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Talkers vary in the phonetic realization of their vowels. One influential hypothesis
holds that listeners overcome this inter-talker variability through pre-linguistic
auditory mechanisms that normalize the acoustic or phonetic cues that form
the input to speech recognition. Dozens of competing normalization accounts
exist—including both accounts specific to vowel perception and general purpose
accounts that can be applied to any type of cue. We add to the cross-linguistic
literature on this matter by comparing normalization accounts against a new
phonetically annotated vowel database of Swedish, a language with a particularly
dense vowel inventory of 21 vowels differing in quality and quantity. We
evaluate normalization accounts on how they differ in predicted consequences
for perception. The results indicate that the best performing accounts either
center or standardize formants by talker. The study also suggests that general
purpose accounts perform as well as vowel-specific accounts, and that vowel
normalization operates in both temporal and spectral domains.

KEYWORDS
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1. Introduction

Talkers differ in their pronunciation of individual speech sounds due to both physiological
differences and socio-cultural factors, including style, regional dialect, and second language
accents. For listeners, this means that the mapping from acoustic cues to linguistic
categories—phonemes, syllables, words, and ultimately word meanings—varies depending
on the talker. How listeners manage to typically understand talkers despite this “lack of
invariance” (Liberman et al., 1967) has remained one of the central questions for research on
speech perception. Hypotheses about the mechanisms underlying this ability can be grouped
into three, mutually compatible and complementary, accounts: (1) low-level, pre-linguistic
auditory transformation of the acoustic signal, (2) learning of changes in the linguistic
representations, and (3) post-linguistic changes in decision-making biases (see, e.g., Johnson,
2006; Pardo and Remez, 2006; Xie et al., 2023). e present study focuses on the ĕrst type
of account, that the acoustic signal is transformed and normalized early on during auditory
processing (for recent reviews, Stilp, 2020; Johnson and Sjerps, 2021).

Accounts of pre-linguistic normalization are motivated by a priori considerations about
both the physics of sounds (cf. the discussion of uniform scaling in Barreda, 2020) and
evolutionary arguments (e.g., even non-human animals exhibit similar abilities, Barreda,
2020). ey are also supported by brain imaging evidence: talker-normalized information
about the speech signal can be decoded from areas as early as the brain stem (e.g., Skoe
et al., 2021), and thus prior to even the earliest cortical areas typically associated with
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linguistic category representations or decision-making. While it
is rather uncontroversial that normalization is part of adaptive
speech perception, questions remain about the speciĕc nature of
the operations involved in normalization. We contribute to this line
of research by comparing different types of normalization accounts
against vowel production data from a new phonetically annotated
database of Central Swedish vowels (the SwehVd database).

Normalization accounts were originally proposed as a
theory of how the brain removes physiologically-caused variation
from the speech signal (e.g., Peterson, 1961; Gerstman, 1968;
Lobanov, 1971; Nordström and Lindblom, 1975; Nearey, 1978;
Bladon et al., 1984; Sussman, 1986; Syrdal and Gopal, 1986;
Miller, 1989). Much of this early work focused speciĕcally on
differences in formants, the primary cues to the perception of
vowel quality. ese formants—peaks in the energy distribution
over frequencies—are affected by talkers’ vocal tract size (e.g.,
Peterson and Barney, 1952; Verbrugge and Shankweiler, 1977;
Fox et al., 1995; Yang and Fox, 2014). Successful normalization
was meant to account for these physiological differences, thereby
reducing inter-talker variability in the phonetic realization
of vowels (compare Figure 1B and Figure 1A), which can
result in reduced category overlap (compare Figure 1D and
Figure 1C).1

Over the decades, dozens of competing accounts of vowel
normalization have been proposed (e.g., Joos, 1948; Gerstman,
1968; Lobanov, 1971; Fant, 1975; Nordström and Lindblom, 1975;
Nearey, 1978; Traunmüller, 1981; Bladon et al., 1984; Syrdal and
Gopal, 1986; Miller, 1989; Zahorian and Jagharghi, 1991; Watt and
Fabricius, 2002; for reviews, see Weatherholtz and Jaeger, 2016;
Barreda, 2020). Carpenter and Govindarajan (1993) summarize
over 100 different vowel-speciĕc accounts, though—as we discuss
later in more detail—many of them share the same basic operations.
More recently, additional general normalization accounts have
emerged that can be applied to any type of cue and phonological
contrast, rather than just vowel formants (e.g., Cole et al., 2010;
McMurray and Jongman, 2011). e most widely used of these
proposals, C-CuRE, has since been successfully applied to the
categorization of US English fricatives (McMurray and Jongman,
2011; Apfelbaum et al., 2014; Crinnion et al., 2020), stop voicing
(Toscano and McMurray, 2015; Kulikov, 2022; Xie et al., 2023),

1 We note that this argument assumes that listeners’ category

representations pool experiences across talkers into a single talker-

independent model. Such talker-independent category representations

are assumed in many influential models of spoken word recognition

(e.g., McClelland and Elman, 1986; Luce and Pisoni, 1998; Norris and

McQueen, 2008). While talker-independent representations might be a

simplifying assumption for some of these theories, this assumption has

persisted for decades (e.g., Magnuson et al., 2020; ten Bosch et al., 2022).

Exceptions include exemplar accounts (e.g., Johnson, 1997; Pierrehumbert,

2001) and the Bayesian ideal adaptor account (Kleinschmidt and Jaeger,

2015). Importantly, it is an unresolved question whether—or for which

cues and phonetic contrasts—listeners maintain talker-specific category

representations (for findings and discussion, see Kraljic and Samuel, 2007;

Kleinschmidt and Jaeger, 2015; Kleinschmidt, 2019; Xie et al., 2021). Here,

we follow previous work and compare the effectiveness of normalization

under the assumption of talker-independent category representations.

sentence-ĕnal rising question vs. statement intonation (Xie et al.,
2021), as well as vowels (Kleinschmidt, 2019). In each of these
studies, C-CuRE reduced inter-talker variability and improved
categorization. C-CuRE,which stands for computing cues relative to
expectations, captures the motivation behind earlier normalization
accounts that the acoustic-phonetic properties of the current speech
input should be interpreted relative to their expected distribution
in the present context. Unlike many of these earlier accounts,
however, C-CuRE is not just meant to account for expectations
based on talkers’ physiology but applies equally to expectations based
on, for example, talkers’ social identity or language background.
is makes C-CuRE a potential candidate mechanism for adaptive
speech perception beyond physiological effects on vowel formants,
and is the reason we include it in our comparison of normalization
accounts.

1.1. The present study

Table 1 lists the normalization accounts investigated in the
present study. is includes both the most inĘuential vowel-
speciĕc normalization accounts that have been found to perform
well in previous works (e.g., Lobanov and Nearey2 normalization)
and several variants of the general purpose normalization C-
CuRE. As indicated through shading in the table, the accounts
can be grouped into four types based on the computational
assumptions they make. Transformations are meant to transform
the formant data from acoustic (Hz) into a perceptual space that
approximates the perceptual organization of auditory information
in the human brain. All other accounts instead or additionally
adjust each formant value based on either the values of other
formants on the same segment (vowel-intrinsic approaches) or
summary statistics of the formant across segments (vowel-extrinsic
approaches).2 We further distinguish two types of vowel-extrinsic
approaches that differ in their computational complexity and
tractability: approaches that center each cue relative to its mean
across all vowel segments, and approaches that instead/additionally
standardize cues relative to the overall variability or range of the
cue across all vowel segments (for reviews, see also e.g., Johnson,
2005; Kohn and Farrington, 2012; Weatherholtz and Jaeger, 2016).3

e former type includes C-CuRE, and we consider different
variants of this approach, one for each transformation approach in
Table 1.

2 Miller’s formant-ratio account (Miller, 1989) is technically a hybrid

approach: the first formant (F1) is normalized with regard to an extrinsic

sensory reference (based on the average F0 across segments); subsequent

formants are (intrinsicly) normalized using the normalized lower formants on

the same vowel segment.

3 Here we group accounts based on their computational complexity (the

number of parameters listeners are assumed to estimate). For example,

we group Nearey1 and Nearey2 with the centering accounts because they

require estimation of only cue means. However, since these accounts

perform centering over log-transformed Hz, they can also be considered as

a form of functionally constrained standardization in non-log space (Barreda

and Nearey, 2018).
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FIGURE 1

Illustrating how normalization reduces category overlap for the 8 monophthongs of L1 US English. Three talkers from the Xie and Jaeger (2020)
database are shown before (A) and after Lobanov normalization (Lobanov, 1971)—one of the most commonly applied accounts (B). Lobanov
normalization reduces inter-talker variability in the category means and, to some extent, in the category variances. The bottom two panels aggregate
the data from all 17 talkers in the database (5 female, 12 male), showing the means and 95% probability mass bivariate Gaussian densities for each
vowel before (C) and after Lobanov normalization (D).
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e selection of accounts we consider in the present study
is primarily based on their inĘuence and performance in
previous evaluations against other data sets. Additionally, we
only consider accounts that are sufficiently general in nature
to be applied across languages. is decision stems from
our goal to understand the mechanisms underlying human
speech perception. is means that we for instance do not
include Watt and Fabricius (Watt and Fabricius, 2002; Fabricius
et al., 2009), as this account requires speciĕc assumptions of
vowel inventories of the language. Finally, we do not consider
combinations of accounts. is follows the majority of previous
work but is an important limitation that we return to in the
general discussion.

