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Developmental dyscalculia (DD) is a subtype of learning disabilities, which is 
characterized by lower mathematical skills despite average intelligence and average 
or satisfactory performance in other academic areas. It is not fully understood 
how such deficits emerge in the course of brain development. When considering 
the mechanisms of dyscalculia, two domain-specific systems are distinguished. 
The Approximate Number System (ANS) is related to the approximate estimation 
of large sets, and the Object Tracking System (OTS) is responsible for subitizing, 
that is, the exact quantification of small sets. In recent years, the multiple-deficit 
framework has become increasingly popular. On the one hand, it explains the 
impairment of certain general cognitive functions in children with DD, such as 
executive functions, attention, visual-perceptual discrimination, processing 
speed, and rapid scanning of visual information. On the other hand, it provides a 
theoretical basis for explaining the simultaneous occurrence of the different types 
of other comorbid conditions (such as dyslexia and ADHD) and the relationship 
between them. We  suggest that the face recognition could be  considered as 
another, probably impaired function in dyscalculic individuals. We highlight several 
brain areas involved both in numerical and facial processing: intraparietal sulcus 
(IPS), fusiform gyrus (FFG), and hippocampus (HC). We consider the possibility of 
expanding the scope of dyscalculia research by application of face perception 
paradigms.
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Introduction

Developmental dyscalculia (DD) is a subtype of learning disabilities characterized by lower 
mathematical skills. Its prevalence ranges between 3 and 8% of the population (Geary, 2004; 
Rubinsten and Henik, 2009; Rapin, 2016; Skagerlund and Träff, 2016). Mathematical 
performance depends on the specific numerical skills required in each area of mathematics and 
general cognitive abilities, such as symbolic number processing and visuospatial working 
memory. Many studies support the idea of domain-specific deficit in dyscalculic learners due to 
the difficulties in understanding basic numerical concepts, such as magnitude comparison or 
accounting. Generally speaking, there are two systems of quantity estimation according to the 
domain-specific approach to dyscalculia. The first system, Approximate Number System (ANS) 
supports the approximate estimation of large sets (Halberda and Feigenson, 2008; Bugden and 
Ansari, 2016). The second one, Object Tracking System (OTS), is supposed to be responsible for 
the exact quantification of small sets (subitizing) (Fischer et al., 2008; Henik et al., 2011).
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The etiology of developmental disorders can also be considered 
within the multiple-deficit framework (Pennington, 2006; Moll et al., 
2019; McGrath et al., 2020). It provides a theoretical basis explaining 
the simultaneous occurrence of disorders and the relationship 
between them. As for dyscalculia, this approach takes into account 
other comorbid conditions. Children with dyscalculia also have 
attention deficit hyperactivity disorder (ADHD) or dyslexia in 5–30% 
(DuPaul et  al., 2012; Georgitsi et  al., 2021), and in 11–70% of 
dyscalculic learners, respectively (Moll et al., 2014; Wilson et al., 2015; 
Peters et al., 2020). Some functions are also impaired in children with 
DD, for example, executive functions, visual-perceptual 
discrimination, processing speed and rapid scanning of visual 
information (Geary, 2011; Child et  al., 2019). It is possible to 
distinguish children with specific deficits in mathematics and the 
children for whom difficulties with mathematics are the result of 
problems in other cognitive domains. In the first case, rehabilitation 
could directly address mathematical skills, whereas rehabilitation 
could be  aimed at the impaired general cognitive function. The 
comorbidity between dyslexia and dyscalculia deserves special 
attention (Mann Koepke and Miller, 2013; Moll et al., 2021), since 
dyslexia is the closest impairment to dyscalculia. They have a possible 
common genetic precursor, the deletion of the chromosome 15q11.2, 
which is associated with high risk of dyslexia or dyscalculia (Ulfarsson 
et al., 2017).

