AUTHOR=Milano Nicola , Simeoli Roberta , Rega Angelo , Marocco Davide TITLE=A deep learning latent variable model to identify children with autism through motor abnormalities JOURNAL=Frontiers in Psychology VOLUME=Volume 14 - 2023 YEAR=2023 URL=https://www.frontiersin.org/journals/psychology/articles/10.3389/fpsyg.2023.1194760 DOI=10.3389/fpsyg.2023.1194760 ISSN=1664-1078 ABSTRACT=Autism Spectrum Disorder (ASD) is a by-birth neurodevelopmental disorder difficult to diagnose owing to the lack of clinical objective and quantitative measures. Classical diagnostic processes are time-consuming and require many specialists' collaborative efforts to be properly accomplished. Most recent research has been conducted on automated ASD detection using advanced technologies. The proposed model automates ASD detection and provides a new quantitative method to assess ASD. The theoretical framework of our study assumes that motor abnormalities can be a potential hallmark of ASD, and Machine Learning may represent the method of choice to analyse them. In this study, a Variational Autoencoder, a particular type of Artificial Neural Network, is used to improve ASD detection by analysing the latent distribution description of motion features detected by a tablet-based psychometric scale. The proposed ASD detection model aims to identify potential motion hallmarks typical for autism and support clinicians in their diagnostic process. Results revealed that the motion features of children with autism consistently differ from those of children with typical development. Potentially, these measures could be used as additional indicators of disorder or suspected diagnosis.