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Introduction: One-way repeated measures ANOVA requires sphericity. Research 
indicates that violation of this assumption has an important impact on Type 
I  error. Although more advanced alternative procedures exist, most classical texts 
recommend the use of adjusted F-tests, which are frequently employed because they 
are intuitive, easy to apply, and available in most statistical software. Adjusted F-tests 
differ in the procedure used to estimate the corrective factor ε, the most common 
being the Greenhouse-Geisser (F-GG) and Huynh-Feldt (F-HF) adjustments. Although 
numerous studies have analyzed the robustness of these procedures, the results are 
inconsistent, thus highlighting the need for further research.

Methods: The aim of this simulation study was to analyze the performance of the F-
statistic, F-GG, and F-HF in terms of Type I error and power in one-way designs with 
normal data under a variety of conditions that may be encountered in real research 
practice. Values of ε were fixed according to the Greenhouse–Geisser procedure ( ε ). 
We manipulated the number of repeated measures (3, 4, and 6) and sample size (from 
10 to 300), with ε  values ranging from the lower to its upper limit.

Results: Overall, the results showed that the F-statistic becomes more liberal as 
sphericity violation increases, whereas both F-HF and F-GG control Type I error; 
of the two, F-GG is more conservative, especially with large values of ε  and small 
samples.

Discussion: If different statistical conclusions follow from application of the two 
tests, we recommend using F-GG for ε  values below 0.60, and F-HF for ε  values 
equal to or above 0.60.
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Introduction

The general linear model (GLM) underpins the most widely used statistical procedures in the 
health and social sciences, namely analysis of variance (ANOVA), analysis of covariance, and linear 
regression, the general objective of which is to analyze how one or a set of independent variables 
affects or is related to a dependent variable. Blanca et al. (2018) found that parametric tests for means 
comparison and linear regression were the most commonly employed statistical procedures in this 
field, with a prevalence of 36.5 and 20.97% among published studies, respectively. Other authors have 
shown that ANOVA is one of the most widely used procedures in articles published in psychology 
journals (e.g., Kashy et al., 2009; Counsell and Harlow, 2017), with repeated measures ANOVA 
(RM-ANOVA) being more prevalent than ANOVA with a grouping factor (57.92% vs. 42.08%). 
Regarding the characteristics of these designs, Keselman et al. (1998) noted that 55.3% of studies 
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reported a sample size of 60 or less, although the total sample size ranged 
from 6 to more than 1,000 participants. In the neuropsychological field, 
Goedert et al. (2013) found that the most common number of repeated 
measures was 2 or 3, followed by 4 or 6, with a mean total number of 
participants of 18.11 (median = 14.5).

RM-ANOVA uses the F-statistic to determine statistical significance, 
and this requires, among other assumptions, normality and sphericity. 
Previous Monte Carlo simulation studies have indicated that the Type 
I error and power of the F-test are not altered by the violation of normality 
when sphericity is fulfilled. For example, Blanca et al. (2023) carried out 
an extensive study, examining a wide variety of conditions that might 
be encountered in real research situations. They manipulated the number 
of repeated measures (3, 4, 6, and 8), sample size (from 10 to 300), and 
distribution shape (slight, moderate, and severe departure from the 
normal distribution), and considered both equal and unequal 
distributions in each repeated measure. The results showed that 
RM-ANOVA is robust under non-normality when the sphericity 
assumption is met with distributions having skewness and kurtosis values 
as large as 2.31 and 8, respectively, and also that empirical power did not 
decrease with the violations of normality tested in the study.

