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Introduction: People prefer immediate over future rewards because they 
discount the latter’s value (a phenomenon termed “delay discounting,” used as 
an index of impulsivity). However, little is known about how the preferences are 
implemented in brain in terms of the coordinated pattern of large-scale structural 
brain networks.

Methods: To examine this question, we classified high discounting group (HDG) 
and low discounting group (LDG) in young adults by assessing their propensity for 
intertemporal choice. We compared global and regional topological properties in 
gray matter volume-based structural covariance networks between two groups 
using graph theoretical analysis.

Results: HDG had less clustering coefficient and characteristic path length 
over the wide sparsity range than LDG, indicating low network segregation 
and high integration. In addition, the degree of small-worldness was more 
significant in HDG. Locally, HDG showed less betweenness centrality (BC) in the 
parahippocampal gyrus and amygdala than LDG.

Discussion: These findings suggest the involvement of structural covariance 
network topology on impulsive choice, measured by delay discounting, and 
extend our understanding of how impulsive choice is associated with brain 
morphological features.
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Introduction

Impulsivity is a complex and multidimensional concept that refers to the tendency to act 
without considering the potential negative consequences or long-term effects of those actions 
and inability to inhibit inappropriate behaviors (Patton et al., 1995; Whiteside and Lynam, 2001; 
Reynolds et al., 2006). Because of its multifaceted nature, impulsivity plays a significant role in 
numerous psychiatric disorders, such as personality disorders, behavioral disorders, substance 
use disorders, and bipolar disorder (Moeller et al., 2001; Berlin and Hollander, 2014). In these 
conditions, individuals exhibit different impulsive behaviors that can have detrimental effects 
on their lives and well-being.
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Impulsivity can be assessed using self-report questionnaires and 
by behavioral tasks. One commonly used self-report questionnaire is 
the Barratt Impulsiveness Scale. Factor analysis of this scale has 
indicated a three-factor structure, which includes attentional 
impulsiveness (reduced attention), motor impulsiveness (increased 
motor activation), and non-planning impulsiveness (decreased 
planning) (Patton et al., 1995). In addition to self-report measures, 
behavioral tasks like the intertemporal choice task, also known as a 
delay discounting (DD) task, are commonly used to assess impulsivity, 
particularly impulsive choice. This task involves making choices 
between smaller-but-immediate and larger-but-delayed rewards 
(Kable and Glimcher, 2007). Because impulsivity and reward-seeking 
are closely linked (Donohew et al., 2000; Whiteside and Lynam, 2001), 
impulsive individuals are more prone to engaging in reward-seeking 
behaviors without considering potential long-term effects. Thus, the 
immediate gratification associated with reward-seeking behaviors can 
be  appealing to impulsive individuals, leading them to prioritize 
short-term gains over long-term benefits. The DD task measures such 
people’s preference (called the DD rate) for smaller-but-immediate 
rewards over larger-but-delayed rewards, and the DD rate is used as 
behavior index of impulsivity (Kable and Glimcher, 2007; Levitt 
et al., 2020).

Understanding individual differences in the DD rate is important 
because it is associated with various real-life consequences (Chabris 
et al., 2008; Madden and Bickel, 2010; Levitt et al., 2020). For instance, 
higher discounting rates are associated with drug use (Kirby and Petry, 
2004) and obesity (Fields et al., 2013) and are observed in a variety of 
psychiatric disorders (e.g., addiction, attention-deficit hyperactivity 
disorder, bipolar disorder, and schizophrenia; Ahn et al., 2011; Story 
et al., 2016). By contrast, low discounting rates are linked to academic 
achievement (Kirby et al., 2005). Therefore, investigating the neural 
mechanism underlying DD using a neuroeconomic approach may 
predict future impulsive and addictive behaviors and a potential target 
for effective interventions to reduce such behaviors and symptoms.