Existing evaluations of normalization accounts can be broadly
grouped into two types: studies that compare accounts in terms
of their effectiveness in reducing inter-talker variability in the
phonetic realization of categories (Table 2), and studies that
compare accounts in terms of their expected consequences
for perception (Table 3). While the two approaches have oen
yielded similar results, they measure different aspects, and do
not have to agree. As we show in Supplementary Section 7
and discuss aer the presentation of our results, measures
of between- vs. within-category separability/variability have
downsides that can lead to misleading results. Simply put,
reduction of variance is not the ultimate goal of speech perception,
and reduced variance does not always result in improved
perception. We thus focus on the second approach, as our ultimate
interest is in evaluating normalization as a hypothesis about
the mechanisms underlying adaptive speech perception. We
note, however, that the present study is limited to evaluating
the predicted consequences for perception, rather than the ĕt of
different normalization accounts against perception data. is
limitation is shared with the majority of previous work—very few
studies to date have compared normalization against listeners’
responses in perception experiments (Nearey, 1989; Richter et al.,
2017; Barreda, 2021). We return to this important caveat in
the discussion.

Several generalizations emerge from Tables 2, 3. First,
transformations of the acoustic input to a perceptual scale alone
are not particularly effective at reducing variability or improving
recognition (see also Carpenter and Govindarajan, 1993; Adank
et al., 2004; Escudero and Bion, 2007; Clopper, 2009; Flynn
and Foulkes, 2011; Kohn and Farrington, 2012). Accounts that
additionally apply intrinsic or extrinsic normalization perform
signiĕcantly better. In particular, extrinsic normalization accounts
that center and/or standardize formants seem to perform best both
in reducing inter-talker variability (see, e.g., Lobanov, 1971; Disner,
1980; Fabricius et al., 2009; Labov, 2010; Kohn and Farrington,
2012; Barreda and Nearey, 2018) and in improving recognition
(e.g., Syrdal, 1985; Adank et al., 2004; Escudero and Bion,
2007; Johnson and Sjerps, 2021). When Lobanov and Gerstman
normalization—both involving standardizing—were included in
a study, they oen rank among the top two performing accounts.
Of note, Nearey normalization (Nearey, 1978) oen performs well
even though it does not involve the computationally more complex
operation of standardizing. is suggests that simple centering of

formants relative to the talker’s mean might be sufficient to achieve
signiĕcant variance reduction (but see Disner, 1980 for Swedish,
which is revisited in this study).

In the present study, we go beyond previous work by modeling
the effects of normalization on the predicted perception of both
vowel quality and vowel quantity over a particularly dense vowel
space. Previous comparisons of normalization accounts have
primarily focused on English (e.g., Hindle, 1978; Disner, 1980;
Syrdal, 1985; Carpenter and Govindarajan, 1993; Adank et al.,
2004; Escudero and Bion, 2007; Clopper, 2009; Fabricius et al.,
2009; Labov, 2010; Flynn and Foulkes, 2011; Kohn and Farrington,
2012; Richter et al., 2017; Barreda and Nearey, 2018). Additional
studies have investigated, for example, Dutch (Disner, 1980; Adank
et al., 2004), Russian (Lobanov, 1971), and Brazilian Portuguese
(Escudero and Bion, 2007). e complexity of the vowel inventories
(7–11 monophthongs) and the number of these vowels included
in the comparison (2–11) varied across these studies. We add
to this literature by comparing normalization accounts against a
new phonetically annotated database of Central Swedish (SwehVd,
introduced below). With a total of 21 monophthong allophones
that vary in quantity (long vs. short vowels) and quality, the vowel
inventory of Swedish is crowded compared to most languages
previously studied in the normalization literature. is allows us
to test whether the same normalization accounts that work well
for simpler vowel inventories generalize well to more crowded
vowel spaces.

To the best of our knowledge, only one previous study has
compared normalization accounts against Swedish, as part of a
cross-linguistic comparison across six Germanic languages (Disner,
1980). Disner (1980) compared 4 normalization accounts, using F1
and F2 means of the nine long Swedish vowels spoken by 24 male
Swedish talkers (from a database presented in Fant et al., 1969).
Of interest to the present study, the results for Swedish differed
from the other Germanic languages in two unexpected ways.
Whereas Lobanov normalization—which involves centering
and standardizing—performed best for Swedish, Nearey2
normalization—which involves only centering—performed
best for the other four languages. And, while normalization
effectively reduced inter-talker variability in category variances
for the other four languages by 61–71%, it was substantially less
effective for Swedish (41%). As discussed by Disner (1980), this
raises the question as to whether these ĕndings reĘect an inherent
property of Swedish or merely differences in the phonetically
annotated databases available for each language. In particular, the
Swedish data consisted of vowels produced in isolation without
any lexical or phonetic context, whereas the data for the ĕve other
languages consisted of isolated word productions (paralleling
the majority of research on normalization). e present study
addresses this difference: the new database we introduce consists
of h-VOWEL-d word recordings, which makes our stimuli directly
comparable to those used in previous work on normalization,
and lets us revisit whether simple centering accounts perform
best for Swedish—like for the other languages in Disner (1980).
Additionally, we complement Disner’s study by focusing on female,
rather than male talkers, and by considering both long and short
vowels (separately and together). e presence of quantity contrasts
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TABLE 1 Normalization accounts considered in the present study.

Normalization procedure Perceptual scale Source Formula

None Hz n/a n/a

none Bark Traunmüller, 1990 FBark
n = 26.81×Fn

1960+Fn
− 0.53

tr
an

sfo
rm

at
io

n

— ERB Glasberg and Moore, 1990 FERB
n = 21.4 × log10(1 + Fn × 0.00437)

— Mel Stevens and Volkmann, 1940 FMel
n = 2595 × log10(1 +

Fn
700 )

— Semitones conversion Fant et al., 2002 FST
n = 12 × ln( Fn

100 )
ln

Syrdal and Gopal’s Bark Syrdal and Gopal, 1986 F1SyrdalGopal = F1Bark − F0Bark

Bark-distance modela F2SyrdalGopal = F2Bark − F1Bark

Miller log Miller, 1989 SR = k( GMf0
k )1/3

(formant-ratio) F1Miller = log( F1
SR )

F2Miller = log( F2
F1 )

in
tr
in

sic

F3Miller = log( F3
F2 )

ex
tr
in

sic

C-CuRE Hz McMurray and Jongman, 2011 FC−CuRE
n = Fn − mean(Fn)

— Bark

— ERB

— Mel

— Semitones conversion

Nearey1 log Nearey, 1978 FNearey1
n = ln(Fn) − mean(ln(Fn))

(log-mean)

Nearey2 log Nearey, 1978 FNearey2
n = ln(Fn) − mean(ln(F))

(single log-mean)

ce
nt

er
in

g

Gerstman Hz Gerstman, 1968 FGerstman
n = 999 × Fn−Fmin

n
Fmax
n −Fmin

n

(range normalization)

Lobanov Hz Lobanov, 1971 FLobanov
n = Fn−mean(Fn)

sd(Fn)

(z-score)

sta
nd

ar
di

zi
ng

Unless otherwise marked, formant variables (Fs) in the right-handside of normalization formulas are in Hz. Fn refers to the nth formant. F refers to the vector of all formants.
aPrevious work has considered two different implementations of Syrdal & Gopal’s Bark-distance model for F2, depending on the language (Fant, 1983; Syrdal and Gopal, 1986; Adank, 2003). In
the SI (Section 3), we compare these two implementations, and ĕnd that the F2-F1 implementation performs better for the present data. We thus present that version of Syrdal & Gopal’s model
in the main text.

between long and short allophones makes Swedish a suitable case
study to bridge the literature between vowel-speciĕc normalization
accounts (which focus on formants, and thus only quality contrasts)
and general normalization accounts that can be applied to any type
of cue (and thus also vowel duration, which is expected to be the
primary cue to vowel quantity). While both F3 and vowel duration
are known to be important cues to vowel categorization in Swedish
(e.g., Hadding-Koch and Abramson, 1964; Fujimura, 1967; Behne
et al., 1997), the two cues have never (duration) or rarely (F3, but
see, e.g., Syrdal, 1985; Nearey, 1989; Carpenter and Govindarajan,
1993; Adank et al., 2004; Barreda and Nearey, 2018) been included
in comparisons of normalization accounts.

We compare the normalization accounts in Table 1 in terms
of the predicted consequences for perception. e study compares
accounts applied to (1) only F1 and F2, as in themajority of previous

studies, (2) F1-F3, as in, e.g., Adank et al. (2004), and (3) F0-F3 as
well as vowel duration.is allows us to assesswhether differences in
the effectiveness of normalization accounts depend on the number
and types of cues that are considered. Since listeners integrate cues
beyond F1 and F2 (e.g., Assmann et al., 1982; Nearey and Assmann,
1986; Hillenbrand and Nearey, 1999), this is an important gap in
evaluating the plausibility of different normalization accounts as
models of adaptive speech perception. All three comparisons are
evaluated both separately for short and long vowels, and for the
entire space of the 21 vowels. is allows us to assess whether
the same types of normalization perform well across the entire
vowel inventory.

