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What is missing in the study of 
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While approaching celebrations for the 150 years of “The Expression of the 
Emotions in Man and Animals”, scientists’ conclusions on emotion expression 
are still debated. Emotion expression has been traditionally anchored to 
prototypical and mutually exclusive facial expressions (e.g., anger, disgust, 
fear, happiness, sadness, and surprise). However, people express emotions 
in nuanced patterns and – crucially – not everything is in the face. In recent 
decades considerable work has critiqued this classical view, calling for a more 
fluid and flexible approach that considers how humans dynamically perform 
genuine expressions with their bodies in context. A growing body of evidence 
suggests that each emotional display is a complex, multi-component, 
motoric event. The human face is never static, but continuously acts and 
reacts to internal and environmental stimuli, with the coordinated action of 
muscles throughout the body. Moreover, two anatomically and functionally 
different neural pathways sub-serve voluntary and involuntary expressions. 
An interesting implication is that we have distinct and independent pathways 
for genuine and posed facial expressions, and different combinations may 
occur across the vertical facial axis. Investigating the time course of these 
facial blends, which can be  controlled consciously only in part, is recently 
providing a useful operational test for comparing the different predictions 
of various models on the lateralization of emotions. This concise review will 
identify shortcomings and new challenges regarding the study of emotion 
expressions at face, body, and contextual levels, eventually resulting in a 
theoretical and methodological shift in the study of emotions. We contend 
that the most feasible solution to address the complex world of emotion 
expression is defining a completely new and more complete approach to 
emotional investigation. This approach can potentially lead us to the roots 
of emotional display, and to the individual mechanisms underlying their 
expression (i.e., individual emotional signatures).
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Introduction

“…Facial movement of expression impresses us through its changes, through its melody.
The characteristic of the person will always be the way they move, the melody of the expression; this 
can never be caught in snapshots…”
(Sir Ernst Gombrich, cited by Miller, 1983)

OPEN ACCESS

EDITED BY

Mariella Pazzaglia,  
Sapienza University of Rome, Italy

REVIEWED BY

Shaun Halovic,  
The University of Sydney, Australia
Xiqian Zheng,  
Osaka University, Japan

*CORRESPONDENCE

Elisa Straulino  
 elisa.straulino@phd.unipd.it  

Luisa Sartori  
 luisa.sartori@unipd.it

RECEIVED 03 February 2023
ACCEPTED 06 April 2023
PUBLISHED 27 April 2023

CITATION

Straulino E, Scarpazza C and Sartori L (2023) 
What is missing in the study of emotion 
expression?
Front. Psychol. 14:1158136.
doi: 10.3389/fpsyg.2023.1158136

COPYRIGHT

© 2023 Straulino, Scarpazza and Sartori. This is 
an open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with these 
terms.

TYPE Review
PUBLISHED 27 April 2023
DOI 10.3389/fpsyg.2023.1158136

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2023.1158136﻿&domain=pdf&date_stamp=2023-04-27
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1158136/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1158136/full
mailto:elisa.straulino@phd.unipd.it
mailto:luisa.sartori@unipd.it
https://doi.org/10.3389/fpsyg.2023.1158136
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2023.1158136


Straulino et al. 10.3389/fpsyg.2023.1158136

Frontiers in Psychology 02 frontiersin.org

According to a growing crowd of influential researchers, we are 
now on the edge of a radical change of perspective about how we think 
of emotions (Adolphs et al., 2019; Barrett et al., 2019; Heaven, 2020). 
Emotion is one of the building blocks of human life. However, how 
humans dynamically and genuinely express their emotions with the 
whole body is still little investigated.

Over the last century, the science of emotion gradually anchored 
to six prototypical facial expressions: anger, disgust, fear, happiness, 
sadness, and surprise (i.e., the basic six; Ekman et al., 1969; Ekman and 
Friesen, 1971). These six expressions were described as unitary entities 
and conceived as if they were mutually exclusive categories. In 
particular, Basic emotion theory proposes that a limited number of 
emotions are manifested through organized and recurrent patterns of 
behavior in a kind of “one-to-one” correspondence, conserved by 
evolution to handle basic life situations (Ekman, 1992a,b, 2003; 
LeDoux, 1995, 2012; Ekman and Cordaro, 2011; Damasio and 
Carvalho, 2013). Jack et  al. (2016) further narrowed this view by 
suggesting a four-scheme model of expression, each of which 
communicates a specific combination of valence, arousal and 
dominance, probably evolved from a simpler communication system 
(see also the “Three Primary Color Model of Basic Emotions,” Gu et al., 
2019). Needless to say, all these elegant models leave most human 
expressions unexplored (Barrett, 2017; Adolphs et al., 2019; Barrett 
et  al., 2019). Moreover, the term basic seems to underlie that the 
emotions are discrete, rather than a family of related states (Scherer and 
Ellgring, 2007; Tracy and Matsumoto, 2008; Roseman, 2011; Bänziger 
et al., 2012; Keltner and Cordaro, 2017; Cordaro et al., 2018). Instead 
of considering happiness as a single emotion, for instance, research 
should try to unpack emotional categories into their components: the 
happiness umbrella might cover joy, pleasure, compassion, pride, and 
so on. According to the Constructionist theory, a wide range of 
emotions have evolved, shaped by language and cognitive appraisal 
(Russell and Barrett, 1999). All the emotions can be located in a circle 
called circumplex (Russell, 1980), characterized by different amounts 
of valence (pleasure/displeasure axis) and arousal (high/low axis). Basic 
emotion and Constructionist theories have been pitted against each 
other for more than a century in the so-called 100-year war (Lindquist 
et al., 2013; for a review see Crivelli and Fridlund, 2019). Now, thanks 
to modern neuroscience, we are finally beginning to understand the 
complexity of the emotional world. Emotional expression might be far 
richer and more complex than the prototypical patterns of facial 
muscle movements so far considered.