Over the last two decades, functional neuroimaging studies have 
identified multiple brain areas activated in the intertemporal choice 
(Kable and Glimcher, 2009; Peters and Büchel, 2009; Chen et  al., 
2019a). These brain areas include the ventral striatum, ventromedial 
prefrontal cortex, and posterior cingulate cortex, where neural activity 
encodes the subjective value (SV) of given options during the task 
(Kable and Glimcher, 2007; Bartra et al., 2013; Clithero and Rangel, 
2014). In addition, activity in the lateral prefrontal cortex and medial 
temporal areas involved in choosing options based on SV and in 
imaging future outcomes were also observed (Ballard and Knutson, 
2009; Kable and Glimcher, 2009; Peters and Büchel, 2009; Figner et al., 
2010; Lebreton et al., 2013). Consistent with these neurofunctional 
findings, anatomical neuroimaging studies have shown the association 
between DD and brain morphology (e.g., gray matter [GM] volume 
and cortical thickness) in these abovementioned areas, such as the 
striatum, medial prefrontal and temporal regions, and lateral prefrontal 
cortex (Bjork et al., 2009; Dombrovski et al., 2012; Cho et al., 2013; 
Lebreton et al., 2013; Wang et al., 2016; Owens et al., 2017). Therefore, 
it is suggested that functional and anatomical differences in these areas 
are associated with individual differences in DD.

Covariance in GM morphology between different brain areas 
may be a powerful tool for inferring large-scale structural brain 
networks. Structural covariance patterns between different regions 
are similar to functional connectivity (Zielinski et al., 2010; Yun 

et al., 2020). This similarity suggests that coordinated covariance in 
brain morphology reflects developmental coordination between 
areas (Alexander-Bloch et  al., 2013). More recently, using graph 
theoretical network analysis (which characterizes the network’s 
topological properties) investigations have reported that the 
topology of structural covariance networks follows small-world 
network properties (He et  al., 2008; Zhang et  al., 2012). These 
networks are characterized by high clustering (local segregation) and 
low path length (global integration) among nodes (i.e., brain areas) 
in the network (Watts and Strogatz, 1998).

Furthermore, studies have demonstrated disrupted small-world 
topology in the structural covariance networks in various neurologic 
or psychiatric disorders, including Alzheimer’s disease (He et  al., 
2008), schizophrenia (Zhang et al., 2012), and OCD (Yun et al., 2020). 
Based on these findings, graph theoretical analysis in conjunction with 
structural covariance networks may provide novel insights into neural 
mechanisms underlying DD (i.e., impulsive behavior) at the network 
level. No studies so far have investigated differences in the topology of 
the structural covariance networks based on GM morphology 
according to the discounting rate, while a few studies have investigated 
the relationship between DD and the topological properties of 
networks generated from functional connectivity or structural 
connectivity derived from diffusion tensor imaging (DTI) (Chen et al., 
2018; Wang et al., 2021a).

Therefore, we  investigated differences in the topological 
organization of GM volume-based structural covariance networks 
between two groups discriminated in terms of high and low 
discounting rates in the intertemporal choice using graph theoretical 
analysis. Among the coordinated patterns of brain morphology (i.e., 
graph theoretical metrics estimated from GM volume-based 
structural covariance networks), we especially expected that there 
would be differences in small-world parameters that reflect a balance 
between information segregation and integration between brain 
regions, and in nodal betweenness centrality (BC) that indicates the 
relative importance of a node in the network. To address this issue, 
several global network parameters (small-world parameters 
including clustering coefficient, characteristic path length, and 
small-worldness) were computed to quantify small-world structure 
in the network (Watts and Strogatz, 1998). In addition, we calculated 
the BC as a regional (nodal) network parameter to quantify the 
relative importance for each of nodes and is used to identify a hub 
that acts as a bridge between nodes in the network (Freeman, 1977; 
He et al., 2008).

