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Introduction

In psychology, the term affect has been increasingly used to indicate an overarching

state including a wide range of phenomena, including the experience of feelings, moods,

and/or emotions (Schiller et al., 2022). Affective states, in particular, refer to individuals’

current emotional state or mood toward allostatic goals. The first attempt to outline how

the affective space was organized, using standard coordinates, can be traced back to James

A. Russell (Russell, 1980; Russell and Barrett, 1999; Posner et al., 2005). Russell’s circumplex

model of affect was increasingly interpreted as being able to plot each emotion precisely

on a two-dimensional plane, with arousal on one axis and valence on the other (Posner

et al., 2005; Britton et al., 2006; Jefferies et al., 2008). Arousal refers to the intensity of our

emotional experience whereas emotional valence refers to whether our emotional experience

is positive or negative in nature. This approach makes it possible to outline the emotional

“identikit” of each affective state and emotion in a punctual way. That is, sadness has been

progressively conceived as a negative valence emotion with a low level of arousal. Conversely,

joy has been deemed as a positive valence emotion with a medium to high level of arousal

intensity. Consequently, in the last 20 years, a wide array of stimuli has been proposed

to elicit and study affective states in this punctual way, ranging from pictures and videos

to sounds, narratives, real situations, and virtual reality and music. While treating affects

as independent states created easier ways to elicit, measure, and operationalize them, this

assumption may have held some drawbacks in terms of validity when dealing with the

continuous stream of affect that characterizes real life. In real life, an affect can affect the

current affective state and/or the next one. Moreover, an increasing number of studies have

developed mathematical indexes to compute the mixed nature of specific affective states

(Picard et al., 2001; Calvo and D’Mello, 2010; Cipresso et al., 2015, 2017; Hamaker et al.,

2015; Cipresso and Immekus, 2017; Poria et al., 2017; Waugh and Kuppens, 2021), thereby

suggesting that affect features several nuances and also embeds paradoxes that may be not

fully explainable with a linear and punctual model of affect. To put it differently, the effect

of one affective state carries over to the next state and cannot be treated as an isolated

occurrence because, in real life, each state is connected to the previous (and/or to the future)

one. Thus, the affect of one state will have an effect on the following one. For instance, if a

student feels stressed at the start of an exam, the stress will likely carry over to the following

task, making it difficult for the individual to focus and answer questions correctly. Therefore,

it becomes far more important to recognize the connection between affective states and the

influence that one state may have on subsequent ones. However, most (if not all) current

psychological approaches in the study of affect have not drawn from mathematical and

statistical paradigms, thereby allowing for this operationalization of affect (Nummenmaa

and Niemi, 2004; Mauri et al., 2010).
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Statistical approaches to analyze
a�ect dynamics

Several mathematical models and statistical/empirical

approaches exist for the analysis of temporal dynamics and

dynamic interdependencies of affects (Waugh and Kuppens, 2021).

These include time series analytical frameworks such as vector

autoregressive (VAR) models, AR(I)MA(X) models, dynamic

structural equation modeling, and Markov chains. VAR models

are commonly used in time series analyses to capture the dynamic

interdependencies among multiple variables. VAR models assume

that each variable in the system is influenced by its own lagged

values as well as the lagged values of other variables in the system.

VAR models are useful for studying the temporal dynamics of

affects because they allow researchers to model the complex

interactions among multiple affective states. AR(I)MA(X) models,

on the other hand, are used to model the time series data when the

series is not stationary. AR(I)MA(X) models can be used to model

the temporal dynamics of affects by incorporating the lagged

values of the affective states and any relevant covariates. Dynamic

structural equation modeling (DSEM) is another approach that

can be used to model the temporal dynamics of affects. DSEM

is a type of structural equation modeling that allows for the

estimation of both contemporaneous and lagged effects among

multiple variables. DSEM can be useful for studying the dynamic

interdependencies among multiple affective states and their

relationships with other relevant variables. Markov chains are

a specific type of time series model that are particularly useful

for modeling discrete-state systems. Markov chains model the

probability of transitioning from one state to another over time,

based on the current state of the system; for this reason, we propose

this approach here to model the affects’ transitions. Markov chains

can be used to model the temporal dynamics of affective states by

representing each affective state as a discrete state in the model

and estimating the probabilities of transitioning from one state

to another over time. The Markov chain model was originally

introduced by Miller (1952) and criticized by Kao (1953) after

finding some analytical errors. However, Markov chains have been

extensively used in psychology, economics, and social sciences

(Miller, 1952), and their importance in affective science should be

explored as they are also used in other psychology fields, especially

those with hidden variables (Atkinson, 1958; Visser et al., 2002;

Kaplan, 2008; Accardi et al., 2009; Visser, 2011), where the state of

the system is not directly observable but can be inferred from a

sequence of observations. In this model, each state is connected to

the previous one, and the effect of one state can have an impact on

the following state (Miller, 1952; Kaplan, 2008).