As shown in Table 3, previous work has employed a number
of model types to compare the expected effects of normalization
on perception, ranging from models based on phonological
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TABLE 2 Previous studies comparing the effectiveness of normalization accounts in reducing within-category cue variability.

Language
investigated

Article Speech materials Normalization
accounts

Approach Best two
performing

Barreda and
Nearey, 2018

120,000 simulated languages
(of 5 or 9 vowels) modeled on
Hillenbrand et al.’s (1995) data
(98 female/male child/adult
talkers * 12 vowels)

Nearey2, Lobanov, log-mean
in linear regression framework

Distance between means
(Eucledian distance)

Log-mean in linear
regression framework
(1), Nearey2 (2)

Clopper, 2009 2 female/male talkers from
Ohio (1 token * 10 vowels)

Bladon et al. (1984) scale
factor of 1 Bark, Syrdal and
Gopal, Nordström and
Lindblom, Nearey1, Nearey2,
Watt and Fabricius, Gerstman,
Lobanov, Miller

Variance reduction
(visual inspection)

Nearey, Watt and
Fabricius, Gerstman,
Lobanov (no order)

Hindle, 1978 Peterson and Barney’s (1952)
database; 19 female/male
talkers from Philadelphia + 60
telephone informants
(minimum 3 tokens per
category; analysis focus on
/ay/)

Nearey2,
Nordström-Lindblom,
Sankoff-Shorrock-McKay

Distance between means,
variance reduction
(regression)

Sankoff (1)

Kohn and
Farrington, 2012

Longitudinal data from 10
female/male African American
talkers from North Carolina
(approx. 10 tokens * 10 vowels
* 5 ages)

Lobanov, Gerstman, Nearey1,
Nordström and Lindblom,
Syrdal and Gopal/omas,
Watt and Fabricius

Variance reduction
(regression)

Lobanov (1), Gerstman,
Watt and Fabricius (2)

US English

Labov, 2010 Peterson and Barney’s (1952)
database;
Philadelphia/Linguistic Change
and Variation project (120
female/male talkers, stratiĕed
for age, sociolinguistic factors)

Nearey2,
Nordström-Lindblom,
Sankoff-Shorrock-McKay

Distance between means
(F-statistics)

Sankoff (1), Nearey2 (2)

US English,
Norwegian,
Swedish, German,
Danish, Dutch

Disner, 1980 Differing number of tokens,
vowels, and phonetic contexts
across the six languages

Gerstman, Lobanov, Nearey2,
Harshman’s PARAFAC model

Variance reduction
(visual inspection)

Nearey2 (1), Lobanov (2)

Fabricius et al.,
2009

20 old/young female/male
talkers of Received
pronunciation (11 vowels); 6
old/young female/male talkers
of Aberdeen English (8 vowels
in different phonetic contexts)

Watt and Fabricius, Lobanov,
Nearey1

Lobanov (1), Watt and
Fabricius (2)

UK English
Flynn and
Foulkes, 2011

20 old/young female/male
Nottingham talkers (mean 180
recordings per talker;
categories not reported)

log-transformation (base 10),
log-transformation (natural),
Mel, ERB, Bark (*2
gender-speciĕc versions),
Syrdal and Gopal, Nordström
(*2 gender-speciĕc versions),
LCE, Gerstman, Lobanov,
Watt and Fabricius (* 4
versions), lettER, Nearey (*4
versions)

Variance reduction (SCV
in talker-means) Gerstman (1), LCE (2)

Russian Lobanov, 1971 5 female/male talkers (9 vowels
in different phonetic contexts)

linear compression or
expansion (Fant, 1960),
Gerstman, Lobanov

Distance between means Lobanov (1), Gerstman
(2)

theory (e.g., optimality theory, Escudero and Bion, 2007), to
more general models of categorization (e.g., linear discriminant
analysis, Syrdal, 1985; Adank et al., 2004; k-nearest neighbors as
in exemplar theory or ARTMAP, Carpenter and Govindarajan,
1993; Bayesian inference, Richter et al., 2017; Kleinschmidt et al.,
2018; support vector machine classiĕcation models, Johnson and
Sjerps, 2021), to general frameworks for data analysis (e.g.,
regression, Cole et al., 2010). In this study, we use a general model

of speech perception, Bayesian ideal observers (e.g., Nearey and
Hogan, 1986; Clayards et al., 2008; Norris and McQueen, 2008),
to predict the vowel identities in the SwehVd database under
different normalization accounts. We then compare normalization
accounts based on the recognition accuracy that they achieve
when the (un)normalized cues are fed into the otherwise identical
categorization model. We repeat this comparisons for different
combinations of cues, and while categorizing different subsets
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TABLE 3 Previous studies comparing normalization accounts in terms of their predicted consequences for perception.

Language(s)
investigated

Article Speech materials Normalization
accounts

Approach Accuracy
assessed

Best two
performing

Barreda, 2021 Synthesized stimuli representing 6
talker types (based on data from 30
female/male talkers of California
English (15 tokens * 11 vowels))

Nearey2, Watt and Fabricius,
Lobanov

Regression Against
perceived
category

Nearey2 (1),
Watt and
Fabricius (2)

Carpenter and
Govindarajan,
1993

Peterson and Barney’s (1952)
database, 75 female/male
child/adult talkers (2 tokens * 10
vowels)

Bark, Mel, ERB, 2
log-transformations, Syrdal
and Gopal, Miller, Nearey1,
Nearey2, Gerstman, linear
transformation (Watrous,
1993)

Fuzzy
ARTMAP,
K-nearest
neighbor

Linear
transformation
(1), Nearey1 (2)

Cole et al.,
2010

10 female/male talkers (3 tokens * 2
target vowels * 4 context vowels * 6
consonants)

C-CuRE Regression C-CuRE (1)

Johnson and
Sjerps, 2021

Peterson and Barney’s (1952)
database, 75 female/male
child/adult talkers (2 tokens * 10
vowels); Hillenbrand et al.’s (1995)
database, 138 female/male
child/adult talkers (1–3 tokens * 12
vowels)

Mean λ, F3 anchor, F1 anchor,
Mean F* anchor (Sussman,
1986), Nordström, VTLN
(Lammert and Narayanan,
2015), Nearey2, Gerstman,
VTLN (∆F), Nearey1, Watt
and Fabricius, Lobanov,
Miller, Syrdal and Gopal

Support vector
machine
classiĕcation
models

Lobanov (1),
Watt and
Fabricius (2)

McMurray
et al., 2011

Cole et al. (2010) database, 10
female/male talkers (1 token * 2
target vowels * 4 context vowels * 6
consonants)

C-CuRE Regression

Against intended
category

C-CuRE (1)

Nearey, 1989 Synthesized stimuli of male
child/adult talker (based on male
talker data from Fant, 1973, and
Peterson and Barney, 1952)

Intrinsic normalization,
extrinsic normalization

Response
patterns
(F-ratio)

Extrinsic effects
(1), intrinsic
effects (2)

Richter et al.,
2017

Models based on Clopper and
Pisoni’s (2006) NSP vowel corpus,
60 female/male talkers, 6 varieties
(5 tokens * 10 vowels); perceptual
data from Feldman et al., 2009
(synthesized stimuli of male talker)

Vocal Tract Length
Normalization (VTLN),
Lobanov

Discrimination
model
likelihoods

Against perceived
category

VTLN (1),
Lobanov (2)

US English

Syrdal, 1985 Peterson and Barney’s (1952)
database, 75 female/male
child/adult talkers (2 tokens * 10
vowels)

Log-transformation, Bark,
Syrdal’s bark-difference
model, Miller (2 accounts),
Nearey1, Nearey2, Gerstman

Linear
discriminant
analysis

Nearey1 (1),
Nearey2 (2)

Brazilian
Portuguese and
US English

Escudero and
Bion, 2007

Models trained on 400,000 F1-F2
combinations generated on
recordings of 8 female/male talkers
(20 tokens * 7 vowels and 15 tokens
* 11 vowels)

Nearey1, Lobanov, Gerstman Constraint
rankings

Dutch Adank et al.,
2004

160 female/male talkers, 8 varieties
(2 tokens * 9 vowels)

Log-transformation, Bark,
Mel, ERB, Syrdal, and Gopal,
Lobanov, Nearey1, Nearey2a ,
Gerstman, Nordström, Miller

Linear
discriminant
analysis

Against intended
category

Lobanov (1),
Nearey1 (2)

aBarreda and Nearey (2018) identify a mistake in the implementation of the Nearey2 account in Adank et al. (2004), so that the relative performance of Nearey2 reported by Adank and colleagues
should be interpreted with caution.

of the vowel space. We use ideal observers, rather than other
approaches, because all of their degrees of freedom can be estimated
from the phonetic database we use (see also Tan et al., 2021;
Xie et al., 2023). In contrast, k-nearest neighbor categorization
introduces the choice of a similarity metric, which can introduce
one or more degrees of freedom into the modeling, and requires
a choice for k. Similarly, linear discriminant analysis, support
vector machines, or regression introduce at least one degree of
freedom for each cue considered. is means that any comparison

of normalization accounts needs to be conducted over the entire
range of possible values for these degrees of freedom, making
comparisons computationally more demanding and interpretation
of the results more difficult. Bayesian ideal observers avoid this issue
because of their assumption that listeners use and integrate cues
optimally. As a consequence, the predicted posterior probabilities
of all categories are fully determined by the combination of (1)
the category-speciĕc distribution of cues in the previous input
and (2) the cue values of the input. e ideal observer approach
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employed here thus minimizes the degrees of freedom in the
model that are not fully determined by the cue statistics in
the input.