The article is not intended to be  a comprehensive review on 
emotions, but rather a focused review on the expression of emotions 
by presenting critical research suggesting that humans dynamically 
perform genuine and mixed expressions with face and body. We also 
propose a new integrated model capable of extracting multimodal 
algorithms applicable in ecological contexts for the assessment of 
inter-individual and cultural differences.

Distinct and independent pathways 
for posed and genuine facial 
expressions

Humans have 43 facial muscles, with which they can produce up 
to 10,000 different expressions, making the human face one of the 
most powerful communicative tools our species has (Rinn, 1984). 

Note that even the expression of the same emotion may be conveyed 
by different neural systems. For instance, two anatomically and 
functionally different neural pathways sub-serve the expressions of 
genuine and posed facial expressions. The contraction of mimic 
muscles related to genuine emotion originates from subcortical 
brain areas that provide excitatory stimuli to the facial nerve nucleus 
in the brainstem via extrapyramidal motor tracts, which often 
involve the concomitant contraction of the ocular orbicular muscles. 
In contrast, posed smiles are controlled by impulses of the pyramidal 
tracts from the motor cortex (Frank et al., 1993; Schmidt et al., 2006; 
Sidequersky et al., 2014). Therefore, we have different pathways for 
posed (i.e., voluntarily controlled) and spontaneous (i.e., 
involuntarily produced) facial displays (Ross et al., 2016), so that the 
genuine pathway has been associated with more synchronized, 
smooth, and symmetrical expressions compared to the pyramidal 
voluntary system (Ross et al., 2019). Posed facial expressions are 
those displayed intentionally by a person who pretends to transmit 
a specific emotion (Namba et al., 2017), while spontaneous facial 
expressions are those elicited by true emotional content and usually 
correspond to a more genuine emotional experience (Niedenthal 
et al., 2010; Zloteanu and Krumhuber, 2021). For example, a smile is 
genuine when listening to a joke. However, people also try to smile 
when they feel angry, scared, tired or embarrassed, to hide these 
emotions in contexts where they are inappropriate. Notably, the 
upper face muscles (i.e., eye areas) are mainly controlled by the 
subcortical and extrapyramidal systems, whereas the lower face (i.e., 
mouth area) is under the voluntary control of the motor system 
(Gazzaniga and Smylie, 1990; Hopf et al., 1992; Ross et al., 2007; 
Krippl et al., 2015). This means that: (i) facial blends of expressions 
might occur across the horizontal axis (i.e., eyes vs. mouth areas, 
Ross et al., 2016); and (ii) muscles of the upper face are innervated 
bilaterally, whereas muscles of the lower face are cross-innervated 
prevalently from the contralateral side (Morecraft et al., 2004; Ross 
et al., 2016). Therefore, small changes in the dynamical development 
of a facial display may characterize and distinguish genuine from 
posed facial expressions, a topic still poorly investigated (but see 
Sowden et al., 2021). Investigating the relative contributes of upper 
and lower facial cues to emotion recognition is also particularly 
interesting in the light of the current COVID-19 pandemic. By 2020, 
medical facemasks occluding the lower portion of the face have 
become a pervasive feature in everyday life. These masks are clearly 
designed for preventing infection. However, there are concerns 
related to their possible impact on emotion recognition. Results 
from a just-published study (Marini et al., 2021) show that mask-
wearing has two problematic side effects. First, by making the mouth 
invisible, they interfere with the recognition of emotional states. 
Moreover, they compromise facial mimicry reducing therefore 
emotional contagion (Dimberg et al., 2011; Hess and Fischer, 2013; 
Tramacere and Ferrari, 2016; Palagi et al., 2020).

When a genuine emotion is experienced, the expression of this 
emotion cannot be totally inhibited or modified, and it follows a rather 
stereotyped pattern (Baker et al., 2016). For example, a genuine smile 
– like automatic movements - can appear as fast as 0.30 s, and it usually 
fades away after 3 to 4 s (Schmidt et al., 2003). However, the diversity 
of appearance and dynamics of spontaneous smiles still requires a 
better understanding of a smile’s properties and patterns, to determine 
what features or temporal parameters are key in transmitting 
information and how they variate in different contexts (Schmidt et al., 
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2003). What is needed to make sense of emotional expressions is 
therefore a much richer taxonomy.

