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A mere co-presence of an unfamiliar person may modulate an individual’s 
attentive engagement with specific events or situations to a significant degree. 
To understand better how such social presence affects experiences, we recorded 
a set of parallel multimodal facial and psychophysiological data with subjects 
(N  =  36) who listened to dramatic audio scenes alone or when facing an unfamiliar 
person. Both a selection of 6  s affective sound clips (IADS-2) followed by a 27  min 
soundtrack extracted from a Finnish episode film depicted familiar and often 
intense social situations familiar from the everyday world. Considering the systemic 
complexity of both the chosen naturalistic stimuli and expected variations in the 
experimental social situation, we applied a novel combination of signal analysis 
methods using inter-subject correlation (ISC) analysis, Representational Similarity 
Analysis (RSA) and Recurrence Quantification Analysis (RQA) followed by gradient 
boosting classification. We  report our findings concerning three facial signals, 
gaze, eyebrow and smile that can be linked to socially motivated facial movements. 
We found that ISC values of pairs, whether calculated on true pairs or any two 
individuals who had a partner, were lower than the group with single individuals. 
Thus, audio stimuli induced more unique responses in those subjects who were 
listening to it in the presence of another person, while individual listeners tended 
to yield a more uniform response as it was driven by dramatized audio stimulus 
alone. Furthermore, our classifiers models trained using recurrence properties 
of gaze, eyebrows and smile signals demonstrated distinctive differences in the 
recurrence dynamics of signals from paired subjects and revealed the impact of 
individual differences on the latter. We showed that the presence of an unfamiliar 
co-listener that modifies social dynamics of dyadic listening tasks can be detected 
reliably from visible facial modalities. By applying our analysis framework to a 
broader range of psycho-physiological data, together with annotations of the 
content, and subjective reports of participants, we  expected more detailed 
dyadic dependencies to be revealed. Our work contributes towards modeling and 
predicting human social behaviors to specific types of audio-visually mediated, 
virtual, and live social situations.
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1. Introduction

Dramatized narratives, such as movies, audio stories, and literate 
texts, have a strong tendency to create intersubjectively shared 
experiences between people who engage with them. Such experiential 
situations intertwine the human brain and body with its environment 
in a holistic manner that can be argued to be systemic and complex by 
nature (Varela et al., 1991; see Tikka et al., 2023, for review). In this 
study, we  applied a novel data analysis approach that takes into 
account the systemic complexity of the experimental setting, in line 
with Turkheimer et al. (2022). The context-dependent time-locked 
synchronization has been demonstrated for neural signals in various 
neuroimaging studies using functional magnetic resonance imaging 
(fMRI) and magnetoencephalography (MEG) when subjects have 
watched feature films (Hasson et al., 2004; Jääskeläinen et al., 2008; 
Kauttonen et al., 2015, 2018; Lankinen et al., 2018; Tikka et al., 2018; 
see Jääskeläinen et al., 2021 for review), recorded dance performance 
(Jola et al., 2013), or listened to audio narratives (Boldt et al., 2013, 
2014; Koskinen and Seppä, 2014; Simony et al., 2016; Koskinen et al., 
2020). Synchronization of brain functions across different viewers is 
more extensive when the stimulus represents socio-emotionally 
meaningful contexts (e.g., Stephens et al., 2010; Saarimäki, 2021). Yet, 
in these studies, due to the experimental conditions in neuroimaging 
labs, the so-called synchronization is to some extent hypothetical, 
taken that the subjects experience the content alone, and not in real-
time interaction with others (e.g., Ames et al., 2014). It can be assumed 
that the social presence of another person, perhaps even a stranger, 
affects this synchronization in some way.

To emphasize the presence of another listener, who is unfamiliar to 
the other participant, we designed an experimental condition where two 
persons (later, “partners”) were listening to the same audio drama while 
purposefully unnaturally facing one another. In the control condition a 
person was listening to the audio drama alone. This setting allowed us 
to collect facial expressions and a set of psycho-physiological signals 
from a dramatically contextualized dyadic co-presence between two 
strangers and compare that data with single listeners (see Methods 
section for details). During a long-duration behavioral experiment, the 
attention of a person who is alone conducting the task may shift from 
task-related thoughts to non-task-related thoughts, a cognitive 
phenomenon referred to as “mind-wandering” (see Smallwood and 
Schooler, 2015). In social settings such as in the dyadic listening task 
where one is facing a stranger, such a shift of attention from the tasks to 
the other person can be  assumed to be  more frequent than when 
listening to a story alone, not only due to the mind-wandering 
phenomena but also due to the awareness of the attention of the other 
in the shared situation that may “modulate brain regions involved in 
regulating behavioral motivation” Chib et  al. (2018), thus adding 
socially induces variations to the complex behavioral dynamics, for 
instance, enhancing the performance (‘social facilitation’, Zajonc, 1965).

Any socially conditioned situation is characterized by 
modifications in physiological and motor responses, such as eye-blinks 

and eye-contact, indicating the shift of attention from the shared 
object of attention (narrative) to the other person (Nakano, 2015; 
Chauhan et al., 2017; Shapiro et al., 2017). The co-presence of another 
may also “influence both the top-down and bottom-up attention-
related processes guiding the decision to move the eyes” (Tricoche 
et al., 2020; for a review, see Stephenson et al., 2021). Shifting one’s 
gaze to the eyes of the other person might indicate a social action, for 
instance, a confirmation of joint attention, or a search for a 
confirmation of a joint affective response (Hamilton, 2016). If the 
other person is a stranger, eye-contact may also have an important role 
in establishing a non-verbal agreement of mutual co-presence in the 
shared space (Miura and Noguchi, 2022). The human skill to recognize 
and make judgments of an unfamiliar person relies to a great extent 
on unconscious neural processing of dynamic features of the new face 
(George, 2016). The presence of another person can be expected to 
change the properties of the physiological signals of an individual in 
a complex manner (Chib et al., 2018; Miura and Noguchi, 2022; see 
Hamilton, 2016; Stephenson et al., 2021, for reviews).

In a face-to-face situation even without verbal interaction, 
following (Hasson and Frith, 2016), the behavior of the subjects is 
understood as similarly dynamically coupled, as during a dialogue 
where interacting parties take turns. The term ‘synchronization’ is 
applied here in line with Pikovsky et al. (2001) for describing the 
tendency of connected systems to organize their cognitive oscillations 
and motor movement together. Importantly, instead of time-locked 
synchrony of the same simultaneous behavior (e.g., imitation), we take 
the synchrony of signals to describe the presence of some functional 
relation (coupling) between two different states of the coupling systems 
(Pikovsky et al., 2001). Furthermore, synchrony or coupling may rely 
on linear, nonlinear, instantaneous, or delayed coupling of two systems.

Dynamical coupling of social signals is considered an elementary 
part of human-human interaction, such as with synchronized smiles 
that already babies show (Ruvolo et  al., 2015). While computing 
synchronization mathematically is often straightforward, e.g., using 
correlation, interpretation of its meaning for physiological signals is 
far from straightforward. To what extent social synchronization can 
be  assumed to happen between two people, is dependent on the 
contextual factors and individual personality traits of the co-present 
persons (Lumsden et al., 2012; Neufeld et al., 2016), detectable in the 
physiological signals (Stephens et  al., 2010; Canento et  al., 2011; 
Soleymani et al., 2012; Kragel and Labar, 2013).

How and when do social interactions tend towards synchrony? 
While individuals are listening to the same narrative, their personal 
attitudes or worldviews are to produce some context-related 
differences. For example, our audio narrative included humorous, 
tragic, and sexually colored moments. In this case, two persons could 
interact either through spontaneous alignment in response to the 
stimulus content (e.g., simultaneously shared humor or 
embarrassment), in a cognitive synergy in terms of the conducted task 
of listening (not so much responding to the narrative content but to 
the joint task), or the situation could elicit a spontaneous coupled 
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response to the other person’s reaction and not so much to the 
narrative (“I smile because she smiles”). These dramatically “lifted” 
moments in the narrative could produce observable, significant 
physiological markers in the data (Stuldreher et al., 2020).

To have more insights to such social systems, we studied the effect 
of dyadic interactions on the synchronization of individuals’ time-
locked response signals, which can take rather complex forms. 
Addressing dynamical modifications of contextually situated human 
interaction from holistic complex systems point of view called for 
application of a range of computational methodologies, incorporating 
signal analysis and machine learning (ML) techniques. We investigated 
how the co-presence of an unfamiliar individual modulates attentive 
and physiological responses during shared audio narrative 
experiences. To facilitate this, we employed conventional tools based 
on linear relationships, such as correlation and normality assuming 
tests, as well as non-linear tools such as recurrence quantification and 
classification algorithms. By employing a multi-methodological 
approach, we  offer new insights into the complexities of social 
synchronization and individual variability in shared contexts.

To initiate the investigation of the dynamical differences between 
two groups of data and to further demonstrate the suitability of 
methods employed, we posed two hypotheses. Firstly, we hypothesized 
that the paired setup would modulate the physiological signals in a 
way that would be detected in the higher synchrony (e.g., correlation) 
of signals between paired subjects (e.g., simultaneously smiling) 
compared to subjects, who listen to the narrative alone. Based on data 
from the body of neuroscientific literature, most likely, the single 
listener group could be expected to result with higher intersubject 
synchrony than the paired group as the latter group would present 
more behavioral variations due to the unavoidable social interaction 
in the experimental setting. However, ISC may not allow such high 
temporal resolution that would allow detecting the possible delayed 
responses of the individuals of the pairs to the facial (“dialogical”) 
behavior of the partner, thus any temporally close shared facial 
behaviors (gaze, smile, eye-brow movements) of the pairs could 
theoretically show higher synchrony. Due to these possibilities, 
although unlikely, we chose to test the hypothesis that the paired setup 
would show higher intersubject synchrony than the single listener 
setup; a negative correlation coefficient would support the opposite 
version. Secondly, we hypothesized that signals obtained from our 
paired setup would exhibit more distinctive and dynamically rich 
variations compared to those from a single-subject setup. In the latter, 
we expected the signals to be primarily driven by auditory stimuli, 
rather than the interactive dynamics present in the paired setting. 
Here richer dynamics of pairs correspond to increased specific types 
of activity and variability in the signal. Based on these assumptions, 
we  further made a third hypothesis that one can identify signals 
recorded from paired and individual subjects based on their signal 
segments recurrent properties.