In one-way repeated measures designs, the sphericity assumption is 
met when the variances of the population difference scores for all pairs of 
treatment levels are homogeneous (Kirk, 2013) (for a definition in terms 
of the covariance matrix, see Kirk, 2013, pp. 306–310, and Langenberg 
et al., 2023). Sphericity is usually examined with the Mauchly test, whose 
null hypothesis states that the variances of the differences are equal. As 
recommended in some books (e.g., Gamst et al., 2008), applied researchers 
usually perform the Mauchly test as a preliminary analysis and then, 
depending on the results, decide on the subsequent analytic strategy. 
However, early simulation studies showed that the Mauchly test does not 
control Type I error under non-normality, and neither is it sensitive to 
small departures from sphericity (Huynh and Mandeville, 1979; Keselman 
et al., 1980), thus calling into question its usefulness as a preliminary test.

Several decades ago, Box (1954) showed that the Type I error rate of 
the F-statistic increases when sphericity is violated. This tendency toward 
liberality has been highlighted in several subsequent studies (Collier et al., 
1967; Berkovits et al., 2000; Voelkle and McKnight, 2012; Haverkamp and 
Beauducel, 2017, 2019), which implies that use of the F-statistic may lead 
to the null hypothesis being rejected more often than it should. Box (1954) 
also pointed out that in a one-way RM-ANOVA, when sphericity holds, 
the F-statistic is distributed with (K-1) and (K-1) (N-1) degrees of 
freedom, where K is the number of repeated measures and N is the 
number of participants. However, when sphericity is violated, the 
F-statistic may follow another distribution, with the degrees of freedom 
reduced by the multiplicative factor epsilon (ε). Specifically, the F-statistic 
is distributed with ε (K-1) and ε (K-1) (N-1). The value of ε describes the 
degree to which sphericity is violated and it lies between its minimum 
bound, 1/K-1, and 1 (Geisser and Greenhouse, 1958). When sphericity 
holds, ε is equal or close to 1. The violation of sphericity is more severe the 
further the ε value is from 1 and the closer it moves toward its lower bound.

Adjusted F-tests have been proposed with the purpose of reducing 
the degrees of freedom associated with the F-statistic by the corrective 
factor ε. As the value of ε is unknown in the population, it must 
be estimated, and adjusted F-tests may be distinguished based on the 
estimator that is applied to the sample covariance matrix, the most 
common being the Greenhouse-Geisser (F-GG; Box, 1954; Geisser 
and Greenhouse, 1958; Greenhouse and Geisser, 1959) and Huynh-
Feldt (F-HF; Huynh and Feldt, 1976) adjustments. These two 
estimators of ε are referred to, respectively, as ε  and ε . According to 

Huynh and Feldt (1976), ε  ≥  ε , although the two estimators are 
equal when ε reaches its lower bound. Huynh and Feldt (1976) also 
found that ε  is a less biased estimator for low values of ε, whereas ε  
is less biased for ε values above 0.75.

The use of adjusted F-tests is an alternative recommended in most 
classical texts (e.g., Maxwell and Delaney, 2004; Tabachnick and Fidell, 
2007; Kirk, 2013) for when sphericity is violated. Although other more 
advanced procedures such as the linear mixed model have been 
developed, many researchers prefer to use adjusted F-tests because they 
are intuitive, easy to apply, and are available in most statistical data analysis 
software (e.g., IBM-SPSS, SAS, R, etc.). In the context of the present study, 
we conducted a preliminary search of Web of Science to gain a general 
idea of the prevalence of these tests in the recent scientific literature, 
focusing on the fields of psychology, behavioral sciences, psychiatry, social 
sciences, and educational research. The search identified around 3,000 
articles published during 2021 and 2022, indicating the widespread use of 
adjusted F-tests in these fields. Although we did not perform an exhaustive 
systematic review, this preliminary search nevertheless shows the extent 
to which adjusted F-tests are applied in these key areas of research.

The performance of adjusted F-tests has mainly been studied with 
split-plot designs and with simultaneous violations of both normality and 
sphericity (Keselman and Keselman, 1990; Quintana and Maxwell, 1994; 
Keselman et al., 1995, 1999; Fernández et al., 2010). This means that there 
are no recent studies that extensively analyze the effect of the violation of 
sphericity, regardless of non-normality. Monte Carlo simulation studies 
with one-way designs are very scarce, and vary depending on the variables 
manipulated. Type I error is generally interpreted using Bradley’s (1978) 
liberal criterion, according to which a procedure is considered robust if 
the Type I error is between 2.5 and 7.5% at a significance level of 5%.

