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Introduction: This work explores the use of an automated facial coding software - 
FaceReader - as an alternative and/or complementary method to manual coding.

Methods: We used videos of parents (fathers, n = 36; mothers, n = 29) taken from 
the Avon Longitudinal Study of Parents and Children. The videos—obtained during 
real-life parent-infant interactions in the home—were coded both manually (using 
an existing coding scheme) and by FaceReader. We established a correspondence 
between the manual and automated coding categories - namely Positive, Neutral, 
Negative, and Surprise - before contingency tables were employed to examine 
the software’s detection rate and quantify the agreement between manual and 
automated coding. By employing binary logistic regression, we examined the 
predictive potential of FaceReader outputs in determining manually classified facial 
expressions. An interaction term was used to investigate the impact of gender on 
our models, seeking to estimate its influence on the predictive accuracy.

Results: We found that the automated facial detection rate was low (25.2% for 
fathers, 24.6% for mothers) compared to manual coding, and discuss some 
potential explanations for this (e.g., poor lighting and facial occlusion). Our logistic 
regression analyses found that Surprise and Positive expressions had strong 
predictive capabilities, whilst Negative expressions performed poorly. Mothers’ 
faces were more important for predicting Positive and Neutral expressions, whilst 
fathers’ faces were more important in predicting Negative and Surprise expressions.

Discussion: We discuss the implications of our findings in the context of future 
automated facial coding studies, and we emphasise the need to consider gender-
specific influences in automated facial coding research.
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1. Introduction

Manual coding is a method of analysing operationally-defined behaviours from 
observational data, allowing researchers to identify subtle behaviours and analyse changes over 
time. As observations are often coded at a high temporal resolution, manual coding is a rigorous 
and yet time consuming process. Coding may also be subject to inherent human biases, for 
example, via coder fatigue or previous coding experience (e.g., biassed by recent behaviours 
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observed). Thus, it is advantageous to explore faster and potentially 
less biassed alternatives. For analysing facial expressions, an alternative 
approach is offered by automated facial coding (AFC) via software or 
other computational techniques. This method provides rapid, detailed, 
objective classification of expressions (which may help to reduce 
human biases; Skiendziel et al., 2019).

In this study, we specifically focus on evaluating the performance 
of Noldus FaceReader (Noldus, 2014), an automated facial coding 
software, in the context of parent-interaction videos captured within 
home settings. Our evaluation involves quantifying the facial detection 
rate of the software, and exploring the relationship between automated 
and human coding, with an emphasis on gender differences. It should 
be noted that throughout this work, we assume that the identified 
participant gender is equivalent to the participant’s biological sex at 
birth. By specifically examining gender, we  seek to understand 
potential variations in the software’s performance and the agreement 
between automated and human coders based on gender-specific 
expressions. A preliminary version of this study has been previously 
reported (Burgess et al., 2022). By conducting this comprehensive 
evaluation, we aim to enhance our understanding of the capabilities 
and limitations of automated facial coding in the analysis of parent 
facial expressions, providing valuable insights for researchers and 
practitioners in the field.

1.1. Automated facial coding for emotion 
recognition

FaceReader is a general-purpose automated facial coding (AFC) 
software developed by Noldus, which employs a three-step process—
face finding, modelling, and classifying—to accurately determine 
facial expressions (Den Uyl and Van Kuilenburg, 2005; Noldus, 2014). 
It offers classification into eight distinct expressions, including Happy, 
Sad, Angry, Scared, Surprised, Disgusted, Neutral, and Contempt. The 
software has been validated and found to outperform human coders, 
correctly identifying 88% of expressions compared to 85% by humans 
(Lewinski et al., 2014). FaceReader demonstrates high accuracy in 
classifying various expressions, with rates reported at 94% for Neutral, 
82% for Scared, and other studies reporting performance rates ranging 
from 80 to 89% (Den Uyl and Van Kuilenburg, 2005; Terzis et al., 
2013; Skiendziel et al., 2019).

Given its robust performance, FaceReader is a suitable choice for 
evaluating facial expressions in our study. Its reputation and 
widespread adoption in the research community make it a benchmark 
for comparison against other AFC methods. By evaluating 
FaceReader’s performance, we  contribute to the literature on the 
validity and limitations of AFC. Moreover, previous works have 
already examined the comparison between manual and automated 
facial coding using FaceReader, revealing varying levels of agreement 
for different expressions (Terzis et al., 2010, 2013).