Little research has directly compared the cognitive abilities in 
dyscalculia and dyslexia. The studies targeted the investigation of 
symbolic and non-symbolic numerical magnitude, phonological 
awareness, attention, verbal short-term memory, visuospatial memory, 
lexical access, and working memory (Geary et al., 2020; Grant et al., 
2020). Peters et al. (2020) demonstrated that children with dyscalculia 
had a marked deterioration in spatial skills in comparison to their 
typically developing peers. Here, spatial skills were a strong predictor 
of isolated dyscalculia and comorbid dyslexia/dyscalculia, while 
phonological awareness was the only reliable indicator of isolated 
dyslexia. Neural activation patterns in children with comorbid 
dyslexia/dyscalculia and isolated dyslexia and dyscalculia, obtained 
with fMRI, had similar differences in brain activity compared to their 
typically developing peers during arithmetic tasks (Georgitsi 
et al., 2021).

Insights from neuroscience: brain regions 
critical for dyscalculia

Research shows that several brain regions are critical for 
dyscalculia. This article focuses on three areas. First, many researchers 
suggest that the parietal cortex, especially the intraparietal sulcus 
(IPS), plays a critical role in dyscalculia. von Aster and Shalev (2007) 
assumed that functional specialization of the parietal cortex in mental 
calculations enhanced with age and was combined with a reduction 
in prefrontal activity. This supposition coincides with the experience-
dependent neuroplastic effect on the IPS in children with typical 
ontogenesis. Henik et al. (2011) noted the role of IPS in dyscalculia, 
but also believed that DD could be  characterized by other 
impairments, has heterogeneous symptoms, and could be influenced 
by domain-independent factors related to other brain areas. Michels 
et al. (2021) compared whole-brain maps of volume based structural 
covariance between control and dyscalculic groups and detected high 

structural covariance in children with DD between the anterior IPS 
and the middle temporal and frontal gyri. They found a bilateral 
involvement of the IPS, with significant deterioration of the left IPS, 
in older schoolchildren with DD. There was decreased probability of 
connections from the right fusiform gyrus (FFG) to the parietal lobes 
and other brain areas. Butterworth et  al. (2011) found reduced 
activation of the IPS in DD group during tasks for number symbols or 
numerosity comparison and arithmetic. Differences in the activation 
between children with dyscalculia and the control group were detected 
in the occipital and frontal cortex along with the parietal areas 
associated with numbers. Rykhlevskaia et al. (2009), using structural 
MRI and diffusion tensor imaging to estimate structural impairments 
in children with DD, found reduced gray matter bilaterally in the 
superior parietal lobule, IPS, FFG, parahippocampal gyrus, in the 
hippocampus, and right anterior temporal cortex. In a meta-analysis, 
Kaufmann et al. (2011) demonstrated that dyscalculic individuals 
produced consistent activation in frontoparietal areas in response to 
calculating tasks and number processing that were distinctly 
modulated by notation, the level of competence and task complexity. 
Pinel and Dehaene (2013) studied, using fMRI, a group of 
monozygotic and dizygotic adult twins during a mental calculation 
task. The patterns of activation were under genetic influence, 
encompassing the bilateral posterior superior parietal lobules, the 
right IPS, and a left superior frontal region. Also, the main impact of 
the shared environment was found in the lateralization of activation 
within the IPS.

Second, a number of studies highlighted the role of the FFG in 
number processing. Kucian et al. (2011), in a fMRI study, displayed 
differences in brain activation in the supplementary motor area and 
the right FFG, where children with DD demonstrated stronger 
activation compared to the control subjects. The authors considered 
this result to be a developmental impairment of a spatial number 
representation. In a study by Vatansever et al. (2020), group differences 
were observed in the posterior insula, FFG, and peristriate cortex, 
which correspond to the number form area in ventral occipitotemporal 
cortex. The very existence of this area remains debatable (Merkley 
et al., 2019).