Berkovits et al. (2000) simulated data from designs with K = 4, small 
sample sizes (N = 10, 15, 30, and 60), and different values of ε (0.48, 0.57, 
0.75, and 1). Their results showed that the F-statistic was liberal at lower 
ε values (0.48 and 0.57), regardless of the distribution shape and sample 
size. When normality was tenable, both F-GG and F-HF were robust in 
all sphericity conditions, with Type I error within Bradley’s limits. They 
concluded that when a violation of sphericity occurs alone, both 
procedures (F-GG and F-HF) offer reasonable control of Type I error. 
Similar results were obtained by Muller et al. (2007), who simulated 
normal data with 9 repeated measures, ε values of 0.28, 0.51, and 1, and 
small sample sizes (N = 10, 20, and 40). They found that F-GG and F-HF 
were robust to sphericity violations with adequate statistical power, 
leading them to recommend the use of these adjusted F-tests over more 
complex models, such as linear mixed models. Oberfeld and Franke 
(2013) included designs with K = 4, 8, and 16, different structures of the 
covariance matrices with ε equal to 0.50 and 1, and sample sizes between 
3 and 100. The results with normal data indicated that F-HF was more 
robust than F-GG, especially with small sample sizes and a large number 
of repeated measures, insofar as F-GG was found to be conservative in 
some conditions. Haverkamp and Beauducel (2017) also recommended 
the use of F-HF over F-GG in these same conditions, focusing on designs 
with 3, 6, and 9 repeated measures, normal data, and sample sizes of 20, 
40, 60, 80, and 100. The results of a subsequent study by the same authors 
(Haverkamp and Beauducel, 2019), in which they tested designs with 9 
and 12 repeated measures and smaller sample sizes (15, 20, 25, and 30), 
likewise supported the use of F-HF, which offered correct control of Type 
I error when sphericity was violated.

The above findings contrast with those of other researchers and 
with what is indicated in some classical books. For example, Voelkle 
and McKnight (2012) found that although both adjusted F-tests 
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controlled fairly well for Type I error, F-GG outperformed F-HF. Kirk 
(2013) and Maxwell and Delaney (2004) likewise proposed using 
F-GG, based on early studies showing that F-HF achieved less control 
over the Type I error rate. Other authors, drawing on the results of 
Huynh and Feldt (1976), even pointed out the possibility of using one 
strategy or the other depending on the expected value of ε, such that 
F-GG should be used if ε is believed to be less than 0.75, whereas F-HF 
would be the choice if it is believed to be greater than 0.75 (Barcikowski 
and Robey, 1984; Girden, 1992; Verma, 2016).

In summary, although these adjusted F-test procedures were 
developed several decades ago (between the 1950s and 1970s), 
controversy remains as to which procedure is best. This is illustrated by 
the fact that the recommendations found in classical methodology 
texts often differ from those derived from simulation studies. While 
most of the former, based on early studies, advise using F-GG over 
F-HF (as the former is more conservative), or state that the choice of 
strategy depends on the expected ε value, some more recent simulation 
studies suggest either that the two adjusted F-tests show equivalent 
performance or that F-HF outperforms F-GG. Consequently, although 
RM-ANOVA is the conventional analysis most commonly used with 
repeated measures, there are still no clear guidelines that can help 
applied researchers who wish to use this approach to choose the most 
appropriate adjusted F-test if sphericity is not satisfied.