1.1. Meeting the methodic challenges of 
signal analysis of dyadic coupling

The interest in identification of physiological signals related to 
distinct mental phenomena, such as emotions, has generated a range 
of methodical approaches (e.g., Stephens et al., 2010; Canento et al., 
2011; Soleymani et al., 2012; Kragel and Labar, 2013). For addressing 

the complex nature of the cognitive phenomena under study, 
we employed ISC and RSA methods with two novel additions. First, a 
sliding-window based scan type RSA analysis of the audio drama, and 
secondly a combination of RQA and machine learning, to provide a 
deeper understanding of the effect of dyadic interaction on 
the subjects.

The inter-subject correlation analysis (ISC; Hasson et al., 2004; 
Nastase et al., 2019) has become a standard method particularly in the 
field of neuroscience as it can be applied even when the generating 
process of the signal is unknown. ISC assesses the similarity (often 
referred to as synchrony) of time series from separate subjects exposed 
to the same time-locked paradigm, typically using Pearson correlation 
metrics, which is a linear measure of synchrony. ISC can be further 
leveraged in Representational Similarity Analysis (RSA; Kriegeskorte 
et al., 2008), a method for comparing groups of pairwise similarity 
measures. The main limitation of ISC is, however, that it requires two 
time-locked signals from different individuals and cannot be applied 
to an individual signal.

To analyze individual signals, we  applied Recurrence 
Quantification Analysis (RQA), formalized by Zbilut and Webber 
(1992), and expanded on over the years (see, e.g., Marwan et al., 2007, 
for overview). Recurrence is an important feature of dynamic systems, 
characterizing repetitions of values or ranges of values, whose 
frequencies reveal behavioral regimes of stochastic signals, without 
any assumption of an underlying model. Quantifying recurrent 
patterns in signals has been found useful in extracting distinguishing 
and descriptive information from dynamic systems (Webber and 
Marwan, 2015), including physiological signals (Fusaroli et al., 2014; 
Guevara et al., 2017; Xu et al., 2020; Stevanovic et al., 2021). This 
information can be further applied in building features for predictive 
machine learning analysis.

We demonstrate the effectiveness of RQA as a fundamental 
research tool into the effect dyadic interaction has on complex 
recurrent patterns in facial response signals. With predictive power 
being the benchmark, the impact and order of importance of RQA 
quantifiers reveals prioritization of complex behaviors for this target 
variable, which in turn can tell us much about the interactions taking 
place in dyadic interactions. This approach is (to the author’s 
knowledge) novel in the field and enabled specifically by the 
interpretability of recurrence quantifiers, and as such makes up a core 
motivation of this study. Our analyses do not rely on manual 
annotations, hence they can be applied in data-driven exploration of 
dyadic physiological data.

2. Materials and methods

2.1. Subjects

All subjects signed an informed consent prior to participation. 
The study was approved by the local institute ethics committee (Aalto 
University). Subjects (N = 36; 20–47 years, mean 27.5) were all female, 
and spoke Finnish as their native language. The subjects were divided 
into two equal-sized groups by the experimenters depending on 
subject availability, and they either participated in the experiment 
alone (“subject single,” denoted as SS) or together with another 
participant (“subject paired,” denoted as SP) where we employed a 
hyperscanning paradigm, collecting data simultaneously from both 
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participants. The experiment type was not informed to the subjects 
prior to their arrival to the experiment site.

2.2. Measurement setup

After informing of the procedures, the subjects were guided to the 
measurement room. The room, depicted in Figure 1, was 2.5 m by 
3.2 m in size, soundproof, well-lit, and included a central table with 
two chairs on opposite sides. The two high-quality loudspeakers 
(Genelec 2029A monitors, Genelec Oy, Iisalmi, Finland) were located 
symmetrically beside the side walls with equal distance to both 
subjects (~1.2 m from subjects’ ears). The central table housed the two 
Kinect 2.0 sensors (Microsoft, WA, USA), directed to both subjects, 
but allowing direct eye contact in the paired condition without 
interference. In the single subject setup, the subject was seated in 
“Subject 1″ position, opposite to the door. Physiological measures and 
depth + traditional video streams were collected via Kinect. In 
addition, our setup allowed collection of EEG, respiration, galvanic 
skin response and infrared video data. In noting, due to the limitations 
of the space, and for not complicating the explication of the method, 
we decided to exclude this data from the current paper. The collected 
multisource data is reserved for further validation of the proposed 
method in the future.

The subjects were instructed in the audiotrack to sit comfortably 
but relatively still, attend to the auditory stimuli, and at the same 
time, either pay attention (1) their feelings during the “single” 
condition, (2) to the other subject’s feelings in the “paired” condition 
without talking. Instructions were pre-recorded to minimize 
experimental variability, and to allow the subjects to familiarize with 
the setup, and to allow the experimenters to verify smooth collection 
of input signals in the control room before the actual experiment 
sounds. These instructions were used to encourage the subjects to 

have eye contact with the other participant and not acting such that 
it would disturb data collection (e.g., talk aloud, do major change in 
position or stance). During single condition, there was a fixation 
mark on the opposite wall, roughly at the level of the other subject’s 
head during paired condition, and the subjects were instructed to 
keep their head fixed to that direction.

2.3. Stimuli

The whole setup consisted of a pre-recorded set of trigger sounds, 
instructions, affective sound localizer (10 clips) and an excerpt of 
27-min soundtrack from a Finnish episode film “Kohtaamisia” (dir. 
Saara Cantell). The audio parts were presented at 16-bit, 44,100 Hz 
using a dedicated computer with Presentation program (v17.2, 
Neurobehavioral systems, Albany, CA, USA), sending digital triggers 
to Nexus-10 devices. Besides digital triggers, we used short trigger 
sounds both at the start and in the end to allow manual video 
synchronization. The sound level was fixed to a comfortable listening 
level, peaking at about 75 dB SPL at the loudest portions, and was kept 
constant across subjects. After a one-minute instruction period, the 
experiment continued automatically to the localizer part. The 
waveform of the whole stimulus is depicted in Supplementary Figure S1 
using both linear and decibel scale.

We used a subset of 10 sounds from the IADS-2 affective sound 
dataset (Bradley and Lang, 2007) as a reference stimulus, which were 
played before the audio drama. We selected the 10 sounds to have 
examples of extreme valence and arousal values of the whole dataset 
continuum. The IADS-2 sound codes were 110, 424, 817, 286, 216, 
261, 246, 262, 810, and 277, presented in this order. Content of these 
sounds were: [Child’s laughter], [Car crash], [African music], [Man 
yelling before sounds of shooting], [Making love], [Child crying], 
[Heartbeat], [Yawning], [Classical instrumental music], and [Woman 

FIGURE 1

The measurement room setup. (A) Schematic diagram of the room and placement of periphery. (B) Exemplary photos of the actual measurement 
room in the two different conditions (one of the authors working as a model). The set-up image shows one of the authors.
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screaming]. These sounds, originally edited to 6 s, were each looped 
to a total of 12 s presentation time to allow time for the physiological 
signal changes. After each presentation of IADS-2 sound, there was a 
10 s silent period. The segments were characterized by different socio-
emotional content and serve in this paper as an informative 
introduction to the ISC analysis.

After all the IADS-2 sounds, the experiment continued directly to 
the soundtrack phase. Notably, the soundtrack was presented in 
stereo, and on certain occasions the sounds came dominantly from 
either speaker, possibly promoting joint attention of the subjects.

2.4. Data collection

2.4.1. Video data
We collected both 512 × 424 pixel resolution depth video and 

960 × 540 color video at 30 Hz from the one or two Kinect sensors. 
Further, we  included microphone signals to allow exact 
synchronization of the video onset. The data were initially stored using 
iPI recorder software (iPi Soft LLC, Russia) in a proprietary video 
format, and later exported to standard MP4 video. Again, we employed 
two independent computers for the recording due to bandwidth 
requirements of the Kinect video stream.

2.4.2. Web ratings
We asked the subjects to rate the soundtrack, at their own pace, 

using an online web-based tool. The rating was done by intuitive up/
down mouse cursor movements while listening to the audio drama. 
Subjects annotated both valence and arousal-related experiences. The 
web rating tool records the movements at a 5 Hz sampling rate, 
allowing us to get a continuous rating of the long soundtrack.

2.4.3. Expert annotations
Audio drama content was annotated by an external expert using 

ELAN annotation tool (Max Planck Institute1).

2.5. Signal processing and feature 
extraction

2.5.1. Video (RGB, IR)
After the Kinect video collection, we first exported the whole 

recording soundtrack as plain audio. The soundtrack was used to 
extract the onset and offset of the video recording based on audio 
trigger sounds, and this information (video frame numbers) was used 
to export color/RGB video from the proprietary combined 
depth + color video for further processing.