The missing piece: genuine and 
dynamic displays

Experimental studies of emotional expressions, inaugurated by 
Ekman (1965) and continued by a large number of scholars, have 
focused on static and prototypical facial expressions with the goal of 
finding evidence for a universal theory of emotional expressions (with 
the help, for example, of facial expression analysis or FACS; Ekman 
et al., 2002). Past research, moreover, has favored the use of stereotyped 
emotional stimuli over more ecologically valid but less controllable 
expressions in order to better investigate the influence of variables 
such as gender, age, and personality traits. It was possible to show, for 
example, that observed emotion recognition performance is higher in 
females (e.g., Hoffmann et al., 2010; Saylik et al., 2018; Wingenbach 
et al., 2018; Connolly et al., 2019), decreases with age (e.g., Ruffman 
et  al., 2008; West et  al., 2012; Abbruzzese et  al., 2019), and is 
particularly affected in people with alexithymia (e.g., Vermeulen et al., 
2006; Scarpazza et al., 2014; Starita et al., 2018; Malykhin et al., 2023). 
The use of static, posed, and archetypical facial expressions has 
provided in fact high scientific control and repeatability, but at the cost 
of data variability that likely accounts for actual emotional 
manifestations (Kret and De Gelder, 2012). Past researchers have tried 
to balance these research priorities and have correctly identified the 
optimal ways of expressing different emotions (e.g., Ekman and 
Friesen, 1976; Wallbott and Scherer, 1986; Motley and Camden, 1988; 
Russell, 1994; Biehl et al., 1997; Tcherkassof et al., 2013). Now we can 
try to get on their shoulders and break down the question further, to 
investigate the distinction between authentic and posed emotions. It 
is time to increase complexity. We certainly do not deny the fact that 
using genuine and ecologically valid emotional stimuli will still have 
some problems too. For instance, showing combinations of different 
emotions might add complexity to the task of identifying emotional 
expressions. Indeed, as the prototypical quality of the stimuli lessens, 
the influence of perceiver-based processes (e.g., her/his current 
emotional state) becomes more prominent in the perceptual 
judgement process. We might ask: At what point does the benefit of 
using ecologically valid stimuli balance out the inverse increase in the 
influence of perceptual-based factors? We are aware that emotion 
science is now facing a classic trade-off between external validity of 
stimuli and their recognition properties. We believe, however, that if 
the science of emotions were to remain still anchored in prototypical 
displays, it would not rise to the level of understanding the recognition 
processes evolved in response to real stimuli during the phylogenetic 
development of the human species. Having a comprehensive 
taxonomy of real emotion expression will help to formulate new 
theories with a greater degree of complexity. Recently, some dataset 
including spontaneous emotions “in the wild” have been released 
(Guerdelli et al., 2022). However, the majority of emotional facial data 
sets of stimuli used in scientific research are based on static 
photographs of non-spontaneous facial expressions (Tcherkassof et al., 
2013; O’Reilly et al., 2016; Dawel et al., 2022). This methodology has 
been questioned given the low generalizability of its results (Russell, 
1994; Tcherkassof et al., 2013). People project their stereotypes in 
posed expressions, their common view of what they believe an 

emotional facial expression should look like (e.g., a scowling facial 
configuration to express anger), but these displays do not necessarily 
correspond to how people actually behave in real life (Barrett 
et al., 2019).

Genuine expressions differ specifically from posed expressions in 
both temporal and morphological features (Wehrle et al., 2000; Cohn 
and Schmidt, 2004; Sato and Yoshikawa, 2004; Ekman and Rosenberg, 
2005; Yoshikawa and Sato, 2006; Valstar and Pantic, 2010). In first 
instance, genuine facial expressions can occur within a fraction of a 
second (i.e., micro expressions; Ekman, 2009). In second instance, 
they are usually less intense and more subtle than posed expressions 
classically used in laboratory (Tcherkassof et al., 2013). This disparity 
could explain why the recognition accuracy of posed emotions, 
characterized by prototypical and very intense facial configurations, 
is much higher than that of spontaneous emotions (Barrett et al., 
2019). Thus, more genuine stimuli are needed in research. 
Unfortunately, such databases are still rare because of the practical 
(e.g., the methodology needed to collect these stimuli) and ethical 
difficulties (see Philippot, 1993 for initial considerations) of 
documenting and collecting genuine expressions (Tcherkassof et al., 
2013). In fact, it is difficult to trigger authentic emotions with the same 
intensity as fake emotions and to validate the resulting dataset of 
posed and spontaneous displays (Krumhuber et  al., 2017). For 
example, some datasets built on the performance of professional 
actors did not verify whether the expressions were then perceived as 
genuine by observers (McLellan et al., 2010). And even when it was 
verified, it missed the next step, which was to cross-reference the 
observers’ scoring with the emotion actually experienced by the actor 
(Dawel et  al., 2017). Only recently, a dataset of authentic and 
inauthentic emotional expressions matched the emotion felt by the 
actor with that perceived by the observer in terms of intensity and 
genuineness (Miolla et al., 2022). The next step will be to create dataset 
including also the context of the emotional display. In fact, posed 
expressions often occur in everyday life (e.g., when mothers exaggerate 
their facial movements to be  perceived accurately by their infant 
children) and they are nonetheless genuine and appropriate to 
the context.

A related problem in the study of emotions expressions is that the 
majority of the literature have employed static facial stimuli 
(Tcherkassof et al., 2007; McLellan et al., 2010, 2012; Douglas et al., 
2012; Li et al., 2012; Dawel et al., 2015). Only the peak intensity of 
emotions was usually shown, while the time-course of facial 
expressions was substantially ignored. However, facial expressions are 
not an all-or-nothing phenomenon: the nature of facial expressions is 
that they are dynamic in presentation (Rymarczyk et al., 2019). Recent 
literature suggests that dynamic displays enhance the ability not only 
to correctly recognize facial expressions (Cunningham and Wallraven, 
2009; Ceccarini and Caudek, 2013; Krumhuber et al., 2013), but also 
to discriminate genuine and posed facial expressions of emotion 
(Krumhuber et  al., 2013; Namba et  al., 2018, 2021; Lander and 
Butcher, 2020) and to elicit stronger muscle activation during mimicry 
(Rymarczyk et al., 2016). The use of dynamic emotional stimuli is 
more ecologically valid (Bernstein and Yovel, 2015), as an emotional 
message is usually reflected in dynamic complex action patterns and 
not in static facial clues (Tcherkassof et al., 2013; O’Reilly et al., 2016). 
This is probably because dynamic faces can transmit an evolving 
hierarchy of signals over time (Delis et al., 2016), thus providing much 
more information than static pictures (e.g., time course, change of 
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speed, facial-feature amplitude, and irregularity of an expression; 
Tcherkassof et al., 2013). This effect has also been confirmed by the 
activation of a broader neural network in the observer when using 
dynamic stimuli compared to static emotion stimuli (Ambadar et al., 
2005; Weyers et al., 2006; Trautmann et al., 2009). Only recently, an 
increasing number of dynamic emotion data sets have been developed, 
including, for instance, the Cohn–Kanade AU-Coded Facial 
Expression Database (Kanade et al., 2000; Lucey et al., 2010) and the 
Video Database of Moving Faces & People (O’Toole et al., 2005; for a 
review see Krumhuber et al., 2017). However, an aspect that has been 
largely neglected is the key role of temporal dynamics as a locus for 
investigating the encoding of facial displays. To date, little is known 
about the temporal course of facial expressions (Tcherkassof et al., 
2013). Temporal parameters, such as the apex period (i.e., the time 
duration before the peak intensity starts decreasing) and movement 
time (i.e., the time from facial display onset until it disappears) of 
facial expressions, might allow unveiling the secret syntax of emotional 
language. For instance, recent research has shown that eyelid 
movements precede eyebrow movements in genuine surprise displays 
(Namba et al., 2017) and this could help to differentiate spontaneous 
from simulated expressions. In the case of smiles, shorter durations 
and more irregular onset have been associated with lower perceived 
genuineness (Krumhuber et al., 2013).