All data and code for this article can be downloaded fromOSF at
https://osf.io/zb8gx/.is article is written in Rmarkdown, allowing
readers to replicate our analyses using freely available soware
(RStudio Team, 2020; R Core Team, 2021), while changing any of
the parameters of our models. Readers can revisit and alter the
assumptionswemake—for example, categorizationmethod,models
of linguistic representations, the normalization accounts selected.
e Supplementary material lists the soware/libraries required to
compile this document.

2. Methods

Webegin by introducing the new phonetically annotated corpus
of Central Swedish vowel productions used in the present study.
We then present the perceptual model that we use for assessing the
predicted effects of different normalization accounts—a Bayesian
ideal observer.

2.1. Materials: the SwehVd database

e SwehVd database is a new phonetically annotated corpus of
Swedish h-VOWEL-d (short: hVd) word recordings. All recordings,
annotations, and acoustic measurements are available on an
OSF separate from the paper, at https://osf.io/ruxnb/. SwehVd
was collected with the goal to characterize the Central Swedish
vowel space within and across talkers—speciĕcally, the regional
standard variety of Swedish spoken in an area around and
beyond Stockholm (eastern Svealand), including Mälardalssvenska,
Sveamål, Uppsvenska, Mellansvenska (see, e.g., Elert, 1994; Bruce,
2009; Riad, 2014).

SwehVd covers the entire monophthong inventory of Central
Swedish, including all nine long vowels (hid, hyd, hud, hed, häd, höd,
had, håd, hod), eight short vowels (hidd, hydd, hudd, hedd, hädd,
hödd, hadd, hådd, hodd), and four allophones (härd, härr, hörd,
hörr). To our knowledge, there are few publicly available databases
of Swedish vowel productions that are phonetically annotated (e.g.,
Fant et al., 1969; Eklund and Traunmüller, 1997; Bruce et al., 1999;
Kuronen, 2000).e largest and perhaps best-known is SweDia 2000
(Bruce et al., 1999). SweDia 2000 was developed to characterize
differences in vowel pronunciations across regional varieties of
Swedish. It consists of recordings of spontaneous speech, isolated
words in varying phonological contexts, and phrases in isolation
from approximately 1300 talkers of 107 regional backgrounds, with
10-12 recorded talkers per region and 5-15 recordings per vowel for
each talker.

Unlike most existing databases, SwehVd focuses on a single
regional variety, providing high resolution within and across talkers
for this variety: SwehVd consists of N = 10 recordings of each hVd
word (for a total of 220 recordings for the 22 different hVd words)
per talker. Speciĕcally, we target N = 24 male and female talkers
each (current N = 24, all female) for a total targeted N of tokens
= 10,560 (current N = 4,731 tokens). e database contains ĕrst
to third formant (F1-F3) measurements for each talker at ĕve time

points across each vowel, together with vowel duration andmean F0
over the entire vowel.

SwehVd follows the gross of research on normalization and
uses hVd words for recording in order to minimize coarticulatory
effects from the surrounding phonetic context. e hVd context was
originally chosen for studies on English because the glottal /h/ in
onset position minimizes supraglottal articulations (conĕrmed in,
e.g., Chesworth et al., 2003; Robb and Chen, 2009). Since then hVd
words have played a central role in research on vowel production
(e.g., Peterson and Barney, 1952; Hillenbrand et al., 1995) and
perception (e.g., Peterson and Barney, 1952; Malinasky et al., 2020).
Since Swedish onset /h/ is a glottal approximant (Riad, 2014) similar
to English, the use of this context in SwehVd facilitates comparison
to similar databases fromother languages. It deviates, however, from
the majority of previous studies on Swedish vowels, which have
either not held phonetic context constant across vowels (e.g., Bruce
et al., 1999), or have investigated vowel production out of context
(Fant et al., 1969; Disner, 1980; Eklund and Traunmüller, 1997) or
in different CVC contexts (e.g., kVp and pVk in Nordstrand et al.,
2004; vVt, vVtt, fVt, fVtt, in Behne et al., 1997).

2.1.1. The Swedish vowel inventory
eCentral Swedish vowel inventory contains 21monophthong

vowels. Seventeen of these vowels form nine pairs distinguished by
quantity (long and short): in Central Swedish, the two long vowels
[ɛː] and [eː] both neutralize to the same short vowel [ɛ] (resulting in
a total of 17, rather than 18, distinct vowels). e two variants of a
pair are considered allophones, the selection of which is determined
primarily by stress and syllable complexity. Quantity is neutralized
in unstressed positions (Riad, 2014).4 Vowels lengthen in open
word-ĕnal syllables, before morpheme-ĕnal single consonants, and
in non-ĕnal syllables.

Additionally, there are four contextually conditioned allophones
to [ɛ] and [ø]. Before /r/ (or any retroĘex segment), both the long and
short versions of these vowels lower to long and short [æ] and [œ],
respectively. As shown in Table 4 (adapted from Riad, 2014), some
long-short vowel pairs are described to differ not only in quantity but
also in quality: generally, short vowels are described as more open
and also more centralized, forming a more condensed vowel space.
In ongoing work (Persson, 2023), we found this to be conĕrmed
for SwehVd.

Several of the long vowels have been claimed to be
diphthongized in Central Swedish (e.g., Fant et al., 1969; Fant, 1971;
Elert, 1981; Kuronen, 2000) and/or with consonantal elements
(McAllister et al., 1974), though empirical evaluations of this
claim have returned mixed results (Fant et al., 1969; Eklund and
Traunmüller, 1997; Leinonen, 2010). Here we do not discuss this
issue further (but see Persson, 2023) since it is unclear how the
presence of diphthongization would bias our results (rather than to
lead to worse performance across all accounts).

4 This reflects the mainstream analytical position in present-day Swedish

phonology. The opposite position, distinctive vowel quantity, has also been

proposed (e.g., Linell, 1978, 1979; Schaeffler, 2005).
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2.1.2. Participants
L1 talkers of Stockholm Swedish were recruited through word-

of-mouth, Ęyers at StockholmUniversity Campus (see example Ęyer
in Supplementary Section 2.1), and online channels (accindi.se).
Participants were selected based on the following criteria: L1 talkers
of Swedish, born and raised in the greater Stockholm area or its
surroundings, 20–40 years old (mean age = 28; SD = 5.45). All
participants were reimbursed with a voucher to the value of SEK 100
aer completing the recordings.

2.1.3. Recording procedure
Recording for the SwehVd database began in 2020 and is

ongoing. e data were collected by the ĕrst author and Maryann
Tan (Stockholm University). e hVd words were recorded together
with another set of recordings targeting the production of Swedish
word-initial stop voicing. Recording took place in a sound-
attenuated room at the Multilingualism Laboratory, Department of
Swedish Language and Multilingualism, Stockholm University.

Prior to recording, participants were informed about the study
and given the possibility to ask questions before signing a consent
form.eywere then given instructions and seated at approximately
10 cm distance from an Audio Technica AT3035 microphone facing
a computer screen. Words were presented one at a time, centered on
screen, using PsychoPy soware (Peirce et al., 2019). Participants
were instructed to read the words with their natural voice as they
appeared on screen. Each talker read the same 22 target words,
with 48 mono- and bi-syllabic ĕller words interspersed. Each target
word was repeated 10 times and each ĕller word was repeated ĕve
times, generating a total of 460 productions per talker, 220 target
productions and 240 ĕller productions. We generated two pseudo-
randomized lists of the words, each list divided into four different
blocks. Words were blocked across block lists and randomized
within block lists, with the constraint that the same word would
not appear more than twice in succession. Each participant was
randomly assigned to one of the two lists. e pace of the
presentation of the words was controlled by the experimenter, who
was listening over Sennheiser HD215 headphones in the next room.
A Yamaha MG102c mixing console with a built-in preampliĕer was
used together with a high-end ground isolator for preventing signal
interference (Monacor FGA-40HQ). e speech was recorded at
44.1 kHz inAudacity (Audacity, 2021). Each long soundĕlewas split
into individual short sound ĕles of one word each. e boundaries
of each ĕle were slightly trimmed and the ĕles were labeled with the
target word. All sound ĕles from the same talker were concatenated
into one long ĕle before further processing.

e complete list of target hVd words is provided in
Supplementary Table 1. It consists of four real Swedish words,
hed, härd, hörd, hud (English translations: heath, hearth, heard,
and skin, respectively) and 18 phonotactically legal pseudowords.
Following Swedish orthographical conventions for quantity, we
used orthographic hVdd to elicit the short vowel allophone (e.g.,
hudd for [ɵ]) and orthographic hVd to elicit the long vowel
allophone (e.g., hud for [ʉː]). is orthography reĘects systematic
phonological process of complementary quantity in Swedish (Riad,
2014). In order to elicit the contextual allophones to [ɛ] and [ø],
we added the supradental [ɖ ] to elicit the long allophones (härd,

hörd), and [r] to elicit the short allophones (härr, hörr). Challenges
that came up during recording that were addressed are reported in
Supplementary Section 2.3.

e recordings were divided into ĕve blocks: one practice block
and four recording blocks, with breaks in between. e purpose
of the practice block was three-fold: to familiarize the participants
with the recording procedure, to adjust the recording level, and if
necessary, to further instruct the participant (e.g., if the participant
used inappropriate or inconsistent intonation or stress pattern).
Each recording block consisted of either 110 (N = 2 blocks) or 120
(N = 2 blocks) trials. e length of each block was approximately
8 min, for a total of roughly 30 min recording time per talker.
Aer the recording, participants ĕlled out a language background
questionnaire and received their reimbursement.