2.5.2. Facial muscle activity
Facial activity is typically measured in terms of Facial Action 

Coding System (FACS) (Ekman and Friesen, 1978). Originally, FACS 
was developed as a tool for manually quantifying observed facial 
actions, but it has turned out to be useful in automatic facial expression 
detection as well. We used the IntraFace software (De la Torre et al., 

1 https://archive.mpi.nl/tla/elan

2015) for detecting the movement of a set of landmarks on the face 
and performed an approximate FACS coding based on distances 
between the landmarks. Figure 2 depicts the numbers and locations 
of FACS, which are listed in Table  1 with the corresponding 
muscles involved.

Along with the facial feature extraction, IntraFace software 
provided gaze angle estimation from the video. The video was 
obtained with a Kinect wide angle lens, so the accuracy was not 
comparable to for instance an eye-tracking device that processes a 
more defined video stream, often taken with a dedicated telephoto 
lens. Due to this, for instance, direct eye contact with the other 
participant in a paired setup could not be estimated with certainty. 
Still, as the angle was a continuous measure of interest that seemed 
robust enough, we chose it for further analysis.

FIGURE 2

Facial landmarks as they were captured from videos.

TABLE 1 Action units in facial analysis.

AU Name Muscle Landmarks

AU 1 Inner Brow Raiser Frontalis, pars medialis 3, 10, 4, 13

AU 2 Outer Brow Raiser Frontalis, pars lateralis 1, 7, 6, 16

AU 4 Brow Lowerer Corrugator supercilii 3, 4

AU 5
Upper Lid Raiser Levator palpebrae 

superioris

8, 9, 11, 12, 14, 15, 17, 

18

AU 6
Cheek Raiser Orbicularis oculi 8, 9, 11, 12, 14, 15, 17, 

18

AU 9 Nose Wrinkler Levator labii 10, 13, 20, 22

AU 12 Lip Corner Puller Zygomaticus major 25, 26

AU 18 Lip Puckerer Incisivii labii 25, 26

AU 25 Lips part (several muscles) 24, 28

Landmarks are visualized in Figure 2.
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2.6. Signal analysis

Our analysis methods of choice were Inter-Subject Correlation 
(ISC) analysis, Representational Similarity Analysis (RSA) and 
gradient boosting classification (CatBoost algorithm) combined with 
Recurrence Quantification Analysis (RQA) as methods to see how 
individual listeners and those who listened with pairs differed. First, 
we  focus on describing ISC and RSA (2.6.1) aimed to check the 
hypothesis of differences between the single and paired groups, using 
a sliding-window based scan type RSA analysis of the audio drama. 
The second section focuses on RSA and ML (2.6.2) aimed to check the 
hypothesis of differences between the single and paired groups, using 
a combination of RQA and ML to provide a deeper understanding of 
the effect of dyadic interaction on the subjects.

2.6.1. Representational similarity analysis and 
inter-subject correlations

RSA is an approach to visualize and quantify complex time-series 
data, irrespective of underlying models, based on a measure of 
distance describing the similarity between two time-series. We used 
the ISC as this distance measure, which is based on interpreting the 
signal as made up of three components: c t( )  reflecting processing 
triggered by the stimulus (the audio track), and should be consistent 
across subjects; id tA ( ) reflects the idiosyncratic response of subject A 
(respectively for the other subject, B); eA t( ) is an error term, reflecting 
spontaneous activity unrelated to either the stimulus or subject-
specific response (Nastase et al., 2019). For a time-series segment, the 
signal x tA ( ) is given then as:

 x t c t id t tA A A( ) = ( ) + ( ) + ( )a b e

ISC then assumes that as the second subject B experiences the 
same, time-locked stimulus (e.g., a movie), their same-source signals 
will also be a mixture of c, idB and eB. The component c t( )  then 
should be perfectly correlated for subjects A and B, while id t( ) and 
e t( ) will not (Nastase et al., 2019). The Pearson correlation r x xA B( ) 
between the signals of subjects A and B then will increase with a  and 
the average r  is a proxy for the latter. Thus, ISC filters out subject-
specific information and reveals the joint stimulus-
induced component.

Between all individuals, paired or unpaired, we  calculated a 
similarity measure based on the Pearson correlation coefficient, given 
simply as d rP = +1 . While this is just a shift of the regular correlation 
coefficient, it has been used as such in RSA (Kriegeskorte et al., 2008; 
Nili et al., 2014) previously and we keep the same convention for 
consistency. The measure as such is called the correlation distance, 
where the values can be read as dP = 0 indicates strong dissimilarity, 
dP = 2 indicates strong similarity, with dP =1 meaning r = 0 and thus 
indicating no negative or positive correlation. This way, an ISC matrix 
gives a quantifiable and visually interpretable result to determine 
differences between individual subjects and differences between 
groups of subjects. We are particularly interested in the difference of 
ISCs between the group of individual subjects and the group of 
paired subjects.

In RSA analysis, pair-wise ISC values resemble a time point 
Representational Dissimilarity Matrix (RDM), where each cell 
contains the ISC reflecting the respective similarity or dissimilarity 
between the individuals. From the RDMs, one can gather a visual 

overview of similarity patterns associated with the individuals, by 
conditions (specific emotional content, annotation) and modalities 
(different modes of response, i.e., time-series) (Kriegeskorte et al., 
2008; Nili et al., 2014). A further comparison can then be carried out 
on separate RDMs via for example the Kendall’s Tau correlation 
coefficient, enabling one to identify narrative inputs that produce 
similar RDMs within or outside of measurement modalities. Kendall’s 
Tau correlation is a non-parametric measure of similarity and it’s a 
recommended method to be applied with RDMs (Nili et al., 2014). By 
comparing RDMs of different modalities, we could identify stimuli 
that produce similar, in structure and magnitude, responses in 
the subjects.

In this work, we performed RSA using specific windows of signals 
for localizers and applying a sliding window method for audio drama. 
In the latter, the full-length signals are first analyzed by computing 
RSA matrices in short (20s) overlapping windows, and then tested 
against a model matrix with the respective statistical significance 
filtered by the false discovery rate (Benjamini and Hochberg, 1995) 
procedure. The former provides a baseline understanding of the 
intuitive meaning of ISC and RSA analysis, while the latter reveals a 
general understanding of the relations between audio drama narrative 
content and ISCs.

Based on data from the body of literature (section #), one may 
assume that the paired and the single listener groups would show 
differences in synchrony when compared. However, for arbitrary 
testing using RSA, we hypothesized detecting an increased correlation 
of signals in the paired setup when compared against single listeners. 
That is, in the models that the RDM is compared against, ISC values 
for the SP group are assumed higher than those for SS or mixed SS-SP 
subject groups.

2.6.2. Recurrence quantification analysis
Recurrence quantification analysis (RQA) is a non-linear method 

for characterizing individual time-series (Thiel et al., 2002; Zbilut 
et al., 2002; Webber et al., 2009), being robust against non-stationarities 
and noise. The method has been widely applied in many fields (see, 
e.g., Marwan et al., 2007), and in analyzing dynamics of physiological 
signals in social interaction (Fusaroli et al., 2014; Guevara et al., 2017; 
Xu et al., 2020). RQA is based on recurrence plots, which visualize 
temporal repetitions (recurrences) of values as points on a time–time 
coordinate system. This visualization is depicted in Figure 3 for our 
data. That is to say, both the horizontal and vertical axis take values of 
the time values of a time-series, and thus a repeated sequence appears 
as a diagonal line. Analysis of the distribution of these points and 
especially the diagonal lines they form, can yield a variety of 
interpretable quantities through RQA.

Often the first step of this technique is time delay embedding 
(Webber and Zbilut 2005), aiming to reconstruct the state space 
dynamics of higher dimensionality, lost by considering only a scalar 
time-series, through supplementary delayed coordinates (Takens, 
2006; Goswami, 2019). This is achieved by successively delaying the 
time-series by some value t , for a number of times D, called the 
delay, and embedding dimension, respectively. Embedded 
recurrence plots thus do not consider as a recurrence only a single 
value repeating, but a sequence, D of them separated from each 
other by t . An embedding dimension D >1 may not itself 
be  stationary however (Brick et  al., 2017), as the sequence of 
recurrence might change its character in a non-stationary series – a 
feature that RQA without embedding ignores.
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For continuous time-series, what constitutes two values being “the 
same” is not as straightforward as for discrete series. Here a radius E 
is considered, by which we  consider two values to 
be recurrent if x t x t E1 2( ) - ( )( ) < .

Once the parameters have been chosen, the simplest recurrence 
quantifier obtainable from recurrence plots is the recurrence rate 
(RR), which is the percentage of points that fulfill the 
condition x t x t E1 2( ) - ( )( ) <

 
RR N

N
rec

p
= ´100 ,

where Nrec is the number of recurrent points and Np  is the 
number of points on the recurrence plot in total. Based on this 
ratio, many quantifiers can be  defined, of which we  employ  
three:
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log2     (Entropy)

 
LAM N
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The first, determinism (DET ) describes the proportion of 
recurrent points that form diagonal lines, i.e., not just repeating values 
but a sequence that is repeating. Ndiag  is the number of recurrent 

FIGURE 3

A recurrence plot based on the time-series shown on both the vertical and horizontal axis, generated with parameters: recurrence rate  =  3%, D  =  1, and 
t  = 1. Off-diagonal formations show periods of retained or repeated values as horizontal/vertical and diagonal shapes, respectively. This is not included 
in recurrence quantifier calculations.
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points forming diagonal lines. It’s worth pointing out that the minimal 
number of points required to consider a diagonal can vary, but mostly 
is chosen as the minimal possible, i.e., 2. The second, entropy (ENTR) 
describes the complexity of the deterministic structure in recurrent 
points. As p l( ) is the probability that a diagonal line has length l , its 
entropy quantifies the complexity of a time series  - higher values 
indicate a wider distribution of line lengths and translates to the 
deterministic segments being more varied in their duration. How 
deterministic a system is, is another thing, as DET only considers the 
number of points that form diagonal lines, irrespective of their 
lengths. Lastly, laminarity (LAM) is analogous to DET, but counts the 
percentage of recurrent points comprising vertical line structures, 
Nvert  being the number of points forming such lines. Thus, LAM 
describes a rate of stagnancy, periods of no change (within the radius 
threshold) in the time-series. In fact, for an auto-recurrence plot, 
meaning recurrence analysis on one time-series with itself, vertical 
lines are the same as horizontal lines, simply at different perspectives.