It should also be noted that the aforementioned Monte Carlo studies 
have several limitations. First, they analyze a limited number of sphericity 
violation conditions, and hence the results may not be generalizable to 
other cases. For example, Berkovits et  al. (2000) included only three 
conditions (0.48, 0.57, and 0.75) whereas Muller et al. (2007) analyzed two 
(0.28 and 0.51) and Oberfeld and Franke (2013) one (0.50). Second, some 
of the studies focused especially on small samples and with a high number 
of repeated measures, such as Muller et al. (2007) who analyzed 9 repeated 
measures with a maximum sample size of 40, and Haverkamp and 
Beauducel (2019) who included 9 and 12 repeated measures with sample 
sizes of 30 or less. In addition, most of them are aimed at comparing 
different procedures, such as the multivariate approach, the linear mixed 
model, bootstrapping and comparison of trimmed means, or structural 
equation models (e.g., Algina and Keselman, 1997; Berkovits et al., 2000; 
Wilcox et al., 2000; Muller et al., 2007; Voelkle and McKnight, 2012; 
Oberfeld and Franke, 2013; Langenberg et al., 2023). This makes it difficult 
for applied researchers to draw useful conclusions for their analyses.

The aim of the present study was therefore to extend knowledge from 
previous studies and to analyze extensively the effect of sphericity 
violation, irrespective of non-normality, on the F-statistic, F-GG, and 
F-HF, examining the performance of each in terms of Type I error and 
power under a variety of conditions that may be encountered in actual 
research practice. Normal data were generated with 3, 4, and 6 repeated 
measures, considering more sample size conditions (from 10 to 300, 
representing small, medium, and large samples) and a wider range of 
sphericity violation conditions than previous studies, including estimated 
values of ε ranging from its lower limit (most severe deviation from 
sphericity) to the upper limit (sphericity fulfilled). For the analysis of Type 
I error, we used Bradley’s (1978) liberal criterion as a generally appropriate 
strategy for conducting tests of mean difference in the absence of 
sphericity. Under this criterion, a procedure is robust if Type I error falls 
within the interval [2.5, 7.5]. To refine the results and obtain a more 
detailed understanding of the behavior of the statistics, we also interpreted 
robustness in terms of Bradley’s (1978) stringent criterion, which ensures 
that Type I error remains closer to 5%, in the interval [4.5, 5.5], for a 
nominal alpha of 5%. For power analysis, we  added different mean 

patterns for each design, considering a medium effect size for each 
combination of estimations of ε and K. In total, we analyzed Type I error 
in 437 experimental conditions and power in 1,140 conditions. A key 
strength of the study is therefore that it yields results based on a large 
number of manipulated variables that represent more real-life situations 
than have been analyzed in previous research. Our overall goal was to use 
these results to clarify the performance of the F-statistic, F-GG, and F-HF 
and to establish practical recommendations for applied researchers who 
wish to use these procedures.

Method

A Monte Carlo simulation study was performed using SAS 9.4 
software with the IML (interactive matrix language) module. A series 
of macros was created that allowed generation of the data. Normal 
data were generated using the Cholesky transformation of the 
covariance matrix. This transformation simulates data that mimic the 
patterns generated by an unstructured covariance matrix. Matrices 
were generated with different estimated values of ε, which is defined 
by Equation (1) (Box, 1954; Geisser and Greenhouse, 1958; 
Greenhouse and Geisser, 1959) for a one-way repeated measures 
design (for an example, see Kirk, 2013, pp. 313–314):
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the matrix, sj. = mean of elements in row j. We used this procedure 
to estimate the population value as it is more conservative than ε , 
and also because the calculation is available in most of the popular 
statistical packages (IBM-SPSS, SAS, R, etc.). Researchers may use the 
value obtained to decide upon the most suitable analytic strategy.

Simulated data were analyzed with PROC GLM of SAS to obtain the 
probability values associated with unadjusted F, F-GG, and F-HF. Ten 
thousand replications were performed for each condition.