2.1.4. Word and vowel segmentation
SweFA, a Swedish version of the Montreal Forced Aligner

developed by Young and McGarrah (2021), was used to obtain
estimates for word and segment boundaries. e boundaries were
manually corrected by the ĕrst author (an L1 talker of Central
Swedish). Following standard segmentation protocol and guidelines
in Engstrand et al. (2001), segment boundaries were adjusted
using spectrogram, waveforms and pitch and intensity tracks. e
boundaries between /h/ and the vowel were adjusted to align with
clear appearance of an F1, and the boundaries between the vowel and
the coda consonant were aligned to a simultaneous rapid cessation
of most or all formants.

2.1.5. Extraction of phonetic cues
We used the Burg algorithm in Praat (Boersma and Weenink,

2022) to extract estimates of the ĕrst three formants (F1-F3) at ĕve
points of the vowel (20, 35, 50, 65, and 80 percent into the vowel;
see Figure 2). e following parameterization of the Burg algorithm
was used:

• Time step (s): 0.01
• Max. number of formants: 5
• Formant ceiling (Hz): 5,500
• Window length (s): 0.025
• Pre-emphasis from (Hz): 50.

In addition to F1-F3, we automatically extracted vowel duration
and the fundamental frequency (F0) across the entire vowel. e
Praat scripts that extract this information are shared as part of the
SwehVd OSF repository, allowing researchers to choose additional
or alternative time points at which to extract formants.

In order to correct for measurement errors in the automatic
extraction of cues, we estimated the joint multivariate distribution
along all ĕve extracted cues (F0, F1, F2, F3, and vowel duration)
for each unique combination of vowel and talker. is approach
allowed us to detect outliers relative to the joint distribution of
the ĕve cues for that vowel and talker. Points outside of the 0.5th
to 99.5th quantile of the multivariate Gaussian distribution of
each vowel were identiĕed, checked for measurements errors, and
corrected. For measurements of the ĕrst three formants, we ĕrst
checked the segmentation boundaries in the Praat textgrid and then
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TABLE 4 The phonetic characterization of long (left) and short (right) Central Swedish vowels (based on Riad, 2014).

Front Rounded Central Back

High [iː] [yː] [uː]

Mid-high [eː] [ʉː] [oː]

Mid [ɛː] [øː]

Low [æː] [œː] [ɑː]

Front Rounded Central Back

High [ɪ] [ʏ] [ɵ] [ʊ]

Mid [ɛ] [ø] [œ] [ɔ]

Low [æ] [a]

FIGURE 2

Example of Praat textgrid with annotated segment boundaries and
measurement points for the automatic extraction of F1-F3 formant
frequencies.

manually measured new formant values using visual approximation
of time points and Praat’s function Formant: Formant listing or
manually reading off the spectrogram. Segmentation boundaries
were also checked for the identiĕed vowel duration outliers. For
measurements of F0, we extracted new estimated F0s across the
vowel, aer changing the pitch range settings. Given that there
were still instances of pitch halving aer measurement correction,
in order to be conservative, we also checked all F0 values below
the point of intersection between the two halves. is approach
to F0 and formant correction strikes a middleground between the
ideal (manual correction of all tokens) and feasibility. As SwehVd
is open source, future work can contribute additional corrections
to the database (e.g., via pull requests submitted to the repository
linked on OSF). For the present purpose, additional undetected
measurement errors are expected to bias against normalization,
as outlier correction was conducted on the basis of raw F0 and
formant values (Hz). If anything, the present study thus might
under-estimate the effectiveness of normalization.

e procedure of adding written guides to hod and hodd to
facilitate vowel identiĕcation was mostly successful, however not

for all talkers. Some talkers corrected themselves aer one trial,
others failed to produce the intended vowel altogether. e SwehVd
database contains columns for both the targeted vowel category, and
the vowel category that the talker actually produced (as annotated by
the ĕrst author).

2.1.6. Characterizing vowel productions in
SwehVd

Figure 3 visualizes the vowel data from the SwehVd in F1-
F2 space. e plot highlights the density of the Central Swedish
vowel space, the categories are numerous and closely located.
Category overlap is especially large among some of the high vowels
(e.g., [iː] & [yː]; [uː], [oː] & [ʊ]). e contextually conditioned
allophone [æ], almost completely overlaps with the long [ɛː],
whereas the contextual allophones to [ø] are more separated.
Not all contextual allophones are articulated lower (higher F1)
in relation to their phonemes (compare, e.g., Riad, 2014). ey
are, however, all articulated further back (lower F2). In line with
Riad (2014), the short vowels are overall more centralized and
form a more condensed space, whereas the long vowels are more
dispersed.

Figure 4 visualizes the vowel data from the SwehVd database
for all pairwise combinations of ĕve cues: F0, F1, F2, F3 and vowel
duration. As is to be expected, vowels differing in quality are most
separated in the F1-F2 plot, indicating the two cues most important
for vowel category distinction. However, the F1-F3 and F3-F2 plots
both display less overlap between the high vowels [iː], [yː], and [ʉː],
comparing to when plotted along F1-F2. e increased separation
of these categories along F3 in vowel production data could point
to the importance of F3 for some category distinctions, as found
in previous studies (see, e.g., Fujimura, 1967; Fant et al., 1969;
Kuronen, 2000, for [iː] and [yː] categorization). Also as expected,
duration is the primary cue that distinguishes vowel quantity: in
the last column of Figure 4, the short vowels cluster on the le, and
the long vowels on the right. ey are separable, but overlapping.
In addition to duration, F1-F3 can also carry information about
vowels differing in quantity. is is evident, for example, for [iː]
vs. [ɪ], [yː] vs. [ʏ], [ʉː] vs. [ɵ], [ɑː] vs. [a], [ɛː] vs. [ɛ] in F1-
F2 space, and for [iː] vs. [ɪ], [yː] vs. [ʏ], [ʉː] vs. [ɵ] in F2-F3
space.

Finally, the densities along the diagonal of Figure 4 suggest that
F0 carries the least information about vowel identity, exhibiting the
least between-category separation, followed by F3. is, too, is not
surprising: while some accounts use F0 to normalize F1 and F2
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(e.g., Syrdal and Gopal, 1986; Miller, 1989), F0 is not considered an
important cue to vowel identity by itself (for demonstrations that F0
can, however, have strong indirect effects on vowel categorization,
see Barreda and Nearey, 2012; Barreda, 2020).

2.2. Exclusions

We use the SwehVd database with some exclusions. Since we are
interested in assessing the effects of normalization, we excluded any
productions on which the talker did not produce the targeted vowel.
We then excluded all talkers (N = 7) with fewer than 5 remaining
recordings for at least one of the vowels.is le data from 17 female
L1 talkers, with on average 847 (se = 2.5) tokens per vowel (range
= 815–865), for a total of 17,780 observations. We also exclude
all hädd productions, as they elicited the same vowel as hedd (in
line with Riad, 2014; see Supplementary Section 2.4). is way, we
have about equally many tokens from all vowels, simplifying the
cross-validation procedure presented below and facilitating visual
comparisons across vowels in our ĕgures.

Since our goal is to obtain a reliable estimate of the formant
values during the steady state of the vowel, we use only the three
formant measurements extracted from the middle of the vowel (at
35, 50, and 65% into the vowel).5

2.3. Modeling approach

2.3.1. Cues included in the normalization
We compare the expected effects of different normalization

accounts for the perception of Central Swedish vowels under three
different assumptions about the relevant cues. e ĕrst comparison
follows most previous research and focuses on the two primary
cues to vowel perception, F1 and F2. e second comparison
considers F3 in addition to F1 and F2, following Syrdal (1985),
Nearey (1989), Adank et al. (2004), and Barreda and Nearey
(2018).6 Finally, the third comparison includes F0 and duration in
addition to F1-F3. Since Syrdal and Gopal (1986)’s bark-difference
model only considers normalization along two dimensions—height,
implemented as F1-F0, and backness, implemented as F2-F1—this
account will only be included in the ĕrst comparison. Furthermore,
given that C-CuRE is the only account that applies to any type of cue,
we will consider duration as centered to each talker’s mean (for the

5 While this is the approach most commonly employed in the literature, it

has the potential downside that co-articulationmight affect formant values at

the measurement points differently for long and short vowels (since the long

and short vowels differ in overall duration). An alternative approach would be

to extract formants at fixed durations (e.g., 30 ms) after the vowel onset and

before the vowel offset. Since our findings do not indicate any systematic

differences in the performance of normalization accounts between long and

short vowels, we do not consider this issue further here.