To sum up, research on emotion expression has been extensively 
conducted during passive observation of posed and static pictures (e.g., 
Karolinska Directed Emotional Faces; Lundqvist et  al., 1998). More 
ecological and dynamic stimuli such as spontaneous recordings from real-
time interactions have rarely been adopted. Crucially, posed expressions 
have lower ecological validity and differ in timing from spontaneous ones 
(Ekman and Rosenberg, 2005). Approaches based on static and simulated 
portrayals may, therefore, fail to generalize to real-world behavior (Zeng 
et al., 2009). Even distinguishing facial expressions into genuine or posed, 
depending on the manner and context in which they are produced, may 
be too simplistic, because they are just the poles of a broad spectrum with 
various gradations of color.

Facial blends of emotion: the 
hemispheric lateralization puzzle

Many — even most — experiences of emotion are complex blends 
of emotion (Parr et al., 2005; Du et al., 2014). Multiple emotions can 
occur in a rapid sequence, again and again, or can merge in a mosaic. 
Humans have the capacity to produce facial blends of emotions in 
which the upper and lower face simultaneously display different 
expressions, suggesting that their underlying emotions are compound 
entities (Larsen et  al., 2001; Scherer, 2009). Facial expressions are 
organized predominantly across the horizontal facial axis (i.e., upper-
lower areas), but there are exemplars (e.g., surprise-frown or smile-
grimace) in which the expression on the right and left sides of the face 
differs, thus providing evidence that facial blends of emotions may 
also occur across the vertical facial axis (i.e., left–right areas). In this 
vein, three major models of emotional processing address the so-called 
“hemispheric lateralization of emotions” topic in humans (Demaree 
et al., 2005; Killgore and Yurgelun-Todd, 2007). The Right Hemisphere 
Hypothesis asserts that all emotions and their associated expressions 
are a dominant and lateralized function of the right hemisphere. The 
Valence Hypothesis states that negative, avoidance or withdrawal-type 
emotions and their associated expressions are lateralized to the right 

hemisphere, whereas positive approach-type emotions and their 
associated expressions are lateralized to the left hemisphere. Finally, 
the Emotion-type Hypothesis (Ross et al., 2007, 2016) affirms that 
primary emotional responses are initiated by the right hemisphere on 
the left side of the face, whereas social emotional responses are 
initiated by the left hemisphere on the right side of the face. The most 
striking examples are expressions that display a “double peak” 
phenomenon (e.g., grimace-smile characterized by an initial 
movement followed by a slight relaxation and then a second 
movement to the final peak) as a result of dual or competing 
hemispheric motor control (Ross et al., 2016). In some instances, the 
initial movement starts on one side of the face and the second 
movement starts on the opposite side of the face. For instance, 
Duchenne and non-Duchenne are terms used to classify if a smile 
reflects a true emotional feeling versus a false smile (Ekman and 
Friesen, 1982; Ekman et al., 1988). A felt (Duchenne) smile is very 
expressive and it is classically described as causing the cheeks to lift, 
the eyes to narrow and wrinkling of the skin to produce crow’s feet. A 
false (non-Duchenne) smile, instead, would only involve the lower 
face area. However, recent research has shown that the difference 
between a felt (Duchenne) versus a fake smile might in fact be revealed 
by the side of the face initiating the smile (Ross et al., 2016).

Despite the importance of emotion in human functioning, 
scientists have been unable to reach a consensus on the debated issue 
concerning the lateralization of emotions. We believe that investigating 
the time course of facial blends of emotions, which can be controlled 
consciously only in part, would provide a useful operational test for 
comparing the different predictions of various models, thus allowing 
this long-standing conundrum to be solved.

Ecological validity needs context

Emotions can be  described as responses to events that are 
important to an individual (Izard, 2010; Mulligan and Scherer, 2012; 
Ekman, 2016; for an overview see Scherer, 2009). They are usually 
expressed with the aim to be recognized by the addressee and might 
be expressed differently depending on who is the interlocutor. In this 
light, facial expressions are regarded as affective signals, which can 
convey social information regarding the expresser’s experience of an 
emotional event (Ekman, 2004; Scherer and Moors, 2019).

One of the hallmarks of social psychology is that in real life 
situations, body kinematics, gaze-related information, and contextual 
cues are all critical cues in guiding motor behavior (Sartori et al., 2011; 
Reader and Holmes, 2016). In the emotional world, the facial display 
is necessary but may be not sufficient to express and interpret correctly 
other’s emotions (Barrett et al., 2011). Humans do not interact with 
‘bodyless’ or ‘contextless’ faces, as occurs in most of the current 
research: they constantly receive and integrate multimodal 
information. Needless to say, a facial expression could 
be misinterpreted when analyzed independently from the context in 
which is presented: for instance, tears of victory mean happiness.

