor data generated from

our 14 participants in realistic situations provided an effective
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methodology for personality modulation analysis, which has not

been previously established.

The interpolated gaze behavior helps elucidate how gaze

behavior explicitly differs depending on personality in real working

situations, in contrast to studies that only implicitly estimated

personality traits from gaze behavior (Hoppe et al., 2015, 2018;

Cuculo et al., 2018; Berkovsky et al., 2019; Millecamp et al., 2021).

Three estimation studies used a “black-box” model, which

implicitly detected a relationship between the input (gaze

behavior) and the output (personality traits) (Hoppe et al., 2015;

Berkovsky et al., 2019; Millecamp et al., 2021). Although this model

demonstrated that personality traits can be estimated from gaze

behavior, it did not explicitly indicate what kind of relationship

exists. Additional studies showed which features in the input (gaze

behavior) contribute to estimating the output (personality traits),

but they did not define relationships between the two for further

analysis (Cuculo et al., 2018; Hoppe et al., 2018). In contrast to these

studies, our approach not only implicitly detected the relationship

between the input (gaze behavior) and the output (openness)

but also represented it in the interpolated sensor data. Since the

generated sensor data mimicked the raw, real sensor data, we were

able to explicitly analyze the represented personality modulation

using the generated sensor data.

Experiment 2 suggests that the interpolated gaze behavior can

reveal how openness systematically modulates cognitive inputs

depending on realistic working situations. Recent interactionist

studies have shown that the Big Five traits do not change

over the long term, but the extent to which personality traits

modulate behavior varies across situations (Fleeson, 2004, 2007;

Funder, 2006; Baumert et al., 2017; Schmitt and Blum, 2020).

In previous studies, researchers analyzed situation-dependent

personality modulation behavior using “experience sampling,”

in which participants’ behavior is collected through subjective

responses to questions asked every several hours. Thus, the

questions are relatively simple, and it is not easy to examine

what kind of cognitive processing is responsible for behavior

modulation. In contrast, personality modulation analysis of gaze

behavior in realistic situations reveals how personality traits

modulate gaze behavior associated with overt visual spatial

attention in cognitive processing (Kaspar and König, 2012).

The current results suggest that openness situation-dependently

modulates cognitive inputs, which has not been previously

demonstrated.

The concept of interpolated gaze behavior may ultimately

resolve the difficulty in analyzing systematic, situation-

dependent personality modulation of real-world cognitive

processing. Personality traits, especially the Big Five, are

psychological constructs that have been identified to explain

individual differences based on subjective verbal reports of

behavioral tendencies in everyday life (Allport and Odbert, 1936;

McCrae and Costa, 1987, 2008; Goldberg, 1990). In contrast,

overt visual spatial attention (i.e., gaze behavior) has often been

investigated in well-controlled cognitive psychological experiments

in which individual differences are to some degree eliminated

(Hedge et al., 2018). Personality modulation analysis of gaze

behavior in realistic, everyday situations may help to bridge this

gap. Interpolative generation of other areas of behavior data,

including gaze analysis in a broader range of situations, should

be helpful in advancing the theoretical understanding of the

interactionist view of personality traits and practical applications,

such as the realization of personalized assignments of work-related

tasks (real-life situations).

4.1 Limitations and future directions

The primary limitation of the current method is its inability

to capture the relationships between the target personality trait

and the sensor data features beyond the structure of the real

dataset’s latent codes (personality traits and individual attributes).

Our ss-InfoGAN works only when a target personality trait

is continuously varied, and individual attributes are varied

discontinuously and orthogonally to that trait. If the individual

attributes are continuously aligned to the degree of the target

personality trait in the real sensor data, our ss-InfoGAN inevitably

reproduces such biases on the generated sensor data. For example,

suppose that the degree of openness for each participant is

strongly positively correlated with age. In that case, it is inevitable

that differences in gaze behavior caused by aging would be

reproduced in the generated sensor data as reflecting openness

modulation. This should be kept in mind when conducting

personality modulation analysis using behavior data generated

by interpolation.

Several procedural limitations can be pointed out. Among these

is the accuracy of sensor devices. We used a wearable sensor

device called JINS MEME, which is similar in size to ordinary

glasses, to ensure that the participants’ subjective sensation of the

experimental situation was not significantly different from real-life

situations. JINSMEME has been reported tomeasure gaze behavior

with sufficient precision for our current purpose, capturing very

basic eye movement events such as saccades during daily activities

(Ishimaru et al., 2014, 2016, 2017). Nevertheless, accurate detection

of fine features of eye movements, such as those that appear

only at temporal resolutions below 20 ms (1000 ms/50 Hz) (e.g.,

microsaccades) may be difficult with such an apparatus (Laubrock

et al., 2005; Jazbec et al., 2006). Future studies are warranted

to examine the effectiveness of our ss-InfoGAN with finer eye

movement data.

We can not completely rule out the possibility that temporal

variations during experiment execution influenced the current

results. For example, comfort with or fatigue due to the experiment,

such as comfort with the use of wearable sensors, may increase

over time, so there may be differences between tasks performed

in the first and in the second half of the session. We performed

most tasks in random order, and only the conversation task was

fixed at the end. Feature differences in the head and eye movements

between the data-entry and conversation tasks could be due,

in part, to the fact that comfort or fatigue was greater in the

conversation task than in the data-entry task. Further, openness

modulation in the conversation task may incorporate differences

in this comfort/fatigue maximum according to degree of openness.

Since our ss-InfoGAN can, in theory, interpolate sensor data

according to the elapsed time from the start of the experiment,

future studies using our technique to mitigate other variations such

as temporal variation are expected.
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Finally, we examined only basic features (autocorrelation

coefficients) of gaze behavior to determine the effectiveness of

the interpolated sensor data; more advanced features were not

extracted. Analysis of various features of gaze behavior in real-life

situations should be a fruitful future direction. For example,

previous studies have shown that supervised (Bulling et al., 2010)

or unsupervised (Steil and Bulling, 2015) machine learning

methods can detect macro behaviors such as computer work

and media viewing, as well as moderate behaviors such as

reading text (Kunze et al., 2013). Moreover, rule-based methods

can detect micro behaviors such as head-eye coordination

(Fang et al., 2015), fixations (Just and Carpenter, 1976), and

saccades (Liversedge and Findlay, 2000), which are associated

with specific cognitive processes. Understanding personality

modulation of gaze behavior from a broader perspective should

provide further insights into the theoretical understanding and

practical applications of personality-modulated overt visual spatial

attention (Alves et al., 2020).

4.2 Conclusion

The current study aimed to fill the research gap where

we could not empirically show the theoretically expected

personality modulation of real-world gaze behavior. As the

first contribution, we provided a methodology for generating

gaze data with the separation of individual attributes and

personality traits, which addressed the cause of the research

gap. As the second contribution, this generated sensor

data revealed the expected situation-dependent openness

modulation of real-world gaze behavior even from head

and eye movements obtained from only 14 participants

performing realistic tasks. We conclude that our method has

the potential to expand our insights into real-world, systematic

personality modulation of gaze behavior depending on the

situation.

Author’s note

Note that the current study used data from our previous report

that addressed the engineering research question in the computer

science field (Yamashita et al., 2022). While the previous report

did not primarily address the psychological research question, the

current study has tested the hypothesis of interactionist psychology

for the first time. That is, the current study has examined

personality modulation of real-world gaze behavior varies in a

situation-dependent manner.
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