Third, the hippocampus (HC) is typically related to working 
memory and encoding complex visual stimuli during numerical tasks 
(Peters and De Smedt, 2018). In an fMRI study by Üstün et al. (2021), 
the participants performed a quantity dot and symbol comparison in 
two levels of complexity and children with dyscalculia demonstrated 
neural activation in the left hippocampus for the symbolic condition. 
Reverse meta-analysis of functional connectivity in fMRI studies 
showed the strength of pretraining interregional coactivations 
between IPS and HC in quantity discrimination, and associative 
learning predicted individual variability in number sense learning 
across children with math difficulties and the control group (Chang 
et al., 2022). Geduk et al. (2020) considered effective connectivity in 
dyscalculia in the prefrontal-parietal and hippocampal network in the 
left hemisphere as a result of their brain compensation mechanisms.

Where dyscalculia and face perception 
overlap in the brain?

Recent studies have shown that these same brain regions, which 
we highlighted for DD, are also involved in face perception. This is 
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partly due to the tendency to expand the brain areas involved in 
mathematical processes (Arsalidou and Taylor, 2011). Narumoto et al. 
(2001) found areas that responded more to faces than to non-face 
stimuli: the bilateral IPS along with regions such as the bilateral FFG 
and the right superior temporal sulcus. Dehaghani et al. (2022), in a 
magnetoencephalographic study, presented a 1-back task in which it 
was necessary to determine if the two sequential faces (of humans and 
monkeys) and non-face stimuli were the same or not. It was found that 
the pre-stimulus activity in the left occipital area caused the activity in 
the IPS after the presentation of a human face in approximately 170 ms. 
Bzdok et al. (2012) delineated the neural functional networks activated 
in 4 facial judgments: cognitive (age), social (attractiveness, 
trustworthiness) and emotional (happiness) features. This led to the 
activation of IPS along with superior parietal cortex, bilateral activation 
in the premotor and supplementary motor cortex, in the ventral visual 
cortex including the inferior occipital gyrus, the middle occipital, 
lingual, and fusiform gyri. Repetitive transcranial magnetic stimulation 
in right IPS improved facial emotion recognition in the left visual area. 
It could result in the amplification in the functional connectivity 
between intraparietal and superior temporal sulcus, and visual cortex. 
The stimulation created conditions for emotional stimuli to mobilize 
attention resources until the conscious awareness (Fan et al., 2018).

The role of the FFG in face recognition is no longer in doubt. Early 
neurophysiologic recordings in monkeys found face responses in the 
inferotemporal cortex (Perrett et al., 1992). Modern studies in humans 
have been carried out using intracortical EEG from epileptic patients 
viewing a sequence from a neutral face to fearful or happy. It showed 
that N200 field potential peak latencies indicated that face processing 
begins in the inferior occipital cortex and proceeds anteroventrally to 
fusiform and inferior temporal cortices in parallel (Babo-Rebelo et al., 
2022). FMRI highlights the fusiform face area (FFA) that is specific to 
the perception of faces (Kanwisher et al., 1997; Kanwisher and Yovel, 
2006). A growing number of studies reveal the connection of FFA not 
only with face recognition, but also with facial emotion recognition 
(Guyer et al., 2008; Thome et al., 2022). Zinchenko et al. (2018), in a 
meta-analysis of fMRI, suggested that dynamic stimuli (e.g., videos) 
may be more specific and ecologically valid to study face perception. 
They concluded that the consistency of the brain regions, often 
mentioned in the context of facial recognition including FFG and 
posterior parts of the superior temporal gyrus, areas associated with 
more general processes in facial processing, such as the left amygdala, 
the anterior parts of the superior temporal and inferior frontal gyri, as 
well as a part of the cerebellar declive. Both structural and functional 
MRI demonstrated that reduced size of the left FFG and atypical 
activation in the left angular and left fusiform gyri are also matched 
the 15q11.2 deletion, critical for both dyscalculia and dyslexia 
(Ulfarsson et al., 2017).