Future studies should consider to adopt real-time naturalistic 
settings: for instance, involving participants in a dyadic interaction 
(i.e., authentic emotion induction; Zhang et al., 2014), while recording 
both their movements. Only the adoption of an ecological behavioral 
approach will allow to genuinely evaluate the effect of social context 
on emotional functioning. Participants’ spontaneous expressions 
should be  video recorded at high frame rates using specialized 
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recording equipment to provide a good resolution database, allowing 
the investigation of micro-expressions and subtle temporal features to 
be  matched with self-reported feelings. Introspective measures 
constitute in fact an essential validation approach, as they provide 
insight into the elicitation effectiveness (Gray and Watson, 2007). 
Notably, the study of the neural underpinning of real-time contagious 
phenomena (e.g., the social transfer of pain) is now extremely relevant, 
as recently confirmed by Smith and colleagues (Smith et al., 2021). In 
this perspective, the existing literature has few or null ecologic validity. 
According to the influential article by Heaven (2020), researchers need 
to do what Darwin (1859) did for The Origin of Species: “Observe, 
observe, observe.” Watch what people actually do with their faces and 
their bodies in real-life contexts. More data and analytical techniques 
could help researchers to learn something new, instead of revisiting 
old data sets and experiments (Heaven, 2020).

Holistic coding: let us take the whole 
picture

When we are in the grip of an emotion, a cascade of changes 
occurs in the face, gaze, autonomic nervous system activity, and in our 
expressive body behavior (for review, see Keltner et al., 2016, 2019). 
In 2019, Barrett and colleagues published a benchmark review on 
emotion expression (Barrett et al., 2019). They considered over 1,000 
papers and they reached an unambiguous conclusion: the face is not 
the whole picture. Other aspects, including body movement, gaze, and 
physiological changes (e.g., cardiovascular changes) are crucial in our 
expression and perception of emotions. Therefore, a pressing need in 
the study of emotional expression appears to be necessary to move 
beyond the narrow focus on facial displays.

In the real world, bodies and faces are almost never perceived in 
isolation, but rather as an integrated whole. Bodies contain valuable 
information about the actions and intentions of others, which often 
intensifies or conversely cancels out the emotion expressed by the face 
(de Gelder, 2009; Aviezer et al., 2012; de Gelder et al., 2015). When 
emotion facial expressions are paired with incongruent bodily 
expressions (e.g., anger facial expression with a fearful body pose), for 
instance, perceivers show distinct neural responses and impaired 
recognition, even when they are consciously focusing on the face 
alone (Meeren et al., 2005; Borgomaneri et al., 2020). These findings 
suggest that it might be fruitful to focus more attention on the body 
when considering emotion expression. For example, full-body 
expressions of fear communicate important information in an 
immediate, arousing, and contagious manner (de Gelder et al., 2004; 
Borgomaneri et al., 2015). Anger is commonly expressed with hands 
in fists, disgust with head tilted slightly forward, fear with hands raised 
to protect the body, sadness with shoulders slumped, surprise with 
arms raised, shame with downward head tilt (Izard, 1971; Keltner, 
1995), while pride includes headed slightly tilted back and hands on 
hips (Tracy and Robins, 2007). Notably, the expression of emotions 
such as embarrassment, pride, and shame can only be recognized 
when body movements are combined with facial expressions. Body 
postures do, in fact, influence both the expression and the recognition 
of emotions (Shan et al., 2007; Dael et al., 2012). This issue becomes 
relevant when considering emotions such as guilt and love, which lack 
distinctive facial signals: they may display recognizable nonverbal 
expressions if body position is considered.

To sum up, emotional experience does not manifest itself in facial 
configurations alone, but rather in multimodal expressions involving 
head movements, gaze, and the body. The close connection and 
continuity of facial expressions with postural and gestural cues, 
however, has historically remained in the background (Lott et al., 
2022). In recent decades, interest in the study of emotional body 
expressions has steadily increased (Lenzoni et al., 2020; Poyo Solanas 
et al., 2020; Watson and de Gelder, 2020), leading to the development 
of data sets on the emotional body with dynamic stimuli (e.g., Troje, 
2002; Atkinson et al., 2004; Alaerts et al., 2011; de Gelder and Van den 
Stock, 2011). However, studies presenting facial and body expressions 
together (e.g., Rosenthal et  al., 1979; Thoma et  al., 2013) or 
investigating how body movements can express spontaneous and 
posed displays are still scarce. To obtain a more complete evaluation 
of emotional functionality, the synergistic actions of many different 
facial and body muscles, as well as gaze, physiological correlates and 
self-reports should be  investigated with a triangulation approach. 
Triangulation is a strategy adopted by cartographers to map a new 
territory: three known points are defined and based on those, the 
unknown point is identified. In this case, the integration of reliable 
data from three different sources (i.e., physiological, psychological and 
behavioral) will allow answering questions such as: What are the 
neurophysiological processes that underlie the expression of emotion? 
Which physical features are globally encoded? What would a 
comprehensive atlas of human emotions’ expression include?

In a meta-analysis of physiological responses associated with a 
wide range of distinct emotions, several positive emotions (e.g., 
amusement, awe, contentment, desire, enthusiasm — all of which 
would be  grouped under “happiness” by the classical basic six 
approach) were found to have subtly distinct patterns of peripheral 
physiological response linked to unique biological substrates (Kreibig, 
2010). In this light, psychologists have uncovered that positive and 
negative valence information can increase pupil dilation (Bradley 
et al., 2008), making this measure a suitable proxy for understanding 
emotional load (Sirois and Brisson, 2014) in conjunction with high-
frequency heart rate variability (HF-HRV), a biomarker of vagal-
mediated parasympathetic activity able to detect states of distress 
(Dell’Acqua et al., 2020; da Estrela et al., 2021). We argue that only the 
combined recording of different and complementary techniques will 
provide a comprehensive emotional taxonomy.