In many studies, authors analysed videos made in regulated 
contexts, e.g., with controlled lighting and backgrounds, and no other 
people present (Benţa et al., 2009; Danner et al., 2014; Brodny et al., 
2016). However, these structured recordings are not representative of 
real-life conditions, and it is important to assess whether AFC 
algorithms can learn to detect expressions in more uncontrolled 
environments. In this work, we looked to evaluate how well this can 
be achieved by FaceReader, using videos within the home.

Recent advances in AFC have expanded our ability to capture and 
analyse facial expressions, enabling a deeper understanding of true 
emotional expressivity. Recent literature has addressed the limitations 
of earlier studies that primarily relied on standardised and prototypical 
facial expressions for validation. Büdenbender et al. (2023), Höfling 
et al. (2022), and Sato et al. (2019) explored the application of AFC in 
untrained participants who performed posed expressions, highlighting 
the challenges and potential in coding their facial expressions, and 
emphasising the importance of incorporating more naturalistic 
expressions in training AFC models. Furthermore, Höfling et  al. 
(2021) investigated the differentiation of facial expressions in various 
social interaction scenarios, demonstrating the efficacy of FaceReader 
in the mimicking condition and the superiority of electromyogram 
(EMG) measures in passive viewing and inhibition conditions. 
Notably, Höfling et al. (2020) compared the sensitivity of FaceReader 
to established psychophysiological measures and found comparable 
results for pleasant emotions, but limitations in distinguishing 
between neutral and unpleasant stimuli. Similarly, Küntzler et  al. 
(2021) evaluated multiple facial emotion recognition systems, 
including FaceReader, and showed accurate classification for 
standardised images but decreased performance for non-standardised 
stimuli. These findings underscore the need for improved AFC models 
that can handle more complex and realistic expressions. Moreover, 
Höfling and Alpers (2023) demonstrated that AFC can predict self-
reported emotion. In the context of naturalistic observations, Gómez 
Jáuregui and Martin (2013) applied FaceReader to analyse a dataset of 
acted facial expressions under uncontrolled conditions and found that 
the software could not accurately classify any expression. Contrasting 
with this result, Krishna et  al. (2013) achieved an expression 
classification accuracy of 20.51% using different automated methods 
with the same dataset, raising further questions about the performance 
of FaceReader in real-life recordings. Collectively, these studies 
contribute to the growing body of literature on the validity, limitations, 
and applications of AFC in understanding emotional facial expressions 
in diverse contexts, emphasising the importance of advancing AFC 
models to effectively capture and interpret facial expressions in 
realistic settings.

Several previous studies using FaceReader have used videos that 
were recorded using laptop webcams (Danner et al., 2014; Booijink, 
2017; Talen and den Uyl, 2022), as videos captured in this way provide 
a direct view of the participant’s face. However, webcams (or any 
stationary cameras) are not the optimum choice for capturing facial 
expressions during naturalistic observations. This is because real-life 
interactions are more dynamic, often involving multiple people, body 
positions, and complex movements. Wearable headcams offer an 
alternative approach for capturing facial expressions in this kind of 
setting, as they offer a first-person perspective. Wearable headcams 
have been shown to reliably capture ecologically valid behaviours 
during parent-infant interactions (Lee et  al., 2017). We  have not 
identified any studies using FaceReader to analyse videos taken using 
wearable headcams during natural interactions.

1.2. Automated facial coding, parenting, 
and gender

Several studies have revealed valuable insights into the 
capabilities and applications of automated facial coding techniques 
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in the field of parenting. Messinger et  al. (2009) found high 
associations with manual coding and positive emotion ratings, 
whilst Mahoor et al. (2009) measured natural facial expressions with 
good agreement to human coding. Haines et  al. (2019) used 
automated coding to analyse caregiver expressions, revealing 
insights on emotion dysregulation. These studies highlight the 
effectiveness of automated facial coding in understanding parent–
child interactions and emotions.

So far, very few studies have evaluated the use of FaceReader in a 
parent-infant context. Karreman and Riem (2020) used webcams to 
record mothers’ reactions to images of unknown infants, and used 
the software to analyse their facial expressions. Lyakso et al. (2021) 
used FaceReader to quantify mother and infant facial expressions 
across various scenarios (e.g., mother-infant interactions, infant–
infant interactions); all recordings in this work were made using a 
handheld video camera, and almost all interactions took place in 
naturalistic environments with uncontrolled lighting. The authors 
also excluded videos if the participants were not facing the camera 
(Lyakso et al., 2021). Aside from these studies (Karreman and Riem, 
2020; Lyakso et al., 2021), we found no other literature evaluating 
maternal expressions using FaceReader, and we found no work either 
using FaceReader to evaluate paternal expressions, or drawing 
comparisons based on parent gender.