Methods

Participants

Participants involved in the current study were recruited as 
part of the Psychological and Neural Mechanisms for Predicting 
Academic Achievement (PNMPAA) study. For the PNMPAA 
study, participants were asked to fill out a series of surveys (topics 
included their achievement goals, motivation, time perspectives, 
and personality traits), performed choice behavior tasks, and 
underwent brain scans. During some cognitive tasks, the scanning 
session consisted of high-resolution T1-weighted anatomical MRI, 
resting-state fMRI, DTI, and fMRI. In this study, we used T1 data 
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to examine whether there are any differences in topological 
properties of GM-based structural covariance networks between 
the high (HDG) and low discounting groups (LDG). All 
participants in the present study were young, healthy adults who 
had normal or corrected-to-normal vision and no significant 
medical illness. They gave written informed consent before 
participation. All study procedures were approved by the 
Institutional Review Board of Gachon University (IRB number: 
1044396-202203-HR-056-01). All methods were performed in 
accordance with the relevant guidelines and regulations.

Of the entire cohort (N = 115) collected to date, 73 completed both 
the DD task and brain scans. Two individuals out of 73 were excluded 
because of (i) data missing (n = 1) and (ii) low data quality (n = 1). 
We split participants at the median k value into two groups of high 
(n = 35) and low (n = 35) discounters after excluding one individual 
who scored the median value. Therefore, 70 participants were used in 
the final analysis (Table 1).

Task

The task displayed monetary amounts in KRW (₩). Participants 
were asked to make a series of 120 choices between a smaller-
immediate reward, fixed at ₩10,000 now for all trials, and a variable 
larger-delayed reward (Figure  1A). The magnitude of the larger-
delayed reward ranged from ₩11,000 to ₩48,000, and the delay 
varied from 2 to 180 days. Discounting rates (k) were estimated by 
fitting logistic regressions that assume an individual’s decisions are a 
stochastic function of the difference in SV between given two options. 
In other words, a logistic choice rule was used to compute the 
probability of choosing options as a function of the difference in the 
SV of two choice options on each trial as follows:
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where P1 refers to the probability that the participant chose the 
delayed option, and P2 refers to the probability that the participant 
chose the immediate option. SV1 and SV2 refer to the participant’s 
estimated subjective value of the delayed and the immediate options, 
respectively. β was used as a scaling factor and was fitted for each 
subject. Keeping with standard behavioral findings (Mazur, 1987; 
Kable and Glimcher, 2007), we assume that SV is a hyperbolic function 
of the reward amount (A) and delay (D): SV = A/(1 + kD), where k is 
the participant’s discount rate. Larger k values represent a greater 
degree of discounting future rewards. The k was log-transformed to 
normalize the distribution before statistical analyses.

Image acquisition and preprocessing

All imaging data were acquired on a 3 T Trio MRI scanner 
(Siemens, Erlangen, Germany). High-resolution T1-weighted 
anatomical images were obtained using a 3D magnetization-prepared 
rapid-gradient echo (MPRAGE) sequence (repetition time 
[TR] = 1,900 ms, echo time [TE] = 2.52 ms, flip angle [FA] = 9°, voxel 
size = 1.0 × 1.0 × 1.0 mm3, 192 sagittal slices). Other image parameters 
unrelated to the present study are not described here.

Image preprocessing was conducted using the Computational 
Anatomy Toolbox (CAT1) for SPM122 with default options. First, all 
structural images were segmented into GM, white matter (WM), and 
cerebrospinal fluid images. Then, high-dimension DARTEL 
normalization was applied to normalize and modulate the GM images 
(voxel size = 1.5 × 1.5 × 1.5 mm3).

Structural covariance network 
construction

The Automated Anatomical Labeling (AAL; Tzourio-Mazoyer 
et al., 2002) atlas was used to segment the brain into 90 cortical and 
subcortical regions (45 per hemisphere; Figure 1B) as nodes in the 
network. Regional GM volumes of each area were extracted during 
the CAT preprocessing. First, we regressed age, sex, education, and 
total intracranial volume (TIV) effects on GM volumes by linear 
regression analysis (He et  al., 2007). We  then performed Pearson 
correlations between the corrected GM volumes to construct a 90 × 90 
correlation matrix for each group (Figure  1C). Only positive 
correlations of the matrix were considered as edges (i.e., connections). 
Negative correlations were assigned a zero value before subsequent 
network analysis (Zhang et al., 2019). Then, the correlation matrix was 
binarized with a fixed sparsity threshold to ensure that both groups 
had the same number of edges on the binarized network (Figure 1D). 
As there is not a gold standard to select a single threshold, we used a 
wide range of sparsity thresholds (0.25–0.53, with an interval of 0.01). 
The sparsity threshold range was selected to allow for a small-world 
regime in the brain networks of both groups; that is, the 
small-worldness (σ) of the threshold networks was greater than 1 
(Watts and Strogatz, 1998; Zhang et al., 2012; Jung et al., 2016).