Markov chain: A stochastic process for
a�ect dynamics

From a mathematical point of view, a Markov chain is a

stochastic process where the probability of transitioning from one

state to another is determined only by the current state, not by

the sequence of events that preceded it. Thus, the behavior of the

chain is determined by the probability of transitioning from one

state to the next. Therefore, the probability of transitioning from

one state to another is determined solely by the probability of being

in a particular state at any given moment, which is also known

as the transition matrix, or the probability of being in a particular

state at a given moment. With the help of this matrix, it is possible

to compute the likelihood of the chain being in any given state at

any given moment in time. This transition matrix then determines

the probability of transitioning to other states and can be used to

calculate the probability of the chain being in any state at any given

time. For instance, if the probability of being in state A is 0.6 and

the probability of transitioning from state A to state B is 0.3, then

the probability of being in state B after one transition is 0.18 (= 0.3
∗ 0.6). The transition matrix multiplies the probability of being in

state A times the probability of transitioning to state B, which gives

us the probability of being in state B after one transition. Thus, the

transition matrix is useful because it can be used to calculate the

probability of the chain being in any state at any given time.

To represent the affective states mathematically, we can use a

transition matrix, in which each element represents the probability

of transitioning from one state to another. Let’s call the four

affective states relaxed, stressed, engaged, and bored, and let’s assign

all the possible affect transitions in term of probabilities. Then, the

transition matrix P can be defined as follows, to which we added

S0 and steady-state (Table 1). The steady-state vector indicates the

probability of being in each state after 10 or more steps, meaning

that, after step 10, the probability vector does not change anymore.

The probability of being in the bored state after 10 steps is 0.361351;

in the relaxed state after 10 steps is 0.131186; in the stressed state

after 10 steps is 0.20817; and in the engaged state after 10 steps

is 0.299293. The absorbing state is a state that, once entered, is

impossible to leave (Table 1).

To graphically represent the affective states and the transitions

between them, it is possible to adopt a directed graph, in which each

state is represented by a node, and the transitions between states are

represented by directed edges. This graph can be used to visualize

the structure of theMarkov chain and the relationships between the

states (Figure 1).

The above matrix needs to be built under some constraints,

ensuring that the transition probabilities are non-negative and that

the sum of the probabilities of transitioning from one state to all

other states is 1, as the system must always be in one of the states.

Given an initial state x0, the probability of being in state Si at

time t can be represented as xti, which can be calculated using the

following equation: xt = x0
∗ Pt, where Pt represents the matrix

P raised to the power of t, which represents the transition matrix

after t time steps. In this way, a Markov chain can be modeled

using a set of equations that describe the evolution of the state

probabilities over time. The probabilities of being in each state at

each time step can be calculated by multiplying the initial state

probabilities with the transition matrix raised to the power of the

time step. The resulting probabilities give us an understanding of

how the state probabilities change over time and provide insights

into the long-term behavior of the Markov chain, which might be

useful for understanding specific behavioral phenomena related to

the Markov chain representing specific groups of individuals, such

as patients.
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TABLE 1 State transitions matrix, with initial state (S0) and the calculation of the steady-state vector.

↓ from \ to → Bored Relaxed Stressed Engaged

Bored 0.60 0.15 0.15 0.10

Relaxed 0.10 0.20 0.40 0.30

Stressed 0.20 0.10 0.20 0.50

Engaged 0.30 0.10 0.20 0.40

Initial state (S0) 0.10 0.20 0.40 0.30

Steady-state vector∗ 0.361351 0.131186 0.20817 0.299293

∗https://www.statskingdom.com/markov-chain-calculator.html calculates the n-th step probability vector, the steady-state vector, the absorbing states, and the calculation steps.

FIGURE 1

A�ect states’ changes over time (numbers represent probabilities in

the Markov chain).

Markov chains can be expanded with hidden Markov models

to consider hidden levels. These are a type of statistical model that

allows for the analysis of systems where the states cannot be directly

observed but can only be inferred from observable outcomes. In the

context of affective states, these models can be used to understand

the underlying latent states that give rise to the observed affective

states. This approach allows researchers to account for individual

differences in the experience and expression of affective states as

well as the possibility that affective states may be misclassified

or ambiguous.