It is not surprising that there have not yet been any studies 
using FaceReader to evaluate paternal facial expressions, as father-
infant interactions are rarely studied. A systematic review (n = 26) 
on parental facial expressions in family interactions found that 
less than half of the studies included fathers as participants 
(Hudon-ven der Buhs and Gosselin, 2018). As such, whilst 
research into parent behaviours in the mother-infant dyad is 
plentiful, less is known about the fathers and infants (Kokkinaki 
and Vasdekis, 2015). In a wider context, gender differences in 
emotional expressiveness have been widely accepted (Hall, 1990; 
Brody and Hall, 2008). Men have been shown to be  less 
emotionally expressive than women (Campos et al., 2013), and to 
display less intense happy expressions (Oveis et  al., 2009). A 
widely cited meta-analysis (n = 162 studies) of sex differences in 
smiling frequencies found that women smile more than men 
(LaFrance et  al., 2003). By studying facial expressions—via 
comparisons of mother-infant and father-infant interactions—we 
can improve our understanding of gender specific differences in 
emotional communication. Whilst there has been little to no 
research into using automated facial coding to explore the 
differences between maternal and paternal expressions, some 
work has been carried out to evaluate gender differences more 
broadly. Software validation work concluded that the FaceReader 
software identified female facial expressions better than male 
(Lewinski et  al., 2014). Another study found that FaceReader 
recognised Surprised and Scared better in males, and Disgusted 
and Sad better in females (Terzis et al., 2010).

Additional work is required to evaluate gender differences in 
parent expressions using AFC methods; exploring the existing 
studies linking automated facial coding to parenting and gender is 
important because it allows us to gain insights into how the method 
can be used to understand emotional expressions in the context of 
parental interactions and gender-specific differences, contributing 
to a more comprehensive understanding of emotional 
communication and dynamics in these areas.

1.3. Research aims

Overall, advances in AFC have greatly improved our 
understanding of facial expressions, overcoming limitations of 
previous studies that focused on standardised expressions. Studies 
involving untrained participants have revealed the challenges and 
potential of coding more naturalistic expressions. AFC has effectively 
differentiated facial expressions in diverse social scenarios and 
provided insights into self-reported emotions. However, there remains 
a critical gap in applying AFC to real-life conditions and limited 
research on parental facial expressions, specifically regarding 
differences between mothers and fathers.

To address these gaps, the present study evaluated FaceReader’s 
performance using videos of naturalistic parent-infant interactions. 
We used contingency analyses to investigate the detection rate of the 
software and the concordance between automated and manual facial 
coding, and employed logistic regression to further explore the 
relationship. The influence of parent gender on expression predictions 
was also explored. As such, our study is structured around three 
primary aims:

(A1): Assess the facial detection rate of the software.
(A2):  Quantify the agreement between automated and manual 

facial coding: by assessing the concordance between the two 
methods, and using the automated outputs to predict the 
manual coding.

(A3):  Investigate the influence of parent gender on the 
relationship between manual and automated facial coding, 
by analysing combined datasets as well as separate datasets 
for fathers and mothers.

To address these aims, we  sought to examine parent facial 
expressions during interactions with their infants in real-life settings. 
We coded videos of parent-infant interactions using both manual 
coding via the Observer software (Noldus, 1991), and AFC via the 
FaceReader software (Noldus, 2014). The videos were manually coded 
for a previous project, according to the mutually exclusive expressions: 
Smile, Positive, Neutral/Alert, Negative, Surprise, Mock Surprise, 
Disgust, Woe face, None of the Above and Face not Visible. Conversely, 
FaceReader classifies expressions according to the following: Happy, 
Sad, Neutral, Angry, Surprised, Disgusted, Scared and Contempt. As 
the two sets of expressions are not an exact match, we created four 
mappings between the manual and automated expressions—Positive, 
Neutral, Negative and Surprise—as shown in Table 1. These mappings 
were used to address the concordance question in (A2), and as target 
variables for the predictive models used to address (A2) and (A3). The 
mappings indicate the expected relationships between the manual and 
automated codes; for example, we expect that Surprise is closely linked 
to FaceReader estimations of Surprise, and we expect that the manual 
codes Smile and Positive are linked to FaceReader estimations of 
Happy. Note that the manual codes None of the Above and Woe Face 
did not contribute to any mapping in Table 1, so analyses for these 
expressions were not included in this work.