6 Some of these studies additionally included F0 (Syrdal, 1985; Nearey,

1989; Adank et al., 2004). However, since F0 is a cue that can display

substantial cross-talker variability without directly contributing much

information to vowel categorization (recall Figure 4), we decided to add only

F3 to F1-F2 in the second evaluation.

C-CuRE accounts), or as raw input (in ms; for all other accounts).
We evaluate the predicted effects for perception both separately for
long and short vowels, and on all 21 vowels together.

2.3.2. Guarding against over-fitting:
cross-validation

As shown in Table 1, many of the normalization accounts
involve parameters that are set based on the data (e.g., Gerstman,
1968; Lobanov, 1971; Nearey, 1978; Miller, 1989; McMurray and
Jongman, 2011). is raises the question of how much these
parameters can be affected by outliers, or other issues such as
over-ĕtting to the sample. Unlike previous work, we thus use
ĕve-fold cross-validation to obtain 5 separate estimates of model
predictions for each combination of normalization procedure and
cues. Speciĕcally, we randomly split the data for each unique
combination of talker and vowel into 5 even parts (folds). On each
of the ĕve-folds, we then ĕt the normalization parameters based on
four of the folds (the training data) and evaluated the effects of the
normalization on the ĕh fold (the test data). is resulted in ĕve
model estimates for each combination of normalization procedure
and cues. Our result graphs average over those folds.

2.3.3. Ideal observers to predict the
consequences of normalization for perception

Ideal observers provide an analytical framework for estimating
how a rational listener would optimally behave in response to
input (here: n-way alternative forced-choice categorization). Ideal
observer models have been found to provide a good qualitative
and quantitative ĕt against human speech perception (e.g., Clayards
et al., 2008; Norris and McQueen, 2008; Feldman et al., 2009;
Kleinschmidt and Jaeger, 2015; Kronrod et al., 2016; Xie et al., 2021).
Unlike most other models of speech perception, ideal observers
in their simplest form—as employed here—have zero degrees of
freedom in the link from production to perception: once the ideal
observer is trained on phonetic data from a database of productions,
its predictions about perception are not mediated by additional
parameters (unlike, e.g., exemplar models, connectionist accounts,
or neural networks).

In line with inĘuential theories of speech perception (e.g.,
exemplar theory, Johnson, 1997; Bayesian accounts, Nearey, 1990;
Luce and Pisoni, 1998; Norris and McQueen, 2008; interactive-
activation accounts and their offsprings, McClelland and Elman,
1986; Magnuson et al., 2020), ideal observers describe the posterior
probability of a category as dependent both on the prior probability
of the category in the current context, p(category), and the likelihood
of the acoustic input under the hypothesis that it originates from the
category, p(cues|category):

p(category|cues) =
p(cues|category) × p(category)∑
c p(cues|categoryc) × p(categoryc)

(1)

e category prior, p(category), describes how much the
surrounding context favors each category. For the present study, the
choice of category prior cannot affect the qualitative results since
category priors are independent of the cues and held identical across
all normalization accounts (category priors have a constant additive
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FIGURE 3

The SwehVd vowel data in unnormalized F1-F2 space. Points show recordings of each of the 21 Central Swedish vowels by the 24 female L1 talkers
in the database, averaged across the five measurement points within each vowel segment. Vowel labels indicate category means across talkers. Long
vowels are boldfaced. Vowels that mismatched intended label are excluded (1.18% of all recordings).

effect on the posterior log-odds of categories).We arbitrarily assume
uniform category priors. Speciĕcally, for ideal observers trained
and tested on the long and short vowels separately, we model
categorization as an 11- and 10-alternatives-forced-choice task,
respectively, resulting in p(category) = 0.091 for the former and
p(category) = 0.1 for the latter. For ideal observers trained and
tested on the entire vowel space, we model categorization as a
21-alternatives-forced-choice task, resulting in p(category) = 0.048.

e likelihood, p(cues|category), describes the distribution
of cues for each category. Here, we follow previous work and
assume multivariate Gaussian distributions to describe the cue
likelihood (e.g., Clayards et al., 2008; Kleinschmidt and Jaeger,
2015; Kronrod et al., 2016; Xie et al., 2021). at is, we use the
model in Equation (2), where µ and Σ refer to the category mean
and variance-covariance matrix of the category’s multivariate
normal distribution.7 In terms of representational complexity,

7 Human perception is affected by an additional source of uncertainty

beyond category variability: perceptual noise (for review, see Feldman et al.,

2009). Since the present study compares the relative recognition accuracy

the assumption of multivariate Gaussian categories strikes a
compromise between exemplar storage (less representationally
parsimonious, Johnson, 1997; Pierrehumbert, 2001) and cue
integration over multiple separate univariate Gaussians (more
parsimonious, Toscano and McMurray, 2010; see also Xie
et al., 2023). Additionally, the multivariate approach entails
optimal cue weighting, whereas optimal cue weights need to
be determined separately for cue integration over independent
univariate Gaussians.

p(category|cues) =
N(cues|µ,Σ) × p(category)∑
c N(cues|µc,Σc) × p(categoryc)

(2)

of different normalization accounts, it is not immediately obvious how the

inclusion of noise could affect our results. To avoid additional researchers

degrees of freedom—such as the decision as to which acoustic or perceptual

space (Hz, Mel, Bark, etc.) perceptual noise is additive in—we do not model

the perceptual consequences of noise.
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FIGURE 4

The same data as in Figure 3 but for all pairwise combinations of five cues: F0, F1, F2, F3, and vowel duration. The primary purpose of this figure is to
provide an overview of the SwehVd data. Additionally, comparisons across the panels sheds light on which cues carry information about vowel
quality and vowel quantity, respectively. Note that, unlike in Figure 3, axis directions are not reversed. Panels on diagonal: marginal cue densities of
all five cues. Lower off-diagonal panels: each point corresponds to a recording, averaged across the five measurement points within each vowel
segment. Vowel labels indicate category means across talkers. Long vowels are boldfaced. Upper off-diagonal panels: Same data as in the lower
off-diagonal panels but showing bivariate Gaussian 95% probability mass ellipses around category means. This makes it more obvious, for example,
that long and short vowels are primarily distinguished by vowel duration (top right panel).

Each ideal observer was trained on the training portion of the
folded unnormalized and normalized data (using the R package
MVBeliefUpdatr, Human Language Processing Lab, 2023), and
subsequently evaluated on the held-out test fold. is means that
the parameters of each normalization account (e.g., the cue means
in C-CuRE) and the resulting category parameters (the µcs andΣcs

for all categories) were set on the training data, and not changed
for the test data. is reĘects the realities of speech perception:
although this is oen ignored in evaluations of normalization
accounts (e.g., McMurray and Jongman, 2011; Barreda, 2021),
listeners do not a priori know the cue means, cue variance, etc. of an
unfamiliar talker. Rather, listeners need to incrementally infer those
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statistical properties from the talker’s speech input (for discussion
and a model, see Xie et al., 2023). An additional advantage of
cross-validation is that it gives us an estimate of the uncertainty
about the model predictions. e performance of each ideal
observer during test is assessed by calculating the ideal observer’s
predicted posterior probability of the intended category for each
test token, under the accuracy-maximizing decision rule (criterion
choice). Additional analyses not summarized here conĕrmed that all
results replicate if Luce’s choice rule is used instead.

3. Results

As an initial visualization of how normalization transforms the
acoustic space, Figure 5 shows the transformed F1-F2 space for 5 of
the accounts we evaluate. Supplementary Section 4 provides plots of
all 15 accounts.

Figure 6 visualizes the unnormalized and normalized models’
predictions for perception of Central Swedish vowels, under
different assumptions about the relevant cues. is ĕgure aggregates
results across vowels of a given type (long, short, all). Additional
studies in Supplementary Section 6 show results separately for each
vowel, as well as visualizations summarizing how normalization
affects the vowel-to-vowel confusion. ese additional studies
demonstrate, for example, that not all vowels beneĕt equally from
normalization.

Averaging over all vowels, Figure 6 highlights that the relative
performance of the different normalization accounts within each
panel is remarkably constant across panels. Regardless of the
combination of cues or the vowel types considered (long, short,
all), transformation into a perceptual space does little to improve
recognition accuracy, compared to unnormalized cues. Intrinsic
normalization, too, does not improve recognition accuracy. is
replicates previous work on Dutch (Adank et al., 2004) but conĘicts
with some evaluations of English (e.g., Syrdal, 1985). Adank
et al. (2004) discussed whether the discrepancy in results might
be attributed to implementations of the Bark-transformation, or
to what Syrdal (1985) describes as language-speciĕcity of the
second dimension of Syrdal and Gopal (1986) normalization.
e present results would seem to conĕrm this vulnerability
of intrinsic normalizations. Extrinsic normalization, however,
tends to substantially improve recognition accuracy (with the
exception of Gerstman normalization). Depending on the speciĕc
combination of cues and the vowel qualities considered, the best-
performing normalization model increases recognition accuracy
by at least 60.2% (from 53.8% for unnormalized cues for all
vowels when only F1-F2 are considered) to 87.2% (from 83.4%
for short vowels when all cues are considered). e beneĕt of
extrinsic normalization models, as well as the lower performance
of perceptual transformations, replicates previous ĕndings on other
languages (e.g., Nearey, 1989 found effects of both intrinsic and
extrinsic accounts, but larger effects for extrinsic; Adank et al., 2004;
Escudero and Bion, 2007).