Methodological limitations

Past research investigating emotional displays has mainly focused 
on the facial muscle activation occurring during an emotional event 
using manual coding approaches, such as the Facial Action Coding 
System (FACS; Ekman and Friesen, 1978; Ekman et  al., 2002). 
Classically, two FACS coders decompose an observed expression into 
specific Action Units (AUs; i.e., contraction or relaxation of distinct 
facial muscles) that produce the movement, and their outcomes are 
eventually compared. Although this is the most widely used method 
to categorize emotion expressions, its primary drawback is that it 
analyzes each facial movement independently from other movements. 
Being many facial muscles closely related, they cannot move 
independently (Hao et al., 2018). Moreover, FACS codes have a fixed 
range of applications: for instance, they do not incorporate AUs for 
emotions like pride, which has a complex expression that involves the 
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body as well as the face. Another weakness of this system is that being 
a human coder requires an extensive training and it is very time-
consuming. A trained FACS operator can take hours to code 1 min of 
video data depending on the complexity and density of 
facial expressions.

To solve this issue, researchers created automatized algorithms 
(Chu et al., 2017; Martinez, 2017; Park et al., 2020), which work very 
well in the laboratory, when images can be controlled. However, their 
accuracy drops substantially when they detect less constricted facial 
expressions (Benitez-Quiroz et  al., 2017). Moreover, both manual 
FACS coding by expert raters (van der Schalk et  al., 2011) and 
automatic detection by means of computational algorithms (Lucey 
et  al., 2010; Valstar et  al., 2017) have been applied to dynamic 
expression databases only on the apex. The estimation at multiple time 
steps is vital because, in real life, expressions vary in intensity 
over time.

In this respect, in the last decade, Machine Learning (ML) has 
been applied to both static and dynamic emotional stimuli to 
investigate the possibility to automatically discriminate emotions 
basing on facial expression configuration. ML is one of the most 
promising fields in the area of artificial intelligence (Mitchell, 1997): 
it is a discipline associated with computational statistics that aims to 
create new knowledge or predictions through algorithms that - based 
on real observations, categorizes items into different categories. In 
particular, ML algorithms are trained on a portion of data (training 
set). Then once trained, they are tested on the remaining data (test 
set). Besides being applied in emotional discrimination, ML 
algorithms have also been recently applied to discriminate genuine 
from posed emotional expressions. The first example regarded pain 
(Bartlett et al., 2014): the authors showed that, while human observers 
could not discriminate spontaneous from posed expression of pain 
better than chance (55% of accuracy), ML algorithms that 
automatically detected facial movements were able to achieve 85% of 
accuracy. Similarly, in another study (Monaro et al., 2022), authors 
recorded participants’ face while they recalled a real or posed 
emotional event. Again, the ability of ML algorithms to discriminate 
the true from the false story based on facial movements was much 
higher than the one of human beings (78 vs. 57%). These pioneering 
studies suggest that, when relying on facial cues only, artificial 
intelligence performs better than humans in discriminating genuine 
from posed emotions even if humans have more information to 
rely upon.

Despite ML algorithms are considered a powerful tool, their use 
is not free from criticisms. Nowadays, a widespread criticism to 
Machine Learning (ML) algorithms is that they provide 
un-interpretable results (i.e., a percentage of classification accuracy 
without explaining the classification rules; see Carvalho et al., 2019). 
Recently, a paper tried to overcome this shortcoming by using 
interpretable ML models able to detect and describe differences 
between genuine and non-genuine emotional expressions (Cardaioli 
et al., 2022). Interpretable ML models are algorithms that, besides 
providing the scientists with a classification accuracy, also identify 
facial movements that mostly contribute to the classification of 
genuine and posed emotions. In Figure 1, for instance, are reported 
the results of decision tree ML algorithms with a mean of 82% of 
accuracy in discriminating genuine and posed emotions. Moreover, 
decision tree, identifies, for each specific emotions, the AUs critical for 
the classification of genuine and posed, thus providing important 
insights for the neuroscientific understanding of emotions.

Although several studies have reported promising detection 
accuracy with intra-dataset testing scenarios, another drawback of ML 
application is that the performance can vary widely applying the same 
detection method to different databases (Jia et al., 2021). The weak 
consistency among the results may be due to the high inter-individual 
variability in the facial displays of emotions (Holberg et al., 2006; 
Sangineto et al., 2014; Durán et al., 2017). In general, the datasets used 
for training models do not adequately consider the real-world 
scenarios variability, an effect called “dataset bias effect” (Khosla et al., 
2012). Although researchers have strong incentives to reduce the 
impact of individual differences as much as possible (e.g., to increase 
effect size and improve statistical power), the inter-variability among 
individuals should not be  neglected in favor of a more generalist 
approach. Facial displays are not identical for different subjects, nor 
even for the same emotion (Sadeghi et al., 2013; Sangineto et al., 2014; 
Durán et al., 2017). A recent paper (Cardaioli et al., 2022) capitalized 
the PEDFE dataset described above (Miolla et al., 2022). The PEDFE 
dataset is unique to explore inter-individual differences in emotional 
expression, as, besides including genuine and posed dynamic 
emotional expression, it also includes many emotional stimuli for each 
“actor,” where the same emotion is expressed with different intensities 
or response to different stimuli. This allows to have a wide range of 
genuine expressions of the same emotion for each participant and to 
test the ability of ML models to discriminate genuine and posed 
emotions at the level of the single individual. An overall accuracy of 
84.4% was achieved when applying ML models at the level of the 
single individual (i.e., for each subject, ML models can correctly 
discriminate genuine or posed emotions in the 84% of cases), as 
compared to the 67.0% when applying group-level algorithms. In 
general, these results suggest that it could be more reliable to detect 
unique deceptive cues for each subject instead of identifying a 
common rule to discriminate spontaneous and posed emotional 
facial expressions.