1 http://www.neuro.uni-jena.de/cat

2 http://www.fil.ion.ucl.ac.uk/spm/

TABLE 1 Demographic and behavioral data.

Variables High discounters Low discounters t or χ2 p

Age (years) 21.943 ± 2.920 22.057 ± 2.555 −0.174 0.862

Sex (male/female) 21/14 18/17 0.521 0.470

Education (years) 14.800 ± 1.132 15.286 ± 1.447 −1.564 0.122

Discounting rate (k) 0.029 ± 0.022 0.006 ± 0.003 6.193 p < 0.001

Total intracranial volume (mm3) 1584.088 ± 163.212 1546.765 ± 138.138 1.033 0.305

Values are presented as mean ± standard deviation.
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FIGURE 1

Intertemporal choice task and structural covariance networks. (A) Examples of task trials. Participants chose between a smaller-immediate 
reward (10,000 won now) and a larger-delayed reward (17,000 won in 24 days). (B) The AAL atlas used to segment the brain into 90 nodes. 
(C) The 90 by 90 correlation matrices for the HDG (left column) and LDG (right column). The color bar indicates the Pearson correlation 
coefficient on the matrices. (D) Binarized matrices thresholded at 0.25 sparsity. The correlation matrices of (C) were thresholded into the 
binarized matrices with a wide range of sparsity (0.25–0.53, with an interval of 0.01). HDG, high discounting group; LDG, low discounting 
group.
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Network topological properties

We estimated both global and regional topological properties in the 
structural covariance networks using the Brain Connectivity Toolbox 
(BCT, Rubinov and Sporns, 2010)3 with MATLAB R2021b. Small-world 
parameters (including clustering coefficient, characteristic path length, 
and small-worldness) were computed to characterize global topological 
properties [refer to Rubinov and Sporns (2010) for a detailed equation 
for each parameter]. Briefly, the clustering coefficient of a node is the 
ratio of the number of existing edges between direct neighbors of the 
node to the number of all possible edges between them. The network 
clustering coefficient is defined as the clustering coefficient average 
across all network nodes, reflecting its segregation. The shortest path 
length between two nodes is the minimum number of edges included 
in the path connecting these two nodes. The characteristic path length 
of a network is defined as the average shortest path length between all 
node pairs in the network, which measures network integration. Small-
worldness is defined as the ratio of normalized clustering coefficient to 
normalized characteristic path length. Therefore, before computing the 
ratio, we  normalized by comparing the clustering coefficient and 
characteristic path length to the corresponding mean values of 100 
matched random networks.

BC as the regional network parameter was estimated to 
characterize regional topological organization at a sparsity 
threshold of 25%. This sparsity ensured that all nodes were 
included in the network for both groups while minimizing the 
number of false-positive connections (He et al., 2008). BC is the 
fraction of all shortest paths in the network that pass through a 
given node. The BC of a node i on a given graph G with N nodes is 
calculated through the following formula (Freeman, 1977; Jung 
et al., 2013; Gharahi et al., 2023):

 
( ) ( )jk

jkj i k G

i
BC i

δ
δ≠ ≠ ∈

= ∑

Where δ jk is the total number of shortest paths from a node j to a 
node k, and δ jk (i) is the number of those paths that pass through a 
node i within graph G. The BC value reflects the influence of a node 
on the information flow between other nodes in the network. Before 
group comparison, the BC was normalized by the average BC of the 
network. Nodes having greater than one standard deviation above the 
average BC across all nodes were considered hubs for each group 
(Bassett et al., 2008; Jung et al., 2016). Finally, the hub locations were 
qualitatively compared across groups.