Throughout this work, we compared the outputs of manual and 
automated coding methods, and examined the potential impact of 
parent gender on model accuracy by analysing separate and combined 
datasets for fathers and mothers. This comprehensive analysis sought 
to uncover the application of AFC in capturing and interpreting parent 
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facial expressions within naturalistic contexts, whilst also exploring any 
gender-specific nuances or variations that may influence the accuracy 
of the models. Whilst acknowledging the significance of exploring 
emotional facial expressions and parental gender, our primary focus 
lies in comparing automated and manual coding and investigating the 
associations between these two approaches. By prioritising these 
aspects, we aim to provide valuable insights into the methodological 
implications of automated facial coding and its associations with 
human coding, shedding light on the strengths, limitations, and 
potential applications of AFC in analysing facial expressions.

2. Materials and methods

2.1. Data

This work used data from the Avon Longitudinal Study of Parents 
and Children (ALSPAC). ALSPAC is an ongoing longitudinal cohort 
study based in Bristol, United  Kingdom. The original cohort—
referred to as ALSPAC-G0—was recruited via 14,541 pregnancies 
with expected delivery dates between 1 April 1991 and 31 December 
1992. The children born to the ALSPAC-G0 cohort are referred to as 
ALSPAC-G1, and the children born to the ALSPAC-G1 cohort (in 
recent years) are referred to as ALSPAC-G2. Full ALSPAC cohort 
demographics have been provided elsewhere (Boyd et  al., 2013; 
Fraser et al., 2013; Lawlor et al., 2019; Northstone et al., 2019).

This work uses videos of parents from ALSPAC-G1. Parents 
(regardless of gender) were recruited though research clinics at the 
University of Bristol, which invited parents to complete several 
assessments when their infant turned 6 months old. There were no 
selection criteria to take part in the study, other than being either part of 
the original ALSPAC cohort, or a partner of an original 
ALSPAC participant.

The fathers in this work had a mean age of 31.3 years (SD = 5.5), 
and their infants had a mean age of 32.6 weeks (SD = 5.9). Eight infants 
in father-infant dyads were male, and five infants were female. The 
mothers in this work had a mean age of 29.9 years (SD = 1.1), and their 
infants had a mean age of 49.8 weeks (SD = 11.9). In the mother-infant 
dyads, five infants were male, and nine infants were female. All mothers 
identified their gender as female, and all fathers identified as male.

The study website contains details of all ALSPAC data that are 
available through a fully searchable data dictionary and variable search 
tool. 1 ALSPAC data are collected and managed using Research Electronic 

1 https://www.bristol.ac.uk/alspac/researchers/our-data/

Data Capture (REDCap) electronic data capture tools hosted at the 
University of Bristol (Harris et al., 2009). REDCap is a secure web-based 
platform designed to support data capture for research studies. Ethical 
approval for the study was obtained from the ALSPAC Ethics and Law 
Committee and the Local Research Ethics Committees. Informed 
consent for the use of data collected via questionnaires and clinics was 
obtained from participants following the recommendations of the 
ALSPAC Ethics and Law Committee at the time.

2.1.1. Video recording procedures
The parents were provided with fully-charged wearable 

headcams and asked to wear them during interactions with their 
child at home. They were also given an information sheet explaining 
how to wear and use the cameras. Due to the videos being taken at 
home, it was possible that siblings/other caregivers/pets were 
present during the interactions. The videos were collected between 
2019 and 2022; each has a frame rate of 30, and a resolution of 
1,280 × 720.

The videos include a combination of different interaction types: 
feeding (infant eats a meal), free play (parent/infant engages in an 
unstructured play session), and stacking (parent/infant plays with a 
given stacking toy). We used 36 videos of fathers in total, including: 
24 feeding, 10 free play, and two combined interactions (included 
both feeding and free play). For the mothers, we used 29 videos in 
total, including: 19 feeding, six free play, and four stacking task 
interactions. These videos come from 13 individual fathers and 14 
individual mothers, as many parents provided multiple separate 
videos. Due to variation in video length, it was often the case that one 
parent provided multiple videos equating to the length of a single 
video from another parent. For this reason, we decided not to exclude 
second (or more) videos from a single parent. Overall, the mean 
video length was 433.0 s (SD = 173.0); the mean length of the father 
videos was 482.8 s (SD = 192.7), whilst the mean length of the mother 
videos was 383.1 s (SD = 124.4).

2.1.2. Manual coding
All videos were manually coded using Noldus Observer 15.0 

(Noldus, 1991) at a slowed speed of 0.2 s (i.e., the video was slowed 
to 0.2 s in order to code expressions on an events-based approach). 
A speed of 0.2 s was chosen as it provided a balance between 
capturing detailed behavioural information and managing the time 
and resource constraints associated with the coding process in our 
study. Coding was carried out according to an existing coding 
scheme (Costantini et al., 2021); whilst this coding scheme includes 
a wide range of behaviours, the work here only included facial 
expressions. Analyses incorporating the other behaviours can 
be found elsewhere (Campbell et al., 2022; Burgess et al., 2023).