Type I error

We considered a one-way design and manipulated the 
following variables:

 1. Within-subject levels (K). The repeated measures were K = 3, 
4, and 6.

 2. Total sample size. The sample sizes considered were 10, 15, 20, 25, 
30, 40, 50, 60, 70, 80, 90, 100, 120, 150, 180, 210, 240, 270, and 300. 
Keselman et al. (1998) found that 55.3% of studies with repeated 
measures reported a sample size of 60 or fewer, although the range 
varied from 6 to 1,000. These sample sizes were also used by 
Blanca et al. (2023). Accordingly, we considered a wide range of 
sample sizes corresponding to small, medium, and large samples.

 3. Sphericity. The values of ε  ranged between the lower limit (which 
varies according to the number of repeated measurements) and 1. 
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FIGURE 1

Type I error rates (in percentages) according to Bradley’s (1978) liberal criterion for the F-statistic and for F adjusted by the Greenhouse-Geisser (F-GG) 
and Huyhn-Feldt (F-HF) procedures as a function of epsilon (£) for K  =  3.

For K = 3, ε  values were approximately 0.50, 0.60, 0.70, 0.80, 0.90, 
and 1; for K = 4, ε  values were approximately 0.33, 0.40, 0.50, 0.60, 
0.70, 0.80, 0.90, and 1; and for K = 6, ε  values were approximately 
0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, and 1. The exact values 
of epsilon are available as Supplementary material.

We computed empirical Type I  error rates, represented by the 
percentage rejection of the null hypothesis when differences between 
repeated measures are set to zero at a significance level of 5%. Results were 
interpreted using Bradley’s (1978) liberal criterion, according to which a 
procedure is robust if the Type I error rate is between 2.5 and 7.5% for a 
nominal alpha of 5%. We also used Bradley’s (1978) stringent criterion in 
order to refine the results, considering a procedure as robust if the Type 
I error rate was between 4.5 and 5.5% for the same nominal alpha. If the 
Type I error rate is above the respective upper bound the procedure is 
considered liberal, whereas if it is below the respective lower bound it is 
considered conservative.

Empirical power

To analyze empirical power, a specific effect represented by the means 
vector was added to the generated data to incorporate a desired effect size. 
Mean values were selected to give a medium effect size f equal to 0.25 in 
the simulated samples. We obtained sample values of effect size in the 
interval [0.23, 0.25] for each combination of K, ε , and N. The 

manipulated variables were the same as for Type I error rates in terms of 
number of repeated measures, values of ε , and sample size. In addition, 
we considered three mean patterns for each K. With K = 3, one of the 
means was different from the means of the other repeated measures (e.g., 
1, 1, 2; 1, 2, 1). With K = 4 and 6, the means were manipulated so that (a) 
one was different from the rest (e.g., 1, 1, 1, 2; 1, 1, 1, 1, 1, 2), and (b) half 
were different and equal to each other (e.g., 1, 1, 2, 2; 1, 1, 1, 2, 2, 2). For 
all K, the means were also manipulated so that the increase between them 
was linear and proportional (e.g., 1, 1.75, 2.5, 3.25). We  chose these 
patterns because they have been typically used in simulation studies (e.g., 
Kowalchuk and Keselman, 2001; Kowalchuk et al., 2004; Vallejo et al., 
2004; Hayoz, 2007) and were considered to represent different real 
research situations.

We calculated empirical power rates based on the percentage 
rejection of the null hypothesis for each mean pattern at a significance 
level of 5%.

Results

Empirical type I error rates

Figures  1–3 show empirical Type I  error rates according to 
Bradley’s (1978) liberal criterion for the F-statistic, F-GG, and F-HF 
as a function of sphericity for each K. Tables with the exact Type 
I error rates are available as Supplementary material. The results 
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indicate that Type I  error rates of F-GG and F-HF were always 
within the interval [2.5, 7.5] for considering a test as robust, 
although F-GG was more conservative, especially with large values 
of ε  and small sample size. The findings also show that the 
F-statistic is liberal with values of ε  below 0.70, regardless of 
sample size and K, and also that it becomes more liberal as the ε  
value decreases. With values of ε equal to or higher than 0.70, the 
F-statistic controls Type I error. However, although Type I error 
rates of the F-statistic were within the interval [2.5, 7.5], it shows a 
trend toward being more liberal than F-GG or F-HF, with rates 
around 6–7% up to a ε  value of 0.90, whereas rates for the latter 
two tests are nearer 5%.