Statistical analysis

A nonparametric permutation test (1,000 repetitions) was 
performed to determine the statistical significance of differences in the 
network topological properties between groups (Bullmore et al., 1999; 
He et al., 2008). At each permutation, the corrected GM volumes of 
all participants were randomly reassigned to one of two new groups. 

3 https://sites.google.com/site/bctnet/

The correlation matrix for each randomized group was recomputed 
and binarized over the range of defined sparsity thresholds. The 
topological network properties were estimated for each thresholded 
network. In addition, their intergroup differences were computed to 
create a permutation distribution of differences under the null 
hypothesis. The significance level was set at p < 0.05 for group 
differences in global and regional topological properties. Following 
previous studies (Lynall et al., 2010; Hong et al., 2013; Jung et al., 
2016), for the regional parameter (i.e., BC), we also applied a threshold 
of p < 0.011 (=1/90, 90 is the number of nodes), which is a less 
stringent false positive correction based on the number of nodes. 
BrainNet Viewer was employed for network visualization (Xia 
et al., 2013).

Results

Demographic and behavioral data

HDG, compared with LDG, showed significantly greater 
discounting rates (t = 6.193, df = 68, p < 0.001; Table 1). However, other 
variables, including age, sex, education, and TIV, were not significantly 
different between the two groups (ps > 0.05).

Global network analysis

The GM-based structural covariance networks for both groups 
followed a small-world architecture across the defined sparsity range. 
This pattern was evidenced by small-worldness (σ) > 1 (Figure 2A) as 
well as normalized clustering coefficient > 1 and normalized 
characteristic path length ≈ 1, generated by comparing with random 
networks (Watts and Strogatz, 1998; Humphries et al., 2006).

As shown in Figure 2B, significant differences in clustering 
coefficient and characteristic path length between the two groups 
were detected with a wide range of sparsity thresholds 
(0.27 < sparsity <0.53), showing that HDG had fewer values in 
these two global parameters, relative to LDG. In addition, 
significant differences in small-worldness were also observed at 
0.26 < sparsity <0.38, showing that HDG, relative to LDG, showed 
greater small-worldness.

Regional network analysis

Group differences in the BC were observed in seven areas (at 
ps < 0.05), including the right parahippocampal gyrus (p = 0.001), left 
amygdala (p = 0.005), right lingual gyrus (p = 0.020), right insula 
(p = 0.022), left triangular inferior frontal gyrus (IFGtriang, p = 0.024), 
left orbital inferior frontal gyrus (ORBinf, p = 0.024), and left putamen 
(p = 0.033) (Figure 3). Compared to LDG, HDG showed greater BC in 
the lingual gyrus and ORBinf but less BC in the IFGtriang, 
parahippocampal gyrus, insula, amygdala, and putamen. However, of 
all these areas, only two limbic areas (the left amygdala and right 
parahippocampal gyrus) showing less BC in HDG survived when 
applying a false positive correction.

A different number and distribution of network hubs were observed 
between the two groups (Figure 4). Especially, 10 regions (all cortical; 
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left superior temporal pole, left cuneus, left Heschl gyrus, left ORBinf, 
left insula, right middle frontal gyrus, left superior occipital gyrus, left 
calcarine, right rectus, and left middle frontal gyrus) were identified as 

hubs in the HDG. Nine hubs (six cortical and three subcortical; right 
insula, right opercular inferior frontal gyrus, right middle temporal 
gyrus, right superior temporal pole, right parahippocampal gyrus, left 

FIGURE 2

Global network topological properties of the structural covariance network. (A) Changes in small-world parameters (including clustering coefficient, 
characteristic path length, and small-worldness) in HDG (blue circles) and LDG (orange circles) as a function of network sparsity. (B) Differences (red 
circles) in global network properties between two groups. The gray lines represent the mean values (light gray), and 95% confidence intervals (dark 
gray) of the between-group differences obtained 1,000 permutation tests at each sparsity threshold. The red circles lying outside of the confidence 
intervals indicate the sparsity where the difference is significant at p  <  0.05. The positive values indicate HDG  >  LDG, and negative values indicate 
HDG  <  LDG.