Recently, ML techniques have been used by Cowen et al. (2021) 
to address the debate about universal facial expressions by analyzing 
more than 6 million YouTube videos. The researchers used a 
powerful ML method involving deep neural networks (DNNs) to 
assess the extent to which specific facial configurations could 
be reliably observed in the videos across cultures. They found that 
people around the world make similar facial expressions in similar 
social contexts. Needless to say, the result is extremely interesting. 
On the other hand, there is no guarantee about the actual emotions 
felt by the people in those videos. A marriage context, for example, 
may lead one to believe that the emotions manifested are of joy. But 
this is all to be  proven. In fact, the DNN learnt from human 
evaluators, who annotated the facial movements contained in each 
videoclip by choosing from a set of English words. The raters were, 
in effect, offering inferences about the emotional meaning of the 
facial movements (Barrett, 2021). Data science and algorithms can 
work very well on large numbers, but if the source lacks an accurate 
and reliable indication about the real emotion experienced by 
people, the whole analysis is tainted. In general, the great limitation 
of ML technology is that how you train the algorithm will determine 
the outcome, in a self-referential way. That is why we propose to 
train ML algorithms with large - already separated - datasets of 
authentic and posed expressions, scientifically controlled and rich 
in psychophysiological information (e.g., ECG, EDA, self-report). 
Google can offer emotion science huge sets of real, but uncontrolled 
expressions, totally devoid of psychophysiological correlates and 
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distorted by the personal beliefs of the researcher who selected the 
specific stimuli for the experiment. The solution we propose is to 
make a major collective effort at the level of the scientific 
community to create large, rich, multifaceted ecological datasets to 
take full advantage of the enormous potential of ML. Once these 
datasets have been acquired in controlled environments, it will 
be possible to use them to train algorithms that can also function 
in natural environments, which are by definition less controlled. 
Indeed, the ultimate goal of this process will be  to create 
increasingly complex algorithms capable of extracting key features 
even from data collected in natural scenarios. Including dynamic 
and interactive information instead of limiting the science of 
emotions to an “individual peak” would be important in modern 
emotion research, especially considering today’s technological 
capabilities. We  believe that only accurate triangulation of 
physiological, behavioral, and self-report data can ensure accurate 
identification of the emotion experienced. And only this data can 
then be  properly used by the ML for the generation of 
predictive algorithms.

To sum up, these results indicate that both manual and automated 
coding have temporal, spatial and reliability limitations. We suggest 
that the true move towards an objective analysis of emotional function 
will begin with the 3-D tracking of small configurations of points 
(landmarks) to define a unique set of universal and easily recognizable 
reference points for extracting the kinematics of face and body 
movements in a replicable manner. A simple model would allow to 
analyze separately the upper and lower face and to compare the left 
and right faces (see Figure  2). Moreover, considering the relative 

position of couples of points instead of single points would allow to 
neutralize possible head movements. This methodological step is 
nowadays crucial, since the variety of evaluation methods and 
evaluated movements that are present in the literature does not 
suggest a unique and easily applicable standardized method. An 
exhaustive quantitative analysis of facial and body motion kinematics 
shall then be integrated with EMG (Hess et al., 2017; Beringer et al., 
2019), physiological indexes such as pupil dilation (Brod, 2021), gaze 
(D’Mello et al., 2012), heart rate variability (Dell’Acqua et al., 2020; da 
Estrela et al., 2021), and self-reports (Durán et al., 2017). Such a fully 
integrated database would allow to extract multi-modal detection 
algorithms able to discriminate the specific patterns of a wide range of 
blended emotion displays, and to assess the efficiency of emotional 
expressivity also in pathological conditions (e.g., ASD syndrome). 
Interestingly, these algorithms would be easily applicable in ecological 
contexts (e.g., with smartphone Apps; see Figure 2) for the assessment 
of inter-individual and cultural differences.

New databases of genuine displays will also allow to overcome a 
critical issue related to emotion discrimination tasks (Barrett et al., 
2019). Although the forced-choice paradigm classically adopted in 
emotion recognition tasks might yield robust results, it lacks ecological 
validity since it forces the use of labels that might not otherwise 
be selected. An essential improvement in the actual literature would 
be  obtained by combining free-response tasks with the kinematic 
analysis of emotional movements, which may allow to better understand 
and describe participants’ emotional reactions. In the free-response 
tasks, participants would be allowed to decode the type of observed 
emotion into continuous emotion ratings as expressions progress over 

FIGURE 1

Best Tree models and normalized features (Nmean, NSD). Graphs report tree decision paths and feature thresholds to predict fake (F) and genuine 
(G) expressions. Image is modified from Cardaioli et al. (2022).
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time, while judging dimensions of valence and intensity. Accurately 
assessing kinematic parameters in these tasks would then provide an 
implicit measure of the association between observed emotions and 
participants’ reactions (i.e., motor contagion; Borgomaneri et al., 2020).

Directions for future research

One reason for the relative lack of previous research attention to 
whole-body displays is the absence of a precise navigation system for 
coding emotions from movements. Targeting the 3-dimensional space 
to expand our understanding of how facial and body displays unfold 
over time is therefore of primary importance. Studying the dynamic 
aspects of emotional expressions will open a new stage in understanding 
how they are expressed and recognized. Furthermore, we maintain that 
the most viable solution to start better addressing the ecological validity 
aspect is defining an innovative approach to emotional testing. Novel 
and more integrated databases of genuine dynamic stimuli will meet new 
demands in research on human communication, machine recognition, 
and human-computer interaction. This approach can potentially lead us 
to the roots of emotional display, and to the individual mechanisms 
underlying their expression (i.e., emotional signatures). Kinematics, 
moreover, might allow to disentangle, from a very innovative perspective, 
the relative role of experience and culture in shaping emotional 
expression. By opening up the field to a richer description, new fields of 
neuroscientific inquiry will consequently emerge.