To calculate the quantifiers, RQA parameters must be chosen, and 
for this purpose, many methods have been used in the past. The 
embedding dimension D can potentially be estimated by the method 
of false nearest neighbors (Kennel et  al., 1992), however this also 
needs some parameter fitting. The delay t  can potentially be estimated 
as the first minimum of either the auto-correlation or mutual 
information functions, but not all time-series will provide a reasonable 
value through such methods. There is also evidence that it is not 
always important to set these parameters, especially if reconstructing 
the nonlinear state space is not of interest (Iwanski and Bradley, 1998; 
March et al., 2005). This can be due to the RQA outputs remaining 
independent with respect to D. Furthermore, if their numerical value 
does not have to be the “true” value, meaning if only comparisons are 
of interest, RQA without embedding (D =1) performs just as well on 
experimental series (Iwanski and Bradley, 1998). Such an approach 
has yielded satisfactory results in previous research (Piskun and 
Piskun, 2011; Arunvinthan et al., 2020; Soloviev et al., 2020) and was 
found suitable for our data as well.

Lastly, the threshold radius E, defining recurrences can be chosen 
through empirical or statistical considerations. Larger radii yield more 
recurrent points, possibly cluttering the recurrence plot, making 
interpretation difficult and the obtained results uninformative. Among 
multiple suggestions, a popular one is choosing E that yields a low 
(1–5%) recurrence rate while the latter scales with E linearly in the 
log–log sense (Webber and Zbilut 2005; Wallot and Leonardi, 2018). 
Another suggestion for facilitating comparisons between diverse 
signals is instead fixing the recurrence rate, letting E vary accordingly 
(Curtin et al., 2017; van den Hoorn et al., 2020).

We utilized RQA as a measure of temporal dynamics inside 
windows of signals, to be used in a machine-learning classifier model. 
For the RQA parameters, we  choose D = =t 1 in all recurrence 
quantification analyses. For E, in order to compare groups 
we employed an algorithm to find a suitable E conditioned on fixing 
the recurrence rate at 3%, as this yielded good model accuracy for 
our data.

The main reason to employ RQA derives from its malleability by 
these parameters. Indeed, the recurrence plots and values for 
recurrence quantifiers change when different parameters are used, but 
to what extent depends a lot on the system under study. The main 
important issue here is that the results are interpretable and 
comparable. For example, when working with N sets of a single 

measurement dimension, say a single individuals smile patterns on 
different occasions, then a fixed recurrence radius makes sense, as 
we  would assume the persons underlying characteristics to 
be consistent, i.e., the radius of recurrence reflects their personality or 
related properties. This is not comparable however to other people, 
whose baseline for repetition of a smile can be different and while 
within their own dataset, a single radius is suitable, the radius is not 
the same as for the first individual. That is why a fixed recurrence rate 
is fixed instead, enabling everyone to fit with their own radius, while 
retaining a comparable set of quantifiers based on the percentage of 
repetitions. As for the value of 3%, the general best practice is to set 
this value as low as possible while retaining a vivid recurrence plot. 
For a stricter rule of thumb, the scaling between quantifier values and 
the recurrence rate should be linear. Thus, increasing the rate to 4% 
would increase or decrease the entropy, determinism, etc. linearly. In 
our dataset 3% was well in a linear regime of scaling and also a small 
value, enabling recurrence plots to be  descriptive and thus the 
quantifiers as well. There are unfortunately no more rigorous methods 
to set the value of the recurrence rate, which is common for model-
free tools of analysis, and a certain level of expertise must be employed.

In terms of the dimension and delay of embedding being set to 1, 
meaning no embedding is used, this is due to us only being interested 
in comparisons of recurrence patterns, not a “true” value of any of the 
quantifiers. Embedding is used to reconstruct the system’s true phase 
space and is necessary if the study of the latter is of interest, however, 
the lack of embedding does not take away from a uniform comparison 
in a lower, non-reconstructed phase space. For further clarification, 
we refer the reader to the references cited above, at the respective 
parameter descriptions.

We carried out RQA in a non-overlapping windowed framework 
for the whole audio drama, with a window length of 20s, yielding 600 
data points. With RQA we address the second hypothesis about the 
data and phenomenon at hand – that the SP group shows richer, more 
unique dynamics than the SS group. With RQA we could capture the 
dynamic and non-linear patterns of behavior for individual signals via 
determinism, entropy and laminarity measures. Then, utilizing these 
quantifiers as features for a classification algorithm, the ML model can 
better identify in what manner and how much the quantifiers differ 
between the groups helps us answer the proposed question in quite 
large detail. This has the double purpose of also providing an estimate 
of predictive power for RQA of facial features alone, in the context of 
dyadic interaction. We  tested this hypothesis by training a binary 
classifier to separate SS and SP signals.

2.6.3. Gradient boosting classification
We employed ML to evaluate information content of physiological 

signals related to the presence of another person, utilizing the 
CatBoost gradient boosting classifier (Prokhorenkova et al., 2018). 
The aim of this analysis was to see if dyadic interaction leaves an 
imprint on an individual’s response signals, identifiable without the 
need to compare to the responses of others, as is the case for 
ISC. While there can be many predictors derived from these signals, 
we employed RQA, which yields single-valued quantifiers for features 
of determinism, entropy and laminarity, that are capable of capturing 
nonlinear properties of the underlying time-series. Furthermore, RQA 
quantifiers are interpretable and simple in their design, making them 
useful in not only classification but giving them a 
descriptive dimension.
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CatBoost relies on building an ensemble of models in sequence 
using the whole data, where each model reduces the previous model’s 
error. While there are many different gradient boosting algorithms 
applicable for similar goals, CatBoost features symmetric decision tree 
generation, resulting in faster computations and less risk of overfitting 
(Dorogush et  al., 2018), and sees lots of application in scientific 
inquiry (Hancock and Khoshgoftaar, 2020). The algorithm also readily 
provides an importance score to all prediction features, which 
indicates how much on average the prediction accuracy changes, if the 
feature value changes. We normalized this metric between 0 and 100. 
It gives an intuitive overview of the impact any given predictor has on 
the model’s performance, and we used it to interpret the latter to a 
degree, which we  use in the context of recurrence quantifiers. 
We  employed the open-source Python implementation via the 
package ‘catboost’ available at https://github.com/catboost. The label 
for the classifier was group belonging (i.e., SP and SS groups) and the 
predictor variables were RQA quantifiers (determinism, entropy, and 
laminarity) of data segments. With this analysis, we could test our 
third hypothesis related to the identification of the group identity of a 
subject on the basis of signal properties.

3. Results

In the following sections, we report our results regarding three data 
sources: Gaze direction, and two facial action units (AU2, AU12) which 
relate to facial signals. These three signals can be  linked to socially 
motivated facial movements, here, listening to an audio drama with a pair 
against listening to it alone. Next, we discuss our reasoning for selecting 
these three signals. Our analysis codes can be found in the following 
repository: https://github.com/SanderPaekivi/ISC_RQA_Toolkit.

3.1. Initial analyses and selection of 
eyebrow, smile, and gaze responses

To identify facial behavior/expressions of individual participants, 
the Initial analysis was carried out on FACS signals from all subjects: 

AU1, AU2, AU4, AU5, AU6, AU9, AU12, AU18, AU25, Gaze Angle. 
However, in this paper, for the purpose of clarity regarding the applied 
methods, we specifically focused on reporting the results related to 
three facial modalities, AU2, AU12 and the Gaze Angle data. This 
choice for these three facial signals was motivated by considering 
overlap and performance between signals that are gathered from the 
same facial area. As an example, in FACS the AU2 signal informs 
about the movement of the Outer Brow, the Frontalis, pars lateralis 
muscle, that may be  interpreted as an indication of a positively 
valenced, yet to a great extent automated, uncontrollable facial muscle 
movement. AU1 overlaps to an extent with modalities of AU1 and 
AU4 (Inner Brow Raiser and Brow Lowerer respectively). Considering 
their performance with the above-described analysis methods then, 
the descriptor that most clearly differentiated between SS and SP 
groups was chosen.

Regarding AU5 through AU9, they were not found informative 
with ISC and RQA in differentiating between paired and single 
subjects. Similarly, as AU12, AU18 and AU25 all relate to the motion 
of the mouth, AU12 was found to best track the dynamical facial 
expressions that can be  related to the initiation of positive social 
contact. From henceforth we refer to the chosen signals, AU2, AU12 
and Gaze Angle, as the “eyebrow-,” “smile-” and “gaze” responses, 
respectively. Examples of the signals are depicted in Figure  4, 
demonstrating notable burstiness and zero-segments for AUs 
compared to the gaze signal. Note that the signals are given as 
normalized values from the facial tracking apparatus, reflecting the 
facial features movement in one arbitrary dimension. The means and 
standard deviations of these three signals are listed in 
Supplementary Tables S1, S2 for the audio clips and long narrative 
segments, respectively.