We also see that all models—even for unnormalized
cues—perform substantially above chance. When long and
short vowels are considered separately, the best ideal observers
achieve recognition accuracies of 80.7% for long vowels and 87.2%
for short vowels. For reference, in a recent perception experiment

we conducted on the eight monophthongs of US English, L1-US
English listeners achieved 71.1% accuracy in categorizing isolated
hVd words (chance = 12.5%, Persson and Jaeger, 2023). A previous
study on Swedish report an average recognition accuracy of
94.7% for the categorization of the long (isolated) vowels (Eklund
and Traunmüller, 1997). e ideal observers for the Central
Swedish vowel system thus achieve performance that is more or
less comparable to that of human listeners, at least when cues
are normalized.

Looking across columns of Figure 6, short vowels are always
recognized with higher accuracy compared to long vowels.
is increase in performance cannot be explained by the small
increase in the chance baseline alone (10% for the 10 short vowels,
compared to 9.1% for the 11 long vowels). is result might
initially be puzzling, given that previous descriptions of Central
Swedish vowel inventories characterize the inventory of short
vowels as being more centralized and more densely clustered (e.g.,
Kuronen, 2000; Riad, 2014). Indeed, this claim seems to hold for
SwehVd—compare Supplementary Figures 5, 6. However, they
also exhibit less variability. Overall, this makes those vowels easier
to recognize.

When long and short vowels are categorized together,
performance of the ideal observers is comparatively poor unless
vowel duration is included as a cue. is is expected given that
vowel duration is the primary cue to vowel quantity. Of interest,
however, is that even the inclusion of only F3 (second row) yields
a substantial improvement in recognition accuracy, in line with
Johnson and Sjerps (2021). Remarkably, once vowel duration
is included, the best-performing ideal observer achieves 81.1%
recognition accuracy across the 21 long and short vowels (compared
to chance = 4.8%).

Finally, looking across rows, we note that Lobanov
normalization performs best especially when only the ĕrst
two formants are considered. However, this advantage of
Lobanov normalization decreases when additional cues are
considered.8

4. Discussion

We have compared low-level pre-linguistic normalization
accounts against a new phonetically annotated database of Central
Swedish vowels. We set out to evaluate how the different accounts
differ in predicted consequences for perception. Previous work
found that the types of normalization accounts that performed
well on other languages did not seem to perform well on Swedish
vowel data (Disner, 1980). However, as pointed out by Disner,
the Swedish data differed from the data for other languages in
that study, and the majority of studies on other languages. Here,

8 Indeed, when all five cues are considered for the categorization of all

21 short and long vowels, the best centering account perform numerically

better (81.1%) than Lobanov normalization (80.5%). This is, however, an

artifact of our decision to only center vowel duration—the primary cue

to vowel quantity—for the C-CuRE model. Separate modeling not shown

here confirmed that Lobanov normalizaton achieves the same recognition

accuracy as the C-CuRE models when duration is centered and combined

with Lobanov-normalized formants (82.1%, 95%-CI: 79.2-84.9%).
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FIGURE 5

The 11 long vowels (top) and the 10 short vowels (bottom) of Central Swedish when F1 and F2 are transformed into a perceptual scale (gray),
intrinsically normalized (yellow), or extrinsically normalized through centering (blue) or standardizing (purple). Each point corresponds to one
recording, averaged across the five measurement points within each vowel segment. Each panel combines the data from all five test folds.

we followed the majority of previous work on vowel productions
and analyzed productions of hVd recordings. We ĕnd that the
same accounts found in previous work to perform well on other
languages also perform well for the dense vowel space of Swedish.
Speciĕcally, Lobanov and centering approaches—incl. Nearey
normalization and C-CuRE normalization—were the top-
performing accounts, replicating the pattern found in previous
studies on other languages (e.g., Syrdal, 1985; Carpenter and
Govindarajan, 1993; Adank et al., 2004; Escudero and Bion, 2007).
is result suggests that the (somewhat) diverging results for
Swedish in Disner (1980)’s study, were not caused by properties
inherent to Swedish, but more likely were an artifact of the
dataset employed by Disner. It also suggests that languages with
dense vowel spaces do not necessarily require more complex
normalization mechanisms.

Evaluating the predicted effects of normalization against
SwehVd has allowed for a comparison of how normalization
accounts perform on subsets of a large vowel space and on the
entire vowel space, while also evaluating the combined effects
of different cues. By comparing performance on long and short
vowels separately and together, we found that category variability
seems to have a larger impact on model performance than the
dispersion of the categories in the space. e highest model
performance was achieved when models were trained on the
short vowels that are more densely clustered but less variable,
hence occupying a smaller perceptual space. Of importance for
the evaluation of normalization is also that models patterned
largely the same way across evaluations, indicating that the

relative performance of each normalization account is the same
regardless of the number of cues and size of vowel space.
e best-performing centering accounts (C-CuRE) oen achieve
performance that is statistically indistinguishable from the best-
performing standardization accounts (Lobanov). is is the case, in
particular, when all ĕve cues were considered and all 21 vowels were
included in the categorization (see text footnote 8). Together with
similar ĕndings from research on consonants and supra-segmental
categories (e.g., McMurray and Jongman, 2011; Apfelbaum et al.,
2014; Toscano and McMurray, 2015; Kleinschmidt, 2019; Crinnion
et al., 2020; Xie et al., 2021, 2023; Kulikov, 2022), this suggests
that simple centering operations might be sufficient to maximize
the beneĕts achievable by normalization. Given that these accounts
involve computationally less complex operations, they might make
up for a more plausible model of human perception, in contrast to
standardizing accounts that involvemore parameters for the listener
to estimate.

e inclusion of both long and short vowels in the present
study also motivated the inclusion of a temporal cue alongside the
spectral cues that have been the focus of previous studies. Overall,
including duration improves themodel accuracy across evaluations.
More speciĕcally, when all vowels are considered and duration is
included as cue, we see the largest increase in model performance
across models, with the best-performing accounts moving from
57.9% recognition accuracy when only F1-F2 are considered, to
81.1% when all cues are considered, and chance being as low
as 4.8%. is conĕrms the importance of duration as acoustic-
perceptual cue for vowel quantity distinctions. It furthermore
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FIGURE 6

Predicted recognition accuracy of ideal observer under different normalization accounts for long vowels, short vowels, and all vowels together
(columns), shown for three different combinations of cues (rows). Labels indicate mean across the five test folds. Intervals show average
bootstrapped 95% confidence intervals across the test folds. The dashed horizontal line indicates chance (different across columns because of the
different number of long and short vowels).

suggests that temporal cues, such as duration, are susceptible to
normalization, and that vowel normalization mechanisms operate
not only in frequency domains but also time domains. General
purpose accounts that can take any type of cue as input, such as C-
CuRE, would presumably have an advantage against vowel-speciĕc
accounts, even more so in languages with a systematic quantity

distinction, such as Swedish. Future studies could investigate the
relative advantage of general purpose accounts for languages that
does not have a systematic quantity distinction, to see whether the
results generalize.

In the remainder of the discussion, we ĕrst summarize some
methodological considerations based on the present study, and then
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discuss limitations of our work, and how they can be addressed in
future work.

4.1. Methodological considerations

In the present study, we employed Bayesian ideal observers to
evaluate normalization accounts. Compared to the other perceptual
models in Table 3, this has the advantage of reducing researchers’
degrees of freedom. As mentioned in the introduction, support
vector machines (Johnson and Sjerps, 2021), k-nearest neighbors
(Carpenter and Govindarajan, 1993), or linear/logistic regression
(Cole et al., 2010) would necessarily introduce additional degrees
of freedom in the link from production to predicted perception.
We emphasize, however, that other researchers can download the R
markdown document for this article (which contains the R code for
our models) from OSF and substitute any other perceptual model
for the ideal observers to assess the extent to which our choice of
computational framework affects our ĕndings.