Recently, the hippocampus was considered as a brain region that 
makes a contribution to facial emotion recognition (Üstün et al., 2021; 
Kuang et al., 2022). Current data suggest that HC is involved in both 
visual streams: in the ventrolateral visual stream for objects and faces 
(“what”) and in the ventromedial visual stream for scene recognition 
(“where”) (Rolls et al., 2023). Fried et al. (1997) demonstrated that 
single НС neurons distinguished faces from inanimate objects during 
encoding and recognition and some units reacted selectively to 
conjunctions of facial expression and gender or facial expressions only. 
A systematic review of brain activity during the tasks which could 
cause anger and aggression in participants with a history of aggression, 

demonstrated enhanced responses in the left hippocampus and 
parahippocampal gyrus, and left amygdala (Nikolic et al., 2022). In an 
fMRI study of healthy adults in groups of different ages, while 
perceiving faces paired with labels for different expressions (happy, 
neutral, or angry), the coherence between НС and orbital frontal 
cortex revealed subsequent memory effects for the happy condition in 
both groups. An HC-FFA network was identified for neutral and 
happy conditions in young participants and interactions between HC 
and posterior superior temporal sulcus for happiness in the older 
group (Izumika et al., 2022).

Face perception in dyscalculia

Studies of face perception in dyscalculia are contradictory. At the 
same time, systematic empirical research has not been conducted. For 
example, De Visscher et al. (2018) showed that categorization of four 
faces created by morphing two young females in DD did not differ 
from the control group. At the same time, dyscalculia has been 
mentioned in prosopagnosia research. Dalrymple et al. (2012) believed 
that the progress in developmental prosopagnosia research may also 
provide insights about other selective developmental deficits such as 
dyscalculia, dyslexia, and specific language impairment. Ramus (2004) 
proposed a theory stating that some developmental disorders, such as 
developmental prosopagnosia, dyslexia and dyscalculia are the 
consequence of such a neurobiological problem as neural migration 
errors. It leads to a focal cortical impairment and behavioral deficit.

Empirically speaking, in a survey of adults with prosopagnosia, 
57% of them reported at least one developmental comorbidity, with 
most reflecting specific cognitive impairments, such as object agnosia, 
memory impairment, and navigation problems (Svart and Starrfelt, 
2022). However, only 3.5% of the sample reported comorbid 
dyscalculia. At the same time, an experimental part has not been 
conducted by the authors.

Decarli (2019) presented numerical and face perception tasks to 
12-month-old infants. The aim was to verify the longitudinal 
specificity of ANS as a unique predictor of early symbolic and 
nonsymbolic numerical achievement, and to understand whether a 
positive correlation could be liable to differences in discrimination of 
quantities or to more general perceptual abilities. Face recognition was 
used as a control task, since the author supported the idea of different 
cortical streams for these processes - ventral for faces and dorsal for 
numbers (Golarai et al., 2007; Chinello et al., 2013). There were no 
significant correlations between the results in the numerical and face 
perception tasks at differing levels of complexity. The author concluded 
the dissociation between numerical acuity and the face perception 
ability and supposed that they rely on separate pathways. Of note, only 
infants were studied, but not schoolchildren with dyscalculia.

Despite the traditional ideas about angular gyrus as part of the 
dorsal stream (Cooper and O’Sullivan, 2016), Rapin (2016), describing 
Gerstmann syndrome, noted that it was associated with the ventral 
visual stream, involved in the recognition of familiar objects, colors 
and faces. The author described supramarginal and angular gyrus, 
where information is transmitted about written symbols, such as 
letters, Arabic numerals, mathematical or chemical formulas, that the 
working memory extracts online from long-term storage. McIntosh 
and Schenk (2009) noted that the idea that these streams work largely 
independently of each other may not be  entirely true and it is 
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necessary to consider more closely how brain areas are integrated 
from task to task into new functional networks.

Face perception in dyslexia: what can 
be adopted by dyscalculia research

Finally, as dyslexia is closely related to dyscalculia, it is relevant to 
briefly outline the findings on face perception in dyslexic individuals. 
Early studies described the specific features of faces that were drawn, 
by children with dyslexia, that are associated with spatial difficulties 
(Pontius, 1976, 1981). The main findings of the contemporary research 
suppose that persons with dyslexia have mild impairment in visual 
tasks including face and word perception, which lie in holistic 
processing (Gabay et al., 2017; Brady et al., 2021; Åsberg Johnels et al., 
2022). The difficulties in reading may be considered as a more general 
high-level visual deficit, that, in line with dyscalculia, is related to 
functional impairments within the left FFG, a part of the ventral visual 
stream (Tarkiainen et al., 2003; Sigurdardottir et al., 2015, 2018, 2021).