FIGURE 3

The difference in nodal betweenness centrality between two groups. Regions showing significant differences are rendered on a brain surface. The 
graph shows the differences (red circles) in normalized betweenness centrality for each node between two groups. The gray circles and lines represent 
the mean values and 95% confidence intervals of the between-group differences obtained from 1,000 permutation tests. The red circles lying outside 
of the confidence intervals indicate the sparsity where the difference is significant at p  <  0.05. The positive values (blue arrows) indicate HDG  >  LDG, and 
negative values (orange arrows) indicate HDG  <  LDG. L, left; R, right; IFGtriang, triangular inferior frontal gyrus; PUT, putamen; ORBinf, orbital inferior 
frontal gyrus; AMYG, amygdala; LING, lingual gyrus; PHG, parahippocampal gyrus; INS, insula.
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IFGtriang, left and right amygdala, left putamen) were identified in the 
LDG. No regions were common to both groups.

Discussion

In the present study, we  investigated whether there were 
differences in the coordinated patterns (i.e., topological properties 
from graph theoretical analysis) of structural covariance networks 
between HDG and LDG. Earlier studies showed brain areas associated 
with DD in terms of brain morphology, suggesting neuroanatomical 
correlates of DD (Bjork et al., 2009; Dombrovski et al., 2012; Cho et al., 
2013; Lebreton et al., 2013; Wang et al., 2016; Owens et al., 2017; 
Pehlivanova et al., 2018). The present study extends these findings by 
being the first to examine the involvement of topological features of 
the structural covariance networks generated based on brain 
morphology (i.e., GM volume) on impulsive choice, measured by DD, 
at group level. We found significant differences in global network 
topology, especially small-world parameters, between HDG and 
LDG. HDG showed fewer values in both clustering coefficient and 
characteristic path length but greater small-worldness. We  also 
observed differences in the regional network topology, particularly 
BC, between groups. HDG had lower BC in the limbic region, 
particularly the parahippocampal gyrus and amygdala. Together with 
earlier findings showing an association between DD and regional GM 
volumes, these findings provide evidence for the involvement of brain 
morphology in DD at group level. Our findings further suggest that 
the topological characteristics of brain morphology-based structural 
covariance networks may play a central role in impulsive choice.

To construct brain networks in the current study, we  used 
structural covariance that is an indicator of individual differences in 
brain volumetry within a group. Structural covariance networks 
reflect the degree to which the morphology (in this case, regional GM 
volume) of brain regions covaries with other regions within a given 
group. That is, a group with high (low) structural covariance would 
have high (low) correlations between regional GM volumes across 
individuals in that group. Therefore, the current results we  found 
argue differences in the structural covariance patterns between groups 
divided by discounting rates (the index of impulsive choice). Though 
the precise neurobiological and development mechanisms behind 
structural covariance patterns remains unclear, structural covariance 
networks share several common topological features with functional 
brain networks, such as small-world topology and hubs (Achard et al., 
2006; He et  al., 2007), and previous studies have suggested 

environment-related structural changes (Maguire et  al., 2000) or 
mutually trophic effects (Ferrer et al., 1995) on structural covariance 
patterns. Some studies have also demonstrated disrupted topological 
features in the structural covariance networks in various neurologic 
or psychiatric disorders, including Alzheimer’s disease (He et  al., 
2008), schizophrenia (Zhang et al., 2012), and OCD (Yun et al., 2020).