In applicative terms, providing a new database that can span a 
large range of spontaneous emotion expressions would pave the way 
for human-computer interaction research (Pantic and Bartlett, 2007). 
Increasing efforts are nowadays targeted towards developing robotic 
systems able to recognize and respond to emotional signals, which can 
be applied in fields such as security, medicine, education, and digital 
communication. A high-dimensional taxonomy will open a new stage 
in understanding how emotional expressions are recognized, allowing 
to develop new algorithms which would be an alternative to those 
commonly used to detect emotions. Companies and governments are 

spending billions of dollars in trying to improve the way emotions are 
detected. Tech giants strive to improve algorithms designed to detect 
a person’s emotions to assess the suitability of job candidates, detect 
lies, make adverts more alluring and diagnose disorders from 
dementia to depression. Estimates place the industry’s value for this 
research at tens of billions of dollars. However, we shall look at the full 
picture, as faces alone do not reveal much about emotions. In the 
future, cooperative efforts between psychology and computer science 
are indispensable (e.g., Valstar et al., 2015). For knowledge transfer 
and dialogue to increase, researchers from both sides will have to 
embrace unique and rich stimulus datasets.

Creating a high-dimensional and total-body taxonomy of emotion 
expression will also offer invaluable information to programs that seek 
to train children who live with autism (Wieckowski and White, 2017) 
and other conditions defined by difficulties in representing and 
reading one’s own and others’ emotions (e.g., Alexithymia). Such a 
taxonomy will allow investigations throughout life span – from 
childhood to old age – and will allow to identify functionally-relevant 
biomarkers that can early reveal disease onset. For instance, in stroke 
patients - where the hemispheric damage translates into asymmetries 
in contralateral facial expressions of emotion.

At present, there is still no standardized method to evaluate the 
accuracy and efficiency of full-body emotion expressivity, which could 
help in diagnosis, treatment planning, and post-treatment follow-up 
(Trotman et al., 2005). The absence of an accurate and universally 
accepted grading system for assessing the severity of emotional 
impairment makes comparisons of results invalid.

Among the quantitative instruments recently developed for the 
assessment of emotional movements, 3-D motion analyzers appear the 
most suitable for the collection of data in a great range of patients. They 
allow a complete and detailed assessment of motion in all parts of the 
face and body, and quantitative data can be compared between and 
within individuals (Coulson et  al., 2002; Mishima et  al., 2004; 
Nooreyazdan et al., 2004). A full understanding of emotional expression 
requires an appreciation of a wide degree of variability in display 
behavior, both within and across emotion categories. By introducing the 

FIGURE 2

We propose an integrated methodology (i.e., kinematical 3-D analysis of movement, pupil dilation, gaze, EMG, heart rate variability, self-reports, and 
machine learning) to extract multi-modal detection algorithms able to discriminate the specific patterns of a wide range of blended emotion displays 
even in ecological contexts (e.g., with smartphone Apps).
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concept of “individual emotional performance,” researchers will also 
provide a reference to compare long-term performance.

The domain of the unpredictable

A few years ago, Chris Anderson - the editor of Wired - wrote an 
article titled “The end of theory: the data deluge makes the scientific 
method obsolete” (Anderson, 2005). Anderson argued the provocative 
thesis that with the advent of digital and the computational capabilities 
of supercomputers, theory is now useless. He  also claimed that 
correlation prevails over causation, and science can progress even 
without coherent models or unique theories. In short, why should 
we waste time searching for causal relationships that explain what 
happens in the world when it is intellectually less demanding to 
entrust the machine (e.g., AI, ML) with the search for highly effective 
correlations? Indeed, because the characteristic feature of the digital 
is to record everything it comes into contact with, humanity is now 
awash in an unprecedented deluge of data: a huge archive of all human 
life forms.

We speculate that it is precisely this immense growth of data that 
requires theories capable of governing what would otherwise be chaos 
from a cognitive point of view. No one would be satisfied to explain 
the workings of the universe by resorting to simple correlations, 
because at that point there would be  no difference between an 
astronomer and an astrologer. Mankind has made huge progress 
thanks to experimental science and unique theories.

The fact that of many correlations we cannot understand the cause 
does not eliminate the need for the theory, quite the contrary. The 
social world and its emotions, in particular, has long been considered 
the domain of the unpredictable. But now that human actions can 
be recorded in minute detail, human behavior can be understood and 
interpreted. Here is where collaboration between researchers, 
philosophers and engineers becomes essential.

Conclusion

A growing body of evidence suggests that each emotional display 
is a complex, multi-component, motoric event. Human face is never 
static, but it continuously acts and reacts to internal and environmental 
stimuli, with the coordinated action of the facial muscles (Calvo et al., 
2018). Most research on facial expression, however, has used static and 
posed expressions as stimuli, obtained from standardized databases 
(for a review, see Calvo and Nummenmaa, 2016). Yet, dynamic 
changes in the facial expression of emotions are a particularly valuable 
source of information: they indicate changes in the emotional state of 
other individuals. Our understanding of such dynamic information 

and the corresponding dynamic expression databases are so far very 
limited (for a review, see Krumhuber et al., 2017). Moreover, no study 
has yet combined EMG with 3-D motion analysis to provide a full 
spatio-temporal characterization of blended emotional expression at 
both the muscular and kinematic levels. We propose that richer and 
larger data sets - including facial blends of emotions, will provide an 
ideal test case for studying emotion expressions. The search for this 
emotional taxonomy, coupled with more powerful quantitative 
approaches, will in turn allow a better understanding of the rules 
governing the syntax of facial expressions.

This knowledge might eventually have large implications in the 
strongly debated issue concerning the role of nature and culture on 
the expression of emotions. Note that this debate arose exactly 
150 years ago, when Darwin (1872) proposed facial expressions of 
emotion to be universal. We believe it is time to overhaul the science 
of emotion with better tools and more valid experimental designs.
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