TABLE 1 Approximate mapping between manual and FaceReader expressions.

Manual expression(s) FaceReader expression(s) Mapping

Neutral/Alert → Neutral Neutral

Smile + Positive → Happy Positive

Negative + Disgust → Sad + Angry + Disgusted + Scared + Contempt Negative

Surprise + Mock surprise → Surprised Surprise

None of the above + Woe face → n/a n/a

Face not visible → Face not found Not found
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We used the following manually-coded facial expressions: Smile, 
Positive, Neutral/Alert, Negative, Surprise, Mock Surprise, Woe Face, 
Disgust, None of the Above, and Face not visible. These expressions 
are exhaustive and mutually exclusive, such that one expression is 
coded for every point in time. It should be noted that None of the 
Above is used to indicate any meaningful expression that does not fit 
into any other domain (e.g., yawning, sneezing).

Four researchers were involved in the coding process (RB, IC, LR, 
and MS). All were independently trained in using the coding scheme. 
Initial coding of all videos was performed by one researcher (RB). For 
the fathers, two additional researchers were recruited for double 
coding (LR and MS). Seven randomly selected videos were selected 
for double coding, with one researcher coding four videos, and one 
researcher coding three. This equated to 22.4% of the father data. For 
the mothers, one additional researcher was recruited for double 
coding (IC). Six randomly selected videos were selected for double 
coding, equating to 15.7% of the mother data. In total, across both sets 
of parents, 19.0% of data was double coded.

We used the index of concordance to measure inter-coder 
agreement. The index of concordance is calculated by the total 
agreement for a behaviour (i.e., the duration that an expression is 
coded as present/not present by both coders) divided by the total 
duration of the interaction. This is expressed as a value between 0 (no 
agreement) and 1 (total agreement). For the fathers, an index of 
concordance of 0.93 (SD = 0.07) was achieved with the first double 
coder, and 0.91 (SD = 0.07) was achieved with the second coder. For 
the mothers, an index of concordance of 0.87 (SD = 0.02) was 
achieved between the two coders. Inter-coder agreement by facial 
expression and parent gender are provided in Table 2. This analysis 
excludes expressions that occurred for less than 1% of time across all 
interactions (i.e., Woe face, Disgust, and Surprise).

As outlined in the introduction, due to the discrepancies 
between the expressions in the automated and manual coding 
methods, we used mappings to establish relationships between the 
two expression sets: Positive, Neutral, Negative, and Surprise (see 
Table  1). These mappings were specifically created for the 
contingency analyses and to serve as target variables in the logistic 
regressions. Once the expressions had been aggregated into these 
four new categories, we calculated the proportions of each category 
within the datasets. This analysis aimed to highlight expressions 
with low prevalence and identify any imbalances between the father 
and mother datasets. The findings of this analysis are presented in 
Figure  1, illustrating the proportions of each manually coded 
category within the full dataset, as well as the father and 
mother datasets.

In each case, Neutral is the most prevalent expression, accounting 
for around 60% of the data. This is followed by Positive, which 
represents around 30%. Negative and Surprise both represent less than 
5% of the data, with Negative being more common in fathers, and 
Surprise being more common in mothers.

2.1.3. Automated facial coding using FaceReader
All videos were processed using Noldus FaceReader 8.0 (Noldus, 

2014). The software uses deep learning to locate faces in an image, and 
eye tracking to identify the face rotation. An artificial mesh is placed 
over 468 key points on the face, describing the position of features and 
muscles. Principal component analysis condenses these points into a 
single vector representation, describing the main facial features. 
Finally, expression classification takes place using a neural network 
which has been trained on more than 20,000 manually-coded images 
of faces (Gudi et al., 2015). A more detailed explanation of this process 
can be found elsewhere (Loijens et al., 2020).

Given a face, FaceReader calculates an expression intensity: a single 
value between [0, 1] describing the strength of an expression. An 
intensity of 0 indicates the expression is not present, and an intensity 
of 1 indicates an expression is entirely present. FaceReader provides 
an intensity for each of the eight expressions simultaneously, with each 
value independent of one another. FaceReader processes videos 
frame-by-frame; our videos had a frame rate of 30, meaning 
FaceReader analysed 30 frames per second.

2.2. Methods

2.2.1. Data pre-processing
In terms of pre-processing, we first removed all data where an 

additional person (e.g., a second caregiver, a sibling) was present in 