To further refine the results and be able to differentiate between 
the behavior of F-GG and F-HF, we also considered Bradley’s (1978) 
stringent criterion, which ensures that Type I error remains closer to 
5%. Using this criterion, we computed the percentage robustness of 
the F-statistic, F-GG, and F-HF as a function of ε  values across all 

sample sizes and values of K. The results are shown in Table 1. In this 
Table the results associated with the lower limit of ε  for each K have 
been removed from the computation as they yield, as expected 
(Huynh and Feldt, 1976), the same estimated ε value and, therefore, 
the same results for F-GG and F-HF, reaching 100% robustness in all 
cases. The results show that F-GG tends to be more conservative, while 
F-HF tends to be more liberal. However, F-GG is more robust than 
F-HF for ε  values below 0.60. By contrast, F-HF is superior to F-GG 
for ε  values equal to or higher than 0.60. The F-statistic is only 
superior to the two adjusted tests when the ε  value reaches 1.

Empirical power

Figures 4–6 show empirical power of the F-statistic, F-GG, and 
F-HF as a function of sample size and sphericity for each K. The mean 
patterns analyzed in this study did not significantly affect the 

FIGURE 2

Type I error rates (in percentages) according to Bradley’s (1978) liberal criterion for the F-statistic and for F adjusted by the Greenhouse-Geisser (F-GG) 
and Huyhn-Feldt (F-HF) procedures as a function of epsilon (E) for K  =  4.
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FIGURE 3

Type I error rates (in percentages) according to Bradley’s (1978) liberal criterion for the F-statistic and for F adjusted by the Greenhouse-Geisser (F-GG) 
and Huyhn-Feldt (F-HF) procedures as a function of epsilon (E) for K  =  6.

empirical power, and hence the results are presented without taking 
this variable into account. Overall, power increases as sample size 
increases, the F-statistic is more powerful than the two adjusted tests, 
and F-GG and F-HF show similar power, although the former tends 
to show slightly lower power, especially with large values of ε  and 
small sample size.

Discussion

The aim of this study was to analyze the effect of sphericity 
violation, irrespective of non-normality, on the F-statistic, F-GG, and 
F-HF, examining the performance of each in terms of type I error and 
power under a variety of conditions that may be encountered in real 

research practice. Normal data were generated with 3, 4, and 6 
repeated measures, considering different sample sizes with different 
degrees of sphericity violation according to the ε  value, from most 
severe deviation to sphericity fulfilled. For power analysis, we added 
different mean patterns for each design, considering a medium effect 
size for each combination of ε and K. Our ultimate aim was to use the 
results to clarify the performance of these statistical procedures and 
to establish practical recommendations for applied researchers who 
wish to base their analysis on RM-ANOVA.

The results obtained when using Bradley’s (1978) liberal 
criterion show that in terms of Type I error the F-statistic is liberal 
with values of ε  below 0.70, regardless of sample size and the 
number of repeated measures. The more severe the violation of 
sphericity, the more liberal the F-statistic is, even reaching a Type 
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I  error rate of 15.86% with an alpha of 5%. Therefore, this test 
should not be used with ε  values below 0.70. With values of ε  
above 0.70, the F-statistic is robust, maintaining Type I error rates 
within the interval [2.5, 7.5], although these rates are systematically 
around 6–7%. With values of ε  equal to 0.90, Type I error rates are 
closer to 5%, although some values are near 6%, especially for K = 6 
and small sample sizes.