A small-world network is characterized by a high clustering 
coefficient and a short average shortest path length (i.e., a short 
characteristic path length), which means high segregation and 
integration of the network, respectively (Watts and Strogatz, 1998). 
Therefore, the small-world network is suggested to support efficient 
information processing. The extent to which a given network displays 
small-world structure (quantified as small-worldness) can 
be evaluated by considering the balance between segregation and 
integration (Watts and Strogatz, 1998). In other words, small-
worldness is the ratio of the clustering coefficient [numerator] to the 
characteristic path length [denominator], normalized by comparing 
to corresponding values of random networks. If the small-worldness 
of a given network is greater than 1, the network is deemed to be a 
‘small-world.’ In the current study, we observed small-world structures 
(small-worldness >1) particularly in the structural covariance 
networks over the wide range of sparsity thresholds, consistent with 
previous studies (He et al., 2008; Zhang et al., 2019). We also showed 
that HDG, compared with LDG, had fewer levels of both clustering 
coefficient and characteristic path length. Therefore, the results are 
interpreted as less segregation and higher integration in HDG. Small-
worldness was higher in HDG compared with LDG. Though HDG 
showed a greater small-worldness value, we would urge caution in 
interpreting this result because HDG and LDG are young, healthy 
adults who have no serious clinical problems. Considering the 
equation to calculate the small-worldness presented above, higher 
small-worldness can come out if the characteristic path length 
[denominator] is relatively smaller than the clustering coefficient 
[numerator]. Therefore, higher small-worldness in HDG may be due 
to even less characteristic path length than LDG. Indeed, the 
characteristic path length difference between the two groups was 
much more significant than the difference in the clustering coefficient 
(see Figure 2).

Previous studies have demonstrated small-world structure in 
structural and functional brain networks, derived from DTI 
tractography and functional connectivity, respectively (Gong et al., 
2009; Lo et  al., 2010; Jung et  al., 2013, 2016). Many studies have 
revealed differences in the topological properties of these structural 
or functional brain networks not only in a variety of clinical 

FIGURE 4

Hubs in each group. (A) Hubs in the HDG (blue circles) were located in 10 cortical areas (including right middle frontal gyrus [MFG], right rectus [REC], 
left MFG, left orbital inferior frontal gyrus [ORBinf], left insula [INS], left superior temporal pole [TPOsup], left Heschl gyrus [HES], left cuneus [CUN], left 
superior occipital gyrus [SOG], and left calcarine [CAL]). (B) Hubs in the LDG (orange circles) were 6 cortical (right opercular inferior frontal gyrus 
[IFGoperc], right INS, right TPOsup, right middle temporal gyrus [MTG], right parahippocampal gyrus [PHG], and left triangular inferior frontal gyrus 
[IFGtriang]) and 3 subcortical (right amygdala [AMYG], left AMYG, and left putamen [PUT]) areas.
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conditions, such as Alzheimer’s disease, OCD, and schizophrenia (Lo 
et al., 2010; Shin et al., 2014; Jiang et al., 2022) but also between groups 
divided according to experience or skills even in healthy adults (e.g., 
board game experts versus novices; Jung et al., 2013). However, a few 
studies have explicitly investigated brain network topology 
involvement in DD (Chen et al., 2019b; Wang et al., 2021a,b). They 
showed the association between individual differences in DD and 
global network topological properties, such as small-world 
parameters. For example, using DTI and resting-state fMRI data, 
Chen et al. (2019a,b) investigated the association between individual 
DD and global and regional network properties estimated from 
structural and functional brain networks. They found that high 
discounters had decreased small-world parameters, including 
normalized clustering coefficient and small-worldness, in structural 
and functional brain networks. However, they did not observe any 
significant association with regional network properties. More 
recently, Wang et al. (2021a) applied the representational connectivity 
analysis (RCA) approach to generate functional brain networks 
corresponding to future rewards’ amount and delay time during the 
DD task. In addition, they investigated the relationship between DD 
and topological parameters of these two networks. They found that 
global network topology (global efficiency) in the delay-related 
network was inversely associated with DD. Discrepancies between 
previous findings and current findings may stem from differences in 
image modality and analysis method used to generate the brain 
network and node definition.