Advantages of Markov chain
compared to conventional approaches

Modeling temporal dynamics and dynamic interdependencies

of emotions with Markov chains offers various benefits over

competing methods. First, Markov chains are an adaptable

modeling strategy that may be used to simulate a variety of

discrete-state systems, including emotional states. This adaptability

enables researchers to model only the emotional states and their

connections that are important to their specific study. Second,

the temporal dynamics of emotions can be analyzed within

the straightforward and understandable framework provided by

Markov chains. Predictions of future states can be made with

relative ease by analyzing the odds of transitioning between states.

Finally, researchers can evaluate the stability of emotional states

over time by using Markov chains to estimate both the short-term

and long-term probabilities of migrating from one state to another.

Furthermore, conventional statistical software makes it simple to

create Markov chains, providing another advantage. Thus, Markov

chains, which allow for estimating the probability of transitioning

from one combination of states to another over time, are a helpful

method for examining dynamic interdependencies among various

affective states.

In addition to the above-mentioned pragmatic goal, there is

also something fascinating in representing affective states using

a Markov process. This idea requires carrying out a set of

actions beyond the mathematical calculation. Indeed, a researcher

interested in applying this approach should revise preliminary

assumptions on affect and start thinking about transitions in a

different way, especially by looking for new types of experimental

designs. For instance, it would be important to elicit affective

states in the valence-arousal plane by keeping the experimental

participants in that state for enough time to elicit the target state

exclusively. We then need to switch to another state, which again

needs to be as long as the previous one in order to really elicit

the new states in the participants. Moreover, we need to keep in

mind the most difficult part: defining a measure of the probability

of transit from one state to another. This may be a function of the

latency time to reach a new affective state once the new stimuli are

presented or a psychological or physiological measure within the

epoch of the transitions, which can be converted into probability

after measuring several transitions. At the moment, there is no

correct answer, which represents a call to action for researchers

within the field to collect new data for a better understanding of the

dynamics of affective states using different stimuli (photos, videos,

sounds, etc.) and/or instruments.

From theory to practice: A Markov
process again

It is crucial to use Markov chain models to understand affective

states’ dynamics. Markov chain models can accurately capture

the transition probabilities between affective states and provide a

powerful tool to analyze the underlying dynamics. By studying
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such models, researchers can gain valuable insights into how our

emotions and responses can change over time. For instance, a

Markov chain model might reveal that a person’s positive emotion

is more likely to transition to a neutral state than to a negative one.

A researcher may also discover that a person’s feeling of happiness

is more likely to transition to a feeling of contentment rather than

a feeling of sadness. For example, a researcher might observe that

the probability of transitioning from a feeling of joy to a feeling of

contentment is 0.72, while the probability of transitioning from joy

to sadness is 0.28. More generally, it will be interesting to highlight

if different groups of individuals (e.g., patients vs. controls) might

express different transition matrices—namely, different Markov

processes that would highlight topic behavioral phenotypes and a

huge comprehension of specific progress in mental health based on

affect dynamics. In particular, Markov chain models can be used

to understand how different groups of individuals exhibit different

behaviors in regard to affective states. This analysis can be used to

gain insights into how certain mental health disorders progress and

how individuals express different behavioral patterns based on their

affective states. By understanding the affects of different states, we

can more accurately determine the possible causes of mental health

disorders and develop more effective treatment plans. Through

such data, we can better assess how mental health issues unfold

and learn more about how different people respond to different

emotional states. Armed with this knowledge, it becomes easier

to identify potential causes of mental illnesses and craft more

successful treatment strategies. For instance, data can be used

to identify which emotions are more commonly connected with

depression, allowing us to target those emotions as part of a patient’s

treatment plan. Moreover, data can also help us gain insights into

which types of interventions and therapies yield the best results for

people withmental illness, thereby enabling us to develop evidence-

based approaches to better manage mental health conditions.

Conclusion

In conclusion, Markov chain studies of affect dynamics may

shed new light on phenotypical behaviors related to emotional

states through the mathematical properties of data collected in

experimental designs, thereby highlighting the state transitions and

calculating the related probabilities. Limitations to be considered

in future actions are related to the way in which the probabilities

are estimated and to the possible structure of Markov chains,

where the state of the system is not directly observable but can

be inferred from a sequence of observations. In this last case,

hidden Markov chain models can be easily considered to further

extend the transition model. More generally, the potential of these

mathematical processes could shed light on affective dynamics

as well as the extent to which these dynamics explain mental

health processes at a higher level. Such models can provide rich

insights into how affective dynamics may be associated with mental

health outcomes, which can lead to improved understanding

and interventions.
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