Regarding F-GG and F-HF, Type I  error rates are always 
within the interval [2.5, 7.5] for considering a test as robust 
[according to Bradley’s (1978) liberal criterion], although the 
former is more conservative than the latter as ε  increases, 
especially with small sample sizes. Overall, Type I error rates for 
the two adjusted F-tests are closer to 5% (the nominal alpha) than 
are those for the F-statistic in all conditions of sphericity 
violation. Therefore, both F-HF and F-GG may be  adequate 
choices to correct the bias produced by violation of sphericity.

Overall, these results are in line with previous research that also 
used Bradley’s (1978) liberal criterion, showing the impact of 
sphericity violation on the robustness of the F-statistic (Box, 1954; 
Collier et al., 1967; Berkovits et al., 2000; Voelkle and McKnight, 2012; 
Haverkamp and Beauducel, 2017, 2019), and also that both adjusted 
F-tests provide reasonable control of Type I error under no sphericity 
(Berkovits et al., 2000; Muller et al., 2007). The tendency of F-GG to 
be  more conservative has likewise been systematically found in 
previous research (Huynh and Feldt, 1976; Oberfeld and Franke, 2013; 
Haverkamp and Beauducel, 2017).

A more refined analysis of our results, using Bradley’s (1978) 
stringent criterion, allowed us to further investigate the behavior 
of the F-statistic, F-GG, and F-HF. This criterion ensures that 
Type I error remains closer to 5% than does the liberal criterion, 
specifically in the interval [4.5, 5.5]. The findings show that F-GG 
is more robust than F-HF for ε  values below 0.60, whereas F-HF 
is superior to F-GG for ε  values equal to or higher than 0.60. 
The F-statistic is only more robust that the two adjusted F-tests 
when ε  is equal to 1. These findings suggest that with values of 
ε  equal to or below 0.90, F-GG and F-HF outperform the 
F-statistic, leading us to propose a different strategy than that 
which follows from the results obtained with the liberal criterion. 
First, given that more robust alternative procedures are available, 
the F-statistic should not be  used with an ε  value of 0.90. 
Second, it would be advisable to use F-GG with ε  values below 
0.60, and F-HF when ε  is equal to or is above this value. This 
rule is very similar to the one suggested by Huynh and Feldt 
(1976) and recommended by other authors (Barcikowski and 
Robey, 1984; Girden, 1992; Verma, 2016), although the proposed 
cut-off point was higher (i.e., it was set at 0.75). Importantly, the 
present study has investigated more conditions of sphericity 
violation than was the case in previous research, and this has 
allowed a more accurate cut-off point to be established.

As for empirical power, this increased with increasing sample 
size across all the conditions studied, reflecting the well-known 
relationship between power and sample size. For sample sizes 
around 90–100, all three tests yield similar results, but with 
smaller samples the F-statistic is usually more powerful than are 
the adjusted F-tests. Its superiority is greater as the ε  value 
decreases and, hence, as sphericity violation becomes severe. This 
result is logical and expected, given the higher Type I error rates 
of the F-statistic in these conditions. As the value of ε  increases, T
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FIGURE 4

Empirical power of the F-statistic and of F adjusted by the Greenhouse-Geisser (F-GG) and Huyhn-Feldt (F-HF) procedures as a function of sphericity, 
sample size (N), and epsilon (£) for K  =  3 across all mean pattern conditions.

the power superiority of the F-statistic becomes smaller. For 
example, in the case of ε  equal to 0.90 there is almost no power 
advantage of the F-statistic over F-HF and F-GG. These results 
confirm the findings for Type I error and lead us to advise against 
using the F-statistic, even with ε  of 0.90. The power analysis also 
showed that the empirical power of the two adjusted F-tests is 
similar, although F-GG has slightly lower power than F-HF as ε  
values increase. This may be explained by the fact that F-GG is 
more conservative than F-HF in these conditions.