Jozranjbar et al. (2021) demonstrated that it was hard for dyslexic 
readers to recognize objects (e.g., images of houses), pointing out that 
visual difficulties in dyslexia may be considered not only as domain-
specific. Reduced accuracy of houses recognition was combined with 
reading difficulties while face recognition was not impaired, which 
could confirm the connection between visual word processing and 
visual processing of non-facial objects. Featural and configural 
processes coexisted in the control group, while dyslexic individuals 
relied on a single process. This phenomenon was observed for both 
faces and houses.

The literature on developmental and acquired prosopagnosia 
considers the models of visual perception related to more general 
processes in face and word recognition. The data obtained are the 
subject of discussion among researchers. In some studies, there is no 
connection between the processing of faces and words (Rubino et al., 
2016; Burns et al., 2017; Kühn et al., 2021; Gerlach et al., 2022; Gerlach 
and Starrfelt, 2022). For example, Rubino et al. (2016) showed in their 
study normal visual text processing in all studied subjects with 
developmental prosopagnosia, except one. However, other data 
acquired on prosopagnosia demonstrated a significant connectivity 
between word and face perception: impairments in face recognition 
were related to poorer word processing (Burns and Bukach, 2021, 
2022; Sigurdardottir et al., 2021). However, children with dyslexia 
exhibit general difficulties in bimodal speech perception, apparent in 
them lacking any benefit from bimodal information (i. e., bimodal 
perception of video-recorded mouths pronouncing syllables). This 
general deficit in children with dyslexia may underlie reduced bimodal 
benefit for letter-speech sound combinations in emotion perception 
(Creusere et al., 2004; Schaadt et al., 2019).

Some researchers associate the features of emotional expression 
recognition with specific eye movements, and demonstrate that lower 
performance in emotional face processing in children with dyslexia 
could be  due to a difference in their visual strategies, linked to 
recognition of unpleasant facial expressions (Goulème et al., 2017; Liu 
et al., 2017). Some publications mentioned the difficulties of learning 
in general, comparing nonverbal and verbal learning disabilities 
(Dimitrovsky et al., 2000; Bloom and Heath, 2010). The necessity of 
studying emotion recognition in schoolchildren with different 
subtypes of verbal learning disabilities is noted.

Conclusions and suggestions

Up to date, the relationship between dyscalculia and face 
processing has been studied inconsistently and insufficiently. Many 
studies support the idea of a domain-specific deficit in children with 
dyscalculia due to the difficulties in understanding basic numeric 
concepts, such as magnitude comparison or accounting. However, 
the etiology of developmental disorders can be considered within the 
multiple-deficit framework. A glance into brain underpinnings of 
both number and face processing allows us to emphasize areas where 
these processes overlap. First, it is a wide number of parietal regions, 
especially the IPS. Second, the FFA which was previously specifically 
considered to provide facial recognition, has recently been also 
related to number processing. Third, HC may be engaged in memory 
processes, required for both number and face processing. However, 
since particular brain region is responsible for multiple cognitive 
functions, impairment in one function may not be related to other. 
Nevertheless, it can be assumed that DD and face perception may 
overlap in the aspect of assessing spatial information. The preliminary 
surveys suggest a low frequency of dyscalculia in people with 
prosopagnosia. Scarce literature on the relationship between face 
perception and dyscalculia is either contradictory. However, 
systematic empirical research has not addressed this potential 
association. Remarkably, research on dyslexia, the most comorbid 
impairment, suggests the potential to broaden the scope of dyscalculia 
studies thanks to the application of face perception paradigms. This 
would presumably help us to define the extent and frequency of face 
perception impairments in DD. To provide a clear idea of the 
relationship between face perception and dyscalculia, experiments 
are needed that include comparing the features of all types of 
visuospatial perception in children with DD.
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