An auxiliary study presented in Supplementary Section 7
further demonstrates that the use of ideal observers also has
advantages over the type of category variability/separability
measure that has been used in many previous studies (cf. Table 2).
We ĕnd that such separability indices can be dominated by a single
cue, even when that cue is not particularly informative about
category identity. is is unlikely to adequately reĘect how listeners’
perception would be affected by normalization. e ultimate reason
for the deĕciency of separability/variability indices is conceptual:
the goal of speech perception is presumably not to reduce cue
variability around the category mean but rather to improve speech
recognition. ese two goals are not the same (see also discussion
in Barreda, 2020).

is is further illustrated in Figure 7A: by normalizing the
support for a category by the support for all other categories (the
denominator in Equations 1 and 2), ideal observers consider the
perceptual consequences of an acoustic input relative to all possible
categories. is means that a token that is relatively far away from
its category mean does not necessarily result in low recognition
accuracy. Rather, low recognition accuracy is only predicted if
the relative position of the acoustic input in the acoustic-phonetic
space makes it more probable that the input originated from
another (unintended) category. is parallels human perception,
and is illustrated in Figure 7A: e.g., while a more mid-fronted
[ɑː] with high F1- and F2-values is atypical, human listeners are
more likely to recognize it as a [ɑː] compared to a more high-
back articulated, but equally atypical, [ɑː], presumably because the
observed phonetics would be equally likely to occur if the talker
intended a [oː]. Measures of between- vs. within-category variability
like the separability index in the auxiliary study, however, have no
means of directly capturing this.

Beyond this general advantage of perceptual models over
variability/separability indices, the use of multivariate ideal
observers allowed us to capture the joint effect of all cues. is
captures that an input can be an improbable instance of a category
based on one of its cue values but a probable instance given the
values of all cues taken together. is is illustrated by Figure 7B.

Finally, we note three advantages of the ĕve-fold cross-
validation approach employed in the presented study. First and

most obviously, cross-validation reduces the probability of over-
ĕtting to the sample. Second, it provides researchers with an
additional measure of uncertainty about the estimated performance
of different normalization approaches. Although not discussed
in the main text, we did compare the estimates across all ĕve-
folds, and found that both the mean estimates and their 95% CIs
were stable across folds. is suggests that the present database
is sufficiently large to yield stable results that generalize across
folds. ird and related to the ĕrst point, cross-validation provides
a more realistic—though still very crude—approximation of the
problem that listeners face for normalization: the parameters
used for normalization are not a priori known to listeners but
rather must be incrementally inferred from the talker’s speech
input (Xie et al., 2023). More parameters—as required by more
complex normalization accounts (e.g., Lobanov)—thus entail more
estimation uncertainty, potentially reducing the effectiveness of
such accounts for speech perception. By assessing the performance
of normalization accounts on held-out test data, cross-validation
begins to capture this downside of more complex accounts.

4.2. Limitations and future directions

Four limitations of the present study, three of which are shared
with most previous work, deserve discussion. First, the present
study compared normalization accounts against speech from only
female talkers of one regional variety of Central Swedish (Stockholm
Swedish). In contrast, many previous studies included data from
talkers of different genders (e.g., Clopper, 2009; Cole et al., 2010;
McMurray et al., 2011; Barreda, 2021), and sometimes from talkers
of different ages (e.g., Hindle, 1978; Syrdal, 1985; Carpenter and
Govindarajan, 1993; Flynn and Foulkes, 2011; Kohn and Farrington,
2012; Barreda and Nearey, 2018; Johnson and Sjerps, 2021) and/or
language backgrounds (e.g., Disner, 1980; Adank et al., 2004;
Escudero and Bion, 2007; Fabricius et al., 2009; Labov, 2010; Richter
et al., 2017). Given that age, gender, etc. tend to affect formants (and
other cues) beyond talker-variability, it is likely that the inclusion
of more diverse talkers would increase the lack of invariance
problem. For example, we would expect the ideal observers over
unnormalized cues to achieve lower recognition performance if
vowel productions from male talkers would be included in the data.
In short, the models likely over-estimates the recognition accuracy
that can be achieved for unnormalized cues if a more diverse range
of talkers is considered.

What does this imply for our conclusions about the relative effect
of normalization? To the extent that normalization successfully
overcomes inter-talker variability that is caused by gender, age, and
other social or physiological factors, we expect that the beneĕt
of normalization accounts should show more clearly, relative to
unnormalized cues. In this sense, the present study might under-
estimate the relative beneĕts of normalization. Whether the relative
performance of normalization accounts—i.e., the ĕnding of primary
interest to us—would differ if a more diverse range of talkers was
considered is unclear. To the extent that vowel-speciĕc accounts
were originally developed speciĕcally to eliminate physiological
differences that are correlated with gender (as reviewed in, e.g.,
Johnson and Sjerps, 2021), it is theoretically possible that the
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FIGURE 7

Using a perceptual model to evaluate normalization accounts avoids the pitfalls of separability/variability indices. (A) Two acoustic tokens that are
equally far from the mean of one category can have radically different consequences for perception, depending on where the tokens fall relative to
other categories. Under the hypothesis that the two black points are instances of the gray category, they would be attributed the same separability
index but radically different probabilities given the joint distribution of cues relative to the other category in the space. Both points are on the 90%
highest density interval isoline. (B) An acoustic token can be an improbable instance of a category if each cue is considered separately (the marginal
densities along the sides of the plot), but highly probable if considered relative to the joint distribution of cues (the bivariate distribution indicated by
the ellipse).

high performance of general normalization accounts (e.g., C-CuRE,
McMurray and Jongman, 2011) might not replicate when talkers
of different genders are included. Future releases of the SwehVd
database will contain data from male talkers, which will allow us or
other researchers to revisit these questions.

Second, the present study aggregated acoustic-phonetic
measurements taken at different points of the vowel (at 35, 50,
and 65% into the vowel) into a single formant measurement. is
follows previous comparisons of normalization accounts but is a
simplifying assumption that should be revisited in future work.
Formant dynamics carry important information for category
distinctions (e.g., Nearey and Assmann, 1986; Hillenbrand and
Nearey, 1999; Assmann and Katz, 2005), and are hypothesized
to be of particular importance for some vowel distinctions in
other varieties of Central Swedish (e.g., Kuronen, 2000). Prior
to other consideration, this means that this study likely under-
estimates the recognition accuracy that could be achieved even
from unnormalized cues alone. It is an open question whether the
ĕndings of primary interest—the relative performance of different
normalization accounts—would be affected if formant dynamics
were considered. Some normalization accounts, for example,
consider normalization of such formant dynamics to take place
aer basic formant normalization (but before the mapping of cues
to category representations, S. Barreda, personal communication,
01/06/2023). Future work could employ SwehVd to compare
ideal observers or other classiĕcation models while taking into
consideration formant measurements throughout the vowel.

ird, we only considered normalization accounts. is, too,
follows previous research on normalization but is potentially
problematic. As mentioned in the introduction, it is now believed
that at least three different mechanisms contribute to adaptive
speech perception, including not only normalization but also
changes in category representations and decision-making (for

review, see Xie et al., 2023). is has consequences for research
on normalization. For example, Xie et al. (2021) compared
normalization accounts against the production of prosodic phrasing
in L1-US English, while also considering alternative hypotheses
about listeners’ ability to adapt category representations. Xie and
colleagues found that the effectiveness of cue normalization is
substantially reduced if listeners can learn and maintain talker-
or group-speciĕc category representations (as assumed in some
inĘuential theories of speech perception, exemplar models, e.g.,
Johnson, 1997; Pierrehumbert, 2001; Bayesian ideal adaptors,
Kleinschmidt and Jaeger, 2015). Xie and colleagues only considered
two general types of normalization, and their focus was on the
interpretation of prosodic signals. But their results call for caution
in interpreting studies like the present that do not consider the
possibility of talker-speciĕc representations—an assumption shared
with basically all previous work on vowel normalization.

Similarly, as mentioned in the introduction, we limited our
evaluation to a single level of normalization (and combinations
of perceptual transformations and a single level of normalization).
Some proposals, however, assume multiple separate normalization
steps. For example, some accounts hold that evolutionarily early
mechanisms ĕrst transform spectral percepts into a phonetic space
(e.g., uniform scaling accounts, Nearey, 1983; Barreda, 2020), on
which additional subsequent normalization might operate. ere is
also evidence that speech perception combines aspects of intrinsic
and extrinsic normalization (Johnson and Sjerps, 2021 review
relevant evidence from brain imaging; early behavioral evidence
is found in Nearey, 1989). e present study—like most existing
evaluations—did not consider these possibilities (for exceptions, see
e.g., Nearey and Assmann, 2007; Barreda, 2021).

Fourth and ĕnally, we followed the majority of previous work
and evaluated normalization accounts against production data. is
is potentially problematic, especially when measures like category
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separability or reduced cross-talker variability in category means
are used to evaluated normalization accounts (as in the auxiliary
study in the SI and in many previous studies). ese evaluations
essentially assume that the goal of speech perception is to make
the perceptual realizations of the same category by different talkers
as similar as possible in the normalized space (for an in-depth
critique, see Barreda, 2021). However, the goal of speech perception
is presumably to reliably understand the meaning intended by the
talker, and this aim does not necessarily entail perfect removal of
cross-talker variability.

To some extent, our study addresses this potential issue by
evaluating normalization accounts in terms of howwell they predict
the vowel category intended by the talker. However, if the goal
is to explain human perception, the most informative evaluations
of normalization accounts are arguably those that compare their
predictions against listeners’ behavior (for examples, see Nearey,
1989; Richter et al., 2017; Barreda, 2020, 2021; Xie et al., 2021).
In short, approaches like that employed here take an important
step away from the most misleading evaluation of normalization
accounts in terms of reduced category variability/increased category
separability. Ultimately, however, normalization accounts should be
evaluated in terms of howwell they predict listeners’ perception, not
talker’s intention.
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