3.2. Representational similarity analysis for 
pairwise coupling

We calculated the ISC matrices for the 10 initial localizing 
segments each lasting 12 s. To capture lingering effects, we performed 
the analysis on 20s long non-overlapping windows, as this size proved 

FIGURE 4

Examples of the main analyzed modalities, AU2 (“eyebrow”), AU12 (“smile”) and gaze angle from a representative individual (sp07-1), taken for the first 
80  s from the onset of the audio drama. All signals are in arbitrary units given by the face tracking apparatus, and scaled between 0 and 1, reflecting the 
magnitude of the participants’ motion.
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informative. ISCs were calculated for all pairwise combinations and 
ordered in the RDM matrices seen in Figures 5–7.

Figure 5 depicts the RDM matrices for the smile response (the 
Zygomaticus major muscle, AU12 in FACS). Row and column indexes 
are presented over-one for clarity: starting at individual listener SS01-1 
(label hidden), followed by SS02-1, followed by SS03-1 (label hidden) 
etc. Paired listeners (SP) follow a similar notation: SP01-1 (label 
hidden) and their partner is SP01-2. The structure of matrices is 
illustrated in the last subplot with mixed pairs located in upper-left 
and lower-right blocks of the matrix.

When observing the visualizations of these matrices, the stimuli 
[Child crying], [African music], and to some extent [Making love] all 
exhibit clear separation of ISCs between SS individuals (lower left 
corner) and SP individuals (upper right corner). These stimuli elicit 
different reactions in the participants in the dyadic condition 
compared to the individual listeners. Specifically, we see the upper 
right corner of the ISC matrix shaded darker, representing lower 
similarity. The distinct difference between the SS and SP groups shows 
a decrease in synchrony as defined by correlation. This can 
be  interpreted so that the localizing sounds induce more unique 
responses in subjects who have a partner, while individual listeners 
yield a more uniform response. These unique responses, regardless of 
the true pair, can be assumed to emerge due to a dialogical yet silent 
facial interaction elicited by the drama stimulus. Such social 

interaction can be detected as non-correlating response signals. This 
is not the same as the second hypothesis, however, as correlating 
signals can be more or less complex (the latter is tested via RQA). The 
ISCs between paired and single listeners showed on average a medial 
response, indicative of a lack of correlation, as could be expected due 
to the different listening conditions.

The RDM matrices were calculated also for the eyebrow and gaze 
responses (AU2 and Gaze Angle) presented in Figures 6, 7 respectively. 
For these modalities, it is harder to visually identify strong differences 
in reaction between the studied groups to any stimuli in particular.

In these latter two cases, the difference of ISCs between SS and SP 
individuals seems to be in their homogeneity. Namely, the values of 
ISCs between SP individuals range from the lower to the upper bound 
(see top right quarter of panels), while ISCs between SS individuals 
show less deviation from a general mean as do ISCs between 
individual and paired subjects. Next, we use RSA to quantify above 
visual observations.

3.3. RSA with coupling models

To quantify the similarities of ISCs for different stimuli, 
we performed Kendall Tau rank correlation analysis on the RDM 
matrices discussed above. Furthermore, for a description of the 

FIGURE 5

RDM matrices of the smile response (the Zygomaticus major muscle, AU12) for all 10 sound-clip stimuli. The figure presents pair-wise ISC values 
between all subjects. Row and column indexes are presented over one for clarity: Individual listeners ss01-1 to ss17-1 and paired listeners sp01-1 to 
sp17-1. Darker color corresponds to lower similarity. The arrangement of subjects and related ISC values are illustrated in the last subplot.
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differences between the SS and SP groups specifically, we included in 
this analysis two model matrices, Model-1 and Model-2 based on our 
first hypothesis related to synchrony differences.

3.3.1. Model-1 (“the strong coupling model”)
Assume higher similarity for only true paired listeners. This 

means that for example, SP01-1 and SP01-2 are assumed to have an 
ISC value of 2 (i.e., perfect correlation), while SP01-1 and SP02-2 have 
a value 1 (i.e., zero correlation). This model essentially assumes that 
dyadic interaction presents itself in the response signals only when the 
true dyadic couples are compared.

3.3.2. Model-2 (“the weak coupling model”)
Assume higher similarity for all paired listeners, regardless of true 

couples, i.e., all SP group members’ ISC value is assumed value 2. This 
model essentially assumes that dyadic interaction induces a shared 
component in response signals regardless of the specific partner (true 
or not).

Above two models are illustrated in Figure 8 as RDMs.
We computed Kendall Tau rank correlations between all 10 

stimuli and 2 model matrices, i.e., total (12–1) × 12/2 = 66 values (i.e., 
half-diagonal of symmetric matrices). The resulting Kendall Tau rank 
correlation matrices of the participants are presented below in 
Figures 9–11 for the smile-, eyebrow- and gaze responses, respectively. 

Correlations coefficients surpassing statistical significance p < 0.05 
are shown.

For the smile and eyebrow responses, 6 out of 10 localizer stimuli 
correlated statistically significantly and relatively strongly with the 
Model 2, however with a negative coefficient. Firstly, this means that 
differences in ISC values are higher within SP subjects (true pairs or 
not) versus SS or mixed SS-SP pairs. That is, regardless of specific 
partners in the SP group, ISCs calculated between any individual from 
the SP group will on the whole yield different results than those 
calculated between individuals from the SS group. Secondly, the 
direction of our original assumption was reversed and in fact, 
individuals in the SP group respond on average less similarly to the 
stimuli than individuals from the SS group.

We can identify other connections as well. For example, in 
Figure 9 for the smile response we notice a relatively strong correlation 
between [Making love] and [Car crash] on one hand, and on the other, 
between [African music] and [Child crying]. These correlations 
represent a relationship of the pair-by-pair ISC values, and as such a 
positive correlation between [Making love] and [Car crash] for 
example tells us that their ISC matrices are significantly similar 
(something tentatively visible by inspection of the ISC matrices 
themselves). In this case, there is a significant overlap in the smile 
response to the mentioned stimuli, likely due to their emotionally 
provocative content.

FIGURE 6

RDM matrices of the eyebrow response (the Frontalis, pars lateralis muscle, AU2) for all 10 sound-clip stimuli. The figure presents pair-wise ISC values 
between all subjects. Row and column indexes are presented over one for clarity: Individual listeners ss01-1 to ss17-1 and paired listeners sp01-1 to 
sp17-1. Darker color corresponds to lower similarity. The arrangement of subjects and related ISC values are illustrated in the last subplot.
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The matrix in Figure 10 for the eyebrow response also shows 
significant correlations, however for different stimuli. We  note a 
significant overlap in the eyebrow movement to stimuli such as [Man 
yelling before shooting] (shortened to [Yelling-Shooting] in the label), 
[Woman screaming], and [Making love].

Lastly, we present the matrix for the gaze response in Figure 11. 
Regarding the gaze, very few stimuli follow either Model 1 or 2, or are 
similar to each other. To an extent, this can arise from a stringent 
confidence level, but more likely is that this particular modality is not 

easily studied through the ISC framework. Next, we apply ISC and 
RSA for the signals recorded during the long narrative.

3.4. Sliding-window analysis of the 
temporally unfolding narrative

The previous analysis demonstrated the capability of ISCs to 
be used in analyzing dyadic interactions, so in this section we extend 
it to the whole audio drama, listened to by SS and SP individuals. 
We carried out a sliding window ISC analysis across the audio drama 
(27 min), seeking specific intervals where statistically significant 
(p < 0.05) Kendall Tau correlation with Model 2 (the weak coupling 
model) was present. The window size was selected similarly to the 
localizing segment lengths including their buffer times, 20 s, with a 
step of 1 s to capture the relevant highly influential segments. Upon 
generating the relevant statistics, a false discovery rate (FDR; 
Benjamini and Hochberg, 1995) adjustment was performed on the 
series of p-values. In order to avoid spurious results, we considered an 
interval to show a significant correlation with the model 2 only, if 
multiple windows in a row were significant.

All intervals with statistically significant correlations are presented 
in Figure 12 with color-coded and overlaid on the mean valence and 
arousal graphs of the audio drama, based on manual annotations of 

FIGURE 7

RDM matrices of the gaze response (Gaze Angle in FACS) for all 10 sound-clip stimuli. The figure presents pair-wise ISC values between all subjects. 
Row and column indexes are presented over one for clarity: Individual listeners ss01-1 to ss17-1 and paired listeners sp01-1 to sp17-1. Darker color 
corresponds to lower similarity. The arrangement of subjects and related ISC values are illustrated in the last subplot.

FIGURE 8

Illustration of the two coupling models. (A) Model-1 aka the strong 
coupling model (true pairs in SP) and (B) Model-2 aka the weak 
coupling model (all pairs in SP).
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the participants. Note that because the participants annotated valence 
and arousal in separate listening sessions on their own, and this 
portion of the experiment was done voluntarily after the laboratory 
sessions, the N was different (N = 11 for valence; N = 14 for arousal). 
Here the annotated valence/arousal graph was used to describe 
temporally unfolding emotional content of the film, instead of 
applying annotations with more complicated labeling.

In Figure 12, intervals that differ notably based on modality; both 
seem to often precede or align with large changes in the mean valence. 
Also, all the significant segments of Kendall tau between the RDM and 
Model 2 yielded negative coefficients, as was visible in the RDM 
comparisons. Gaze Angle again showed little correspondence with 
Model 2, yielding only one statistically significant interval. Although 
this is a coarse-grained overview, averaging out a variety of subject-
specific responses, the results indicate usefulness of using gaze, smile 
and eyebrow signals with RSA to pinpoint narrative moments 
associated with strong dyadic coupling. The analysis suggests that 
drama moments revealing socially embarrassing information or 
improper character behavior elicit the strongest dyadic facial 
interaction (see Section 4.1.2. for details).