In the present study, we found BC differences in several regions 
between the two groups. Among them, the amygdala and 
parahippocampal gyrus remained after multiple comparison 
corrections, suggesting that the local network topology of the limbic 
areas may play a more central role in DD. Previous functional and 
structural studies have reported the involvement of the medial 
temporal regions including the amygdala and parahippocampal 
gyrus in DD, suggesting the role of these areas in impulsive choice. 
Dysfunction in amygdala and parahippocampal gyrus may each lead 
to a preference for immediate rewards associated with positive 
emotions or memories, even at long-term disadvantages. The 
amygdala is a key brain region for reward and emotional processing 
(Hommer et al., 2003; Yang et al., 2020). The amygdala responds to 
the salience of stimulus and prepares adaptive behaviors for 
changing environmental conditions (Cunningham and Brosch, 
2012). In the context of impulsive choice, the amygdala is associated 
with the evaluation of immediate stimuli and their emotional 
significance. For instance, amygdala activation in humans is 
correlated with reward magnitude for immediate over delayed 
rewards (Ludwig et al., 2015). Aberrant activation and lesions in the 
amygdala are related to preferences for immediate rewards in 
rodents (Winstanley et al., 2004; Churchwell et al., 2009). Given the 
abovementioned findings, when faced with a choice that entails 
immediate reward, the amygdala can influence impulsive decision-
making by biasing individuals toward choosing options that provide 
immediate emotional satisfaction, even at long-term disadvantages. 
The parahippocampal gyrus, a cortical region surrounding the 
hippocampus, plays a vital role in memory (Squire and Zola-
Morgan, 1991) and visuospatial processing (Aguirre et al., 1996). In 
the context of impulsive choice, the parahippocampal gyrus may 
play a role in evaluating the significance of available options based 
on the context in which they are presented. Activity in the 
parahippocampal gyrus can predict an individual’s DD (Chen et al., 

2019b). Recently, Wang et  al. (2021b) found that less all-range 
non-hub resting-state functional connectivity (also called degree 
centrality, which measures the sum of all the connections between a 
given voxel and all of the other voxels) in the parahippocampus was 
associated with high DD. Considering that the hippocampus and 
parahippocampal gyrus play a key role in imagining novel 
experiences (e.g., future thinking; Schacter et al., 2007, 2008), it is 
suggested that these areas may contribute to evaluating future 
rewards through mental simulation, that is a process of prospection 
(Johnson et al., 2007; Luhmann et al., 2008; Peters and Büchel, 2009). 
Given the abovementioned findings, the parahippocampal gyrus can 
influence impulsive decision-making by weighing the significance of 
the choices in relation to stored memories or imagined futures.

Some study limitations should be  addressed. First, this study 
included only young, healthy adults. It is thus necessary to see if 
results from people with impulsive disorders are similar to the current 
findings. Second, as there are no individual networks but the group-
level networks to estimate structural covariances, we  could not 
examine the association between individual network topology 
parameters and DD. Third, considering previous results showing the 
association between structural and functional networks (Honey et al., 
2007; Chen et  al., 2019b), further studies combining networks 
generated from structural covariance and functional connectivity are 
needed to improve our understanding of the relationship between 
topological properties of structural covariance and functional brain 
networks and between these variables and DD. Additionally, future 
studies using DTI and functional MRI data will help clarify the 
association of topological properties of structural and functional 
connectivity with individual differences in DD.

In summary, this study applied a neuroeconomic approach to 
study the neural mechanisms underlying impulsivity, measured by the 
DD rate. To investigate DD-related differences in the coordinated 
patterns of large-scale structural brain networks, we compared global 
and regional topological properties of the GM volume-based 
structural covariance networks between HDG and LDG. Our findings 
provide evidence supporting the involvement of brain morphology in 
DD at group level and offer new insights into the network mechanisms 
underlying DD, showing differences in small-world parameters (less 
segregation and high integration) and BC (an importance role in 
limbic areas, including the parahippocampal gyrus and amygdala, on 
delayed gratification) between two groups. Future studies with 
patients with impulsive behaviors are warranted to explore this 
issue further.
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