The present study has a number of limitations that need to 
be  acknowledged. First, the results may not be  generalizable to 
factorial repeated measures designs, or to other scenarios where both 
normality and sphericity are violated. More extensive studies are 
warranted to clarify these issues. Second, although we introduced 
different mean patterns for each design in order to analyze power, 
only a medium effect size was considered. Future research should 
therefore include other conditions for this variable. Notwithstanding 
these limitations, this study makes an important contribution insofar 
as it considers a large number of manipulated conditions involving 

different numbers of repeated measures, different degrees of 
sphericity violation, and a large range of sample sizes. In addition, 
we consider both Type I error and power so to inform a strategy 
based on balance between the two. This approach enables us to 
propose practical recommendations for researchers that are 
applicable to a large number of conditions that may be encountered 
in real research.

Practical recommendations

The results of this study allow us to propose several practical 
recommendations for researchers dealing with normal data and 
violation of sphericity in one-way RM-ANOVA. When using 
Bradley’s (1978) liberal criterion of robustness, which ensures that 
Type I error rates remain in the interval [2.5, 7.5] for a nominal alpha 
of 5%, both F-GG and F-HF control Type I error when sphericity is 
violated. Generally speaking, we recommend using F-GG because it 
is a more conservative test than is F-HF. However, this rule of thumb 
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should be applied with caution, and if different statistical conclusions 
follow from application of the two tests with a given data set, 
we  suggest using the one that is more reliable in terms of 
percentage robustness.

Applying a stricter criterion of robustness is especially useful 
when F-GG and F-HF yield discrepant results. Based on the 
results obtained when using Bradley’s (1978) stringent criterion, 
which ensures that Type I  error remains closer to 5%, in the 
interval [4.5, 5.5], we  propose using either F-GG or F-HF, 
depending on the ε  value. In most statistical packages this 
estimation of ε is labeled as Greenhouse–Geisser epsilon, and if 
ε  < 0.60, F-GG should be used, whereas if 0.60 ≤ ε  ≤ 0.90, F-HF 
should be used.

Overall, if F-GG leads to rejection of the null hypothesis, 
we can reliably conclude that the treatment effect is statistically 
significant, as F-HF will give the same result. However, if F-GG 
suggests that the null hypothesis should be accepted, but F-HF 
rejects it, then we should trust in F-GG if ε  < 0.60 and in F-HF 
if 0.60 ≤ ε  ≤ 0.90. The advantage of this guideline is that it may 

eliminate the need to conduct Mauchly’s test as a preliminary 
analysis, basing the choice of analytic strategy on the value of ε  
instead.

Given that more robust alternative procedures are available, 
the F-statistic should not be used when sphericity is violated, 
even with a ε  value equal to 0.90. With ε  values above 0.90, the 
robustness of the F-statistic is likely to be higher and similar to 
the robustness of F-GG. Whatever the case, the present results 
indicate that if ε  is equal to 1, the F-statistic should be used as 
it is the most robust.

Finally, regarding power, the results show that as the value of 
ε  decreases, a large sample size is necessary for both F-GG and 
F-HF to produce an empirical power of 0.80 for a medium effect 
size, which is the conventional threshold suggested when sample 
size is estimated a priori (Kirk, 2013; Cooper and Garson, 2016). 
This a priori power analysis is recommended in order to optimize 
the resources to be  used in research (Faul et  al., 2007). The 
increasing of sample size, if possible, may also be a strategy to 
compensate for anticipated violations of sphericity.

FIGURE 5

Empirical power of the F-statistic and of F adjusted by the Greenhouse-Geisser (F-GG) and Huyhn-Feldt (F-HF) procedures as a function of sphericity, 
sample size (N), and epsilon (E) for K  =  4 across all mean pattern conditions.
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FIGURE 6

Empirical power of the F-statistic and of F adjusted by the Greenhouse-Geisser (F-GG) and Huyhn-Feldt (F-HF) procedures as a function of sphericity, 
sample size (N), and epsilon (E) for K  =  6 across all mean pattern conditions.
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