3.5. Identifying dyadic interaction by 
machine learning on recurrence quantifiers

Lastly, we present results for the classification between SP and SS 
groups, i.e., the presence of dyadic interaction or lack thereof. The 

dataset was generated from the eyebrow-, smile- and gaze responses 
over the audio drama, split into non-overlapping 20-s segments. Such 
a setup yielded, for each of the 36 subjects in each modality, 3 × 3 = 9 
features with total 81 segments corresponding to a total 36 × 81 = 2,916 
samples for CatBoost.

The data was split into a training and a testing set in two ways. 
First, by randomly splitting the data with an 80% (training) to 20% 
(testing) ratio yielding 2,332 and 584 samples, respectively. This 
process was repeated 40,000 times, in order to gauge the impact of 
individual subject differences on the results. The optimal model 
parameters (L2 regularization and tree depth) were identified during 
training with the built-in randomized search function, and estimated 
in the same framework, with the optimal parameters being chosen as 
the average over all iterations. The second method of data splitting was 
based on subjects, having the training and testing set composed of 
different participants. The training and testing data split of 80 and 20% 
was maintained here as closely as possible while keeping different 
subjects within the two sets.

In both training-test split types (i.e., random and subject-wise) the 
model performances were compared against a baseline (aka dummy) 
classifier, which was a naive predictor that always predicts the most 
frequent label found in the training set. The resulting distributions of 
accuracy percentages for both the model and a dummy classifier are 
depicted in Figure 13. Mean accuracies of 67% (subject-wise split) and 
75% (random split) were above the chance level of 54%, indicating that 
models learned successfully. In other words, even short segments of 
our recorded physiological signals carry information on the presence 

FIGURE 9

Kendall Tau correlation coefficients of RDMs for the smile response (the Zygomaticus major muscle, AU12 in FACS). Correlations between all 10 audio-
clip stimuli and two hypothesis coupling models (1 being the strong coupling model). Blue color indicates more similarity, red more dissimilarity 
(marked with – minus). Only coefficients with statistical significance at p  <  0.05 are shown.
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of dyadic interactions, and we can classify if a specific subject belongs 
to the SP and SS group with better than chance probability using 
features obtained using RQA. This result is in line with our 
third hypothesis.

In Figure 13B, we notice that the subject-wise split method can 
generate accuracies not only overlapping with the dummy classifier, 
but also significantly worse than the latter. This indicates that the 
training and test set for those splits behave in a contrary manner to 
each other. The widespread, poor predictions likely relate to overfitting 
on the training subjects and, considering their individual differences, 
the test set simply does not follow the same patterns. At the same time, 
the subject-wise splitting procedure can also yield testing sets that 
perform better than any combination of the random split method, 
most likely containing individuals responding closer to average facial 
behaviors, which the model could learn from the training set 
individuals, irrespective of outliers.

We further investigated the relative importance of the three 
features, determinism, entropy and laminarity, for the model. 
CatBoost feature importances indicate how much the prediction 
changes on average, if the feature value changes. Feature importances 
for the random sample-wise split and for subject-wise splits are 
presented in Figure 14, separately for each data type. For the three 
modalities, gaze was the most important with mean importance scores 
between 10 and 30, while smile and eyebrow are equally important at 
means around 6–10. Therefore, in general, all RQA features were 
considered relevant for the classifier (i.e., none close to zero).

When considering the random-split procedure, the following can 
be  noticed: While gaze response carries the most importance in 
classifying dyadic interaction, it is based mainly on laminarity, which 
essentially measures stagnancy in the time-series, whereas for the 
eyebrow- and smile responses, entropy was the most important. As 
entropy is based on the recurrent points that already form diagonal 
lines (the basis for calculating determinism), i.e., a sequence of values 
being repeated, it tells us about the distribution of these sequence 
lengths. This in turn describes the variability in repeated sequences, 
as a small entropy means repeated sequences were mainly of a similar 
length. A high entropy smile signal for example includes many 
repeated smiles that vary in their motion. This can be interpreted as 
the complexity in the recurrent sequences being associated with 
dyadic interaction, while eye movement itself or lack thereof is 
indicative of another person being present.

There was notable variability in importance particularly for the 
subject-wise splitting. For the gaze response, laminarity is on average 
even more prioritized over other quantifiers for the subject-wise split, 
and laminarity also takes priority (albeit not as greatly) for the smile 
response. This hints at how a model that does not learn to value the 
entropy of the individual’s signal will make worse predictions on the 
whole. More information on how specifically this is the case can 
be found in the Supplementary Figure S2 for subject-wise splitting. 
Interestingly, eyebrow response retains its ordering of importance for 
both splitting methods, the subject-wise variant increasing the 
variability notably. This was also the case for further divisions by 

FIGURE 10

Kendall Tau correlation coefficients of RDMs for the eyebrow response (the Frontalis, pars lateralis muscle, AU2 in FACS). Correlations between all 10 
audio-clip stimuli and two hypothesis models (1 being the strong coupling model). Blue color indicates more similarity, red more dissimilarity (marked 
with – minus). Only coefficients with statistical significance at p  <  0.05 are shown.
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accuracy, indicating an interesting robustness of this particular signal, 
perhaps being more uniformly complex even for individuals whose 
other signals can vary widely and lead to spurious classifications. 
Overall, the importance scores highlight the impact of complexity in 
the smile and eyebrow responses for predicting dyadic interactions, in 
line with our second hypothesis. A detailed discussion can be found 
in Supplementary material.

4. Discussion

We report a methodic pathway for analysis of the multiplicity of 
psycho-physiological signals in individual and paired settings in the 
context of dynamically unfolding audio stimulus.

We first analyzed signals obtained for 10 sound clips from the 
affective sound database IADS-2 (Bradley and Lang, 2007) that is 
widely used in psychological studies (Yang et al., 2018), thus providing 
us additional support for interpretation. We found that gaze direction 
estimated from the video and two facial action units, AU2 (eyebrow) 
and AU12 (smile), provided the most robust information on pairwise 
dynamics. These three signals could be linked to socially motivated 
facial movements during listening to an audio drama. They also 
allowed relatively straight-forward visual validation of data analysis in 
terms of their social functions: Consider, for instance, movement of 
the gaze towards or away from the other, or simultaneous smile and/
or eyebrow movements. The audio drama part allowed validating the 
proposed method with longer durational and dynamically more 

varying physiological signals. Next, we discuss our key results and 
their interpretations in more detail.

4.1. Social presence affects signal 
synchrony

How the social presence is shown in the analyzed data is discussed 
here, first, in terms of the short audio clips, and, secondly, reflected on 
the 27-min audio drama.

4.1.1. Dyadic behaviors detected in emotional 
sounds

In our intersubject correlation (ISC) analysis of short localizing 
audio clips, the single listener groups (SS) showed uniform ISCs, 
representing the audio stimuli-induced component as theorized. 
Interestingly, we found that ISC values between any participants in the 
paired group (SP) were, in general, lower compared to those in the SS 
group, or mixed SS-SP pairs (subjects in different groups). In other 
words, regardless of specific partners in the SP group, ISCs calculated 
between any individual from the SP group yielded different results 
than those calculated between individuals from the SS group. This 
could be  interpreted so that dyadic interactions do not induce a 
specific time-locked response but rather a communication with 
different dynamics of turn-taking patterns between the pairs. The 
latter could be  assumed to consist of temporally delayed socially 
determined responses between the members of specific pairs, not 

FIGURE 11

Kendall Tau correlation coefficients of RDM matrices for the gaze response (Gaze Angle). Correlations between all 10 stimuli and two hypothesis 
models (1/2 being the strong/weak coupling model). Blue color indicates more similarity, red more dissimilarity (marked with - minus). Only 
coefficients with statistical significance at p  <  0.05 are shown.
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imitation, thus yielding lower time-locked ISC. Lower ISC values for 
pairs that for the SS group could be due to communicative turn taking 
(see, e.g., turn taking in question reply setting, Bögels, 2020). In this 
case, one’s response to the stimuli (e.g., a spontaneous smile or a 
glance toward the partner) is met with a unique reaction from the 
other person, in turn provoking potentially further nonverbal 
interchange based on subtle facial expressions, i.e., dyadic reaction 
emotion (Sham et al., 2022).

The lower ISC values of SP than SS groups was especially evident 
for the modality of “smile” (AU12). This may indicate that single 
subjects showed a tendency to smile even alone when hearing, for 
example, a child laughing. This positively valenced behavior has 
been shown to emerge almost automatically (Stark et  al., 2020), 
reflecting innate “caregiving instinct” in adults (Young et al., 2016). 
For smile (AU12), the strongest distinction between the groups 
when comparing the ISC results was found in the stimuli [African 

FIGURE 12

Sliding window ISC analysis across the audio drama (27  min, starting at 275  s). Lines correspond to mean valence (solid) and arousal (dotted) annotated 
by subjects. Colored intervals pinpoint moment with statistically significant (p  <  0.05, FDR adjusted) Kendall Tau correlation with the weak coupling 
model (model 2) that corresponds to the assumption of higher similarity between paired (SP) subjects in comparison to single (SS) subjects. Model 2 
assumes that dyadic interaction induces a shared component in response signals regardless of the specific partner.

FIGURE 13

Distributions for SP/SS classification model accuracies for the test set using (A) random splitting and (B) subject-wise splitting validation strategy. The 
two distributions are the results for a constant-only (dummy) model (orange color) and a catboost classifier model (black color) computed with 
40,000 cross-validation iterations.
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music], [Making love], and [Child crying]. For the eyebrow response 
(AU2), visually the ISC matrixes were much less distinct, however 
separation of SP and SS groups could be seen [Making love], [Man 
yelling before shooting], [Heartbeat], and to a lesser extent in others. 
In the case of gaze angle, a similarly weaker distinction was visible 
when compared to the smile response, however, [African music] and 
[Child crying] remain tentatively distinct, however [Making love] 
less so.

To handle the patterns more rigorously within the ISCs, 
we employed RSA with two coupling models. We also compared 
RDMs between stimuli. Besides finding out which stimuli produce 
similar results, we could also identify which matrices were entirely 
or almost unique in their presentation. For the smile signal, 
[Classical music] had a significant albeit weak similarity to 
[Yawning] and with the two coupling models (see Section 3.2), 
indicating distinguishability between two groups. The [Yawning] 
however was similar to other stimuli, but neither model 1 (strong 
coupling) or 2 (weak coupling). This could indicate that the similarity 
arises from particular pairs and their interaction dynamics rather 
than group differentiation. Furthermore, the stimuli [Woman 
screaming] seemed to be  unique, following neither model nor 
having significant similarity to any other stimuli. Regarding the 
eyebrow response, a correlation with Model 1 was seen, although 
[African music], [Making love], [Heartbeat] and [Classical music] 
again fit the Model 2 assumptions, showing the separation of SS and 
SP in general.

The analysis of smile (AU12) provided the strongest distinction 
between the groups and stimuli, while eyebrow and gaze angle 
modality were less useful. This is possibly due to the noisy nature of 
the data itself and could have been expected from a visual inspection 
of the RDMs themselves. Furthermore, since ISC only measures 
linear correlation between signals, it cannot take into account any 
non-linear or delayed forms of synchrony that might be present. 
However, while not evident from our ISC analyses, all responses 
turned out to be informative of the presence of dyadic interaction 
between the pairs.

4.1.2. Context-dependent dyadic behaviors 
detected in audio drama

The short audio clips in the IADS-2 database involve emotional 
situations categorized based on the emotional valence and level of 
arousal they elicit in participants (Yang et al., 2018). These clips, for 
instance, [woman screaming] or [child laughing], are effective due to 
their generality in terms of basic emotions, such as fear, sadness, or 
happiness. However, they lack time-dependent contextualizations 
characteristic for long durational narratives, not to mention contexts 
related to the lived experience of each participant. Our analysis 
allowed for detecting socially relevant events that reflect dyadic 
interactions (SP) and are not similarly present in the data from single 
listeners (SS).

We detected 13 moments in the audio drama (see Figure  12) 
where AU2, AU12, and gaze data suggested dyadic interactions 
between the subjects who had a pair. A description of these moments 
is listed in Supplementary Table S3. These moments take place in three 
environments, around the family dinner table (timepoints 1–4), in the 
Elderly Nursing Home (5–7), and at the stairway of an apartment 
building and an apartment in the same building (8–13). The detected 
dyadically active moments mainly reveal socially relevant information 
or behaviors that deviate from generally accepted social norms, such 
as infidelity, racist naming, or swearing in rage. The content of many 
of these 13 moments also implies internal references to previous 
events in the audio drama, carrying context-determining knowledge 
that is expected to affect reactions at later time points.

Figure  12 depicts the continuous annotations of arousal and 
valence by the subjects while listening again to the audio drama in 
their own time at home after the experiment. Interestingly, based on 
visual inspection, all 13 moments are located around time-locked 
(negative or positive) peaks of either arousal, valence, or both. 
Although mainly tragic and painful for the characters in the audio 
drama, these events could also elicit humorous, sarcastic, or even 
empathic responses in the subjects, this in turn, creating social 
pressure to share such feelings or experiences with the other person 
in the room. It’s plausible that besides the audio drama content itself, 

FIGURE 14

Violin plots of feature importance percentages for (A) gaze, (B) smile, and (C) eyebrow features in the binary classification model between paired (SP) 
and individual (SS) group subjects, for two train/test splitting procedures: random and subject-wise. The violin plots are bounded by the maximum 
99th percentile of data within the window. Distributions were computed with 40,000 cross-validation iterations.

https://doi.org/10.3389/fpsyg.2023.1153968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Kauttonen et al. 10.3389/fpsyg.2023.1153968

Frontiers in Psychology 18 frontiersin.org

the enhanced memory of socially relevant dyadic interaction with the 
partner was occurring during those moments.

4.2. Social presence and complexity of 
recurrence patterns

The ISC allows observing correlations across multiple subjects but 
does not provide information on the dynamics of an individual’s data. 
Therefore, we employed RQA to generate descriptors of individuals’ 
responses that are robust against non-stationarities and also 
interpretable in the scope of non-linear time series analysis.

We used the quantifiers yielded by RQA as predictors in a gradient 
boosting binary classification algorithm (CatBoost). The aim was to 
see if single and paired subjects could be identified based on their 
individual eyebrow-, smile- and gaze properties. Using the CatBoost 
model, the classification was successful with mean accuracies of 67% 
(subject-wise split) and 75% (random split), both above chance level, 
thus confirming that paired setup had a fundamental effect on the 
autorecurrence properties of the signals. It’s noteworthy that for the 
subject-wise splitting procedure, where the testing and training sets 
were composed of distinct individuals, produced a wide range of 
accuracies; some lower than the chance level, some higher than the 
relatively tight spread of the random-split procedure. This highlights 
the impact of individual differences in predicting dyadic interaction 
from the given quantifiers and was investigated more in-depth via the 
relative importance of the predictors. This is discussed in more detail 
in the Supplementary material.

Looking at the relative importance of classifiers, the most 
important features were associated with gaze, and specifically its 
laminarity quantifier. The latter being the count of recurrent points 
forming vertical (or horizontal) lines describes a rate of stagnancy - 
periods of no change in the signal’s value (cf. Figure 3). Another way 
to describe the situation is that laminarity indicates how likely the 
system is to be trapped in specific states at any given time, that is to 
say, the response value changes slowly or does not change at all during 
some time interval. The mean length of these states is known as the 
trapping time, which describes the average time the system remains 
trapped in some stable state. Thus, we  identified that the simple 
absence of movement in the gaze response is a main predictor of 
dyadic interaction. This result is in hindsight expectable, as another 
person in the room giving rise to dyadic interactions is expected to 
alter the movement of the participants’ eyes. However, this effect was 
notably stronger for the subject-wise splitting procedure. That is to say, 
a model trained on one set of individuals learned to over-value the 
simple absence of dynamic eye movement and thus underperformed 
in predicting dyadic interaction among individuals with a more varied 
range of movement in this signal. So, while the absence of eye 
movement is very important, it is not the be-all and end-all, as it is not 
solely responsible for the predictive capacity based on gaze.

For purely predictive purposes, it appears thus that gaze is 
behaving almost like a trigger, for whether some interaction is taking 
place or not. Meanwhile, more complex communication is seen in the 
smile and eyebrow responses, although the smile and eyebrow 
responses were both less important on the whole compared to gaze, 
the ordering of their RQA quantifiers by importance turned out 
informative. For the smile signal, entropy was most important for the 

random splitting procedure, indicating that the complexity in an 
individual’s smile response was what best described dyadic interaction.

Entropy in RQA describes the complexity of the deterministic 
structure in the data and gives a measure of how much information is 
needed to recover the system dynamics from the noisy and limited 
data (in terms of a stochastic ensemble, we have one iteration). A low 
entropy indicates that the length of the longest deterministic (in RQA, 
an “exactly” repeated) segment is short and has low variability, 
characteristic of chaotic behavior, while high entropy is characteristic 
of periodic behaviors. We stress that while this is not as impactful in 
terms of predictive capability, the latter can be  improved by fine-
tuning and the inclusion of more data and context. The primary 
information obtained in this manner is however that while gaze 
dictates well a general presence of another person in this setup, the 
interaction causes a noticeable uptick in periodic behaviors of different 
lengths in smile and eyebrow movement.

In the subject-wise splitting procedure, the classification models 
were not always able to learn the value of entropy in the smile signal 
and thus performed worse. This was demonstrated in more detail in 
the Supplementary material, where the importance of the subject-wise 
splitting procedure was further divided into high and low accuracy 
percentage samples (see Supplementary Figure S2). Given that the 
importance scores are based on the training set, the lack of weight on 
entropy as a predictor of dyadic interaction thus yielded lower 
accuracies in the prediction task.

For the eyebrow signals, no change in ordering by importance 
occurred when changing the train/test splitting method, with the 
main difference being a wider spread in the importance around a 
mean, and entropy being most important overall. This indicates that 
the eyebrow response was relatively robust in its complexity in all 
individuals, in contrast to the smile response. Even given the wider 
spread in importance, the same structure is present in the further 
divided plot (see Supplementary Figure S2). It shows that while 
individuals might significantly vary in their personality and the SP 
and SS groups vary fundamentally, their eyebrow movement contains 
a consistent amount of variability regardless.

4.3. Socially meaningful audio drama 
events enhance dyadic interaction

The experiment had two factors that were assumed to affect the 
physiology of the participants, namely, (1) the dramatic content of the 
audio stimuli which was the same for all participants independent of 
the listening situation, and (2) the listening situation, which was either 
alone or with the presence of another listener. On one hand, it has 
been shown that when subjects are engaged with narratives, their 
responses tend to align with other subjects in synchrony with the 
specific narrative events (Regev et al., 2013; Tikka et al., 2018). On the 
other hand, in the presence of other people, the physiology and 
behavior of the person tend to align with those of others (Holler, 
2022). While the recognition of the emotional states of other persons 
has shown to be especially contagious, for instance, regarding anxiety 
(Shaw et al., 2021), or the spontaneous smile of a co-stranger (Golland 
et al., 2019), affective responses to stimuli may not rely on unconscious 
perceptual processes only but require attentive awareness of the 
semantic content of the stimulus (Lähteenmäki et al., 2019).
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Our results showed that the behaviors of those who listened alone 
were more aligned with other single listeners than the behaviors of 
those who had a pair. The listening situation was affected by the 
observed facial behavior of the pair on the other side of the table. The 
socio-emotional events in the audio drama triggered non-verbal 
responsive expressions between the pairs, which altered in a dialogical 
manner, likely depending on the personality of each participant. One 
interpretation of the lower synchronization could be  that the 
engagement with the social face-to-face interaction during audio 
drama may have required socially contextualized efforts that could 
lead to redistribution of available affective-cognitive resources, which 
in the case of a single listener condition would be directed solely to the 
engagement with the narrative. It’s also possible that dyads were doing 
more complicated interactions not captured by linear ISC or were 
simply distracted from listening to the narrative.

In face-to-face situations, following (Hasson and Frith, 2016), it 
may be assumed that during a physical co-presence with another 
person in a room, even without tasked bodily or verbal interaction, 
the behavior of the participants will gradually start to be dynamically 
coupled. In a motivated interaction or conversation situation, the 
co-present parties consciously take turns, adapting their behavior to 
the behavior of the other (Trujillo and Holler, 2023). Again, this type 
of synchrony could be more complicated than linear correlation used 
in computing ISC, hence resulting in low apparent synchrony using 
ISC. In our experimental situation, the two co-present participants 
(SPs) were instructed not to talk with each other, but only to attend to 
the auditory stimuli and pay attention to the other subject’s feelings on 
the opposite side of the table. These instructions were used as a 
practical matter of preventing subjects from moving, acting or 
speaking aloud so that it would disturb data collection, however 
without biasing the experimental situation. The emotional narrative 
was considered a more powerful driver of emotions and social 
dynamics than the instructions we used.

Although our findings are based on three specific facial signals, 
we assume that a manifestation of this socially determined feature 
might be observable in any other multiple signal source combinations 
of the dyadic group, thus allowing to separate the people with pairs 
(SP) from the individual participants (SS), based on their ISC values 
and even the individual time-series based on RQA quantifiers.

4.4. Limitations of the study

In this study, we concentrated on three data sources from a range 
of multiple data sources collected in the experiment. This was a 
limitation considering the possible information embedded in the 
other signal sources that were not used. However, we also consider this 
as a strength, as pinpointing and working only with the three strongest 
facial behavioral modalities (AU2/eyebrow, AU12/smile, and gaze) 
allowed us to make more direct assumptions on the functions of each 
modality in terms of the socially contextualized study set-up. 
Consequently, interpretation of the findings is straightforward, in 
comparison to well-known interpretation challenges related, for 
instance, heart rate variances, or even more so with EEG and related 
neural signals. Yet, the interpretation of data of easy access modalities 
such as a smile or lift of an eyebrow may embed ad hoc interpretation 
biases inherited from ‘folk psychology,’ introducing limitations in its 
one right. While our experiment revealed notable differences in 

signals between individual and paired subjects, additional control 
variables and/or stimuli are needed to further explore the origin and 
factors driving those differences. For example, using more or less 
engaging narratives and introducing other types of interactions (see 
Future directions) could change the relative importance of the 
narrative versus social interaction.

We did not quantitatively measure the level of attention of 
participants towards the audio narrative, instead, we relied on the 
qualitative questionnaire (“What kind feelings did the story evoke?”) 
and post-experiment discussions about the content of the story, which 
allowed us to ensure that all subjects recalled at least some events in 
the story. In our study, all SP subjects were assigned randomly with 
their partners instead of measuring and matching partner sympathy 
ratings explicitly. This may have influenced the higher variability in 
the partnered participants.

Finally, the number of participants was relatively small and limited 
to single listeners and to the pairs that were unfamiliar to one another. 
While the unfamiliarity in the pair condition was deliberately chosen 
as one of the participant selection factors, this due to the expectation 
that strangeness of the other person would generate sufficiently 
socially driven distraction to the dyadic setting compared to the 
single-person setting, to properly study the actual effect of 
unfamiliarity us such we should have expanded the paired participant 
group with the familiar pairs. Due to our orientation towards 
elaborating novel methodic pathways, the study of familiarity vs. 
unfamiliarity was excluded from this experiment in favor of focusing 
on the single vs. paired groups.

We furthermore acknowledge that additional data collection is 
necessary to link behavioral and personal traits with properties of 
signals, such as synchrony and autorecurrence. Specifically for the 
interpretation and analysis of recurrence quantifiers, a larger sample 
size can help add confidence and clarify the role of entropy vs. 
laminarity among the chosen modalities, based on individual 
differences, as current results could too strongly be  influenced 
by outliers.

4.5. Future directions

We aim to eventually apply the analysis framework developed 
and tested here for large-scale multisource data acquired from 
participants’ engaging with different social activities, not only 
listening to a narrative. Studying recurrence properties of 
physiological signals during interaction is important to better 
understand and model human responses to long-duration narratives 
in social contexts. Such information is valuable in modeling and 
predicting human responses to audio-visually mediated or live social 
situations. In addition to increasing social and psychological 
understanding of the dynamics of dyadic non-verbal interaction 
between two people, such knowledge contributes to the fields of 
human-computer interaction and social robotics. In this study, 
we limited the RQA analysis to individual signals, but extensions to 
multiple signals, e.g., between different modalities or individuals, 
including joint-RQA and cross-RQA exist (Webber and Zbilut, 
2005). Here we proposed to use a classification algorithm that can 
yield a metric of importance for predictors, but application as 
numerous. For example, one might be interested in developing the 
RQA further on specific segments, reconstructing the proper phase 
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space with time-delayed embedding, and perhaps even introducing 
cross-RQA, which is again a pairwise analysis of recurrence on two 
series. We  focused on SP/SS group differentiation rather than 
individual identification; nevertheless, we  highlight the ethical 
implications inherent in developing AI models that may be capable 
of individual-level physiological signal detection. Consequently, 
careful ethical consideration would be essential for any research 
moving in this direction. Finally, in our setup, we evaluated signal 
changes with face-to-face paired listening with another person. 
However, numerous other potentially interesting setups presumably 
induce signal changes. For example, what if another person is not 
face-to-face, but with a 45° angle, or there are multiple persons, an 
animated robot, or just a display? Each of these scenarios could leave 
their specific fingerprints on the physiological signals.

5. Conclusion

The face-to-face presence of another unfamiliar person in a shared 
context may be a strong driver for variations in the physiological 
signals. The question we  tackled was to what extent this social 
phenomenon overrides the interpersonal synchronization induced by 
a dramatized context. Our experimental setting revealed differences 
between single listeners and dyadic pairwise patterns when listening 
to audio drama. We concentrated on two computational methods, ISC 
and RQA, that can be applied in the analysis of dyadic physiological 
signals without the need for manual annotations.

Our ISC analysis showed that the audio stimuli induced more 
unique responses in those subjects who were listening to it in the 
presence of another person, while single listeners tended to yield a 
more uniform group response as it was driven by the audio drama 
alone. In other words, the behaviors of paired individuals correlated 
less with one another, compared to the single listeners. The ISC values 
of pairs, whether calculated on true pairs or any two individuals who 
had a partner, are lower than the group with single individuals. Most 
likely the signals generated by pairs were not driven only by the audio 
drama stimulus, but also by their mutual facial interactions that were 
unique to particular pairs.

The strongest distinction in facial interaction between the two 
groups (paired vs. single listeners) was found with three sound 
localizers containing distinguished socially charged positive or 
negative valences. Out of the three facial signal sources that we studied, 
the ‘smile’ (Lip Corner Puller, AU12) may best indicate the momentary 
non-verbal facial dialogue in search of agreement on responses to the 
shared affective context. In the 27-min long audio drama 
we  pinpointed 13 moments with distinctive dyadic interactions 
between the subjects who had a pair. Using RQA, we  found that 
recurrence patterns in an individual’s responses carry information 
about dyadic interactions, via a classification task, and accounting for 
the entropy or complexity of recurrent patterns was important for the 
latter, especially so for the smile response. While the gaze was mainly 
a laminarity-based predictor of the presence of another person, the 
undervaluing of entropy related to worse classifications in all cases, 
demonstrates the way RQA can describe nonlinear effects of dyadic 
interaction on one’s response signals.

Regarding the two main tools used in the analysis, RSA and RQA, 
we demonstrated how the more conventional RSA is indeed effective in 
analyzing dyadic interactions, highlighting moments of a clear division 

between the two studied groups. However, this method is limited by 
linearity and requires pairwise comparisons. RQA however applies to a 
single time series with non-linear properties. The two methods target 
different aspects of the studied phenomenon. In short, RSA tells us where 
differences occur as a whole, and the latter can be compared easily to 
hypothetical similarity matrix structures. In our case this showed a 
reduction of correlation for dyadic interaction, most likely indicating a 
nonverbal dialogical communication. RQA tells us how individual time-
series differ by their non-linear recurrent properties, which were found 
in the study to follow the second initial hypothesis, that dyadic interaction 
influences the complexity of recurrent dynamics. Specifically, the novel 
combination of RQA and classification tasks has many further avenues 
to explore regarding the data. The latter, however, should be investigated 
in the future in the context of dyadic interaction. This work serves as a 
methodological first step in this direction. Our work also contributes 
towards modeling and predicting human social behaviors to specific 
types of audio-visually mediated, virtual, and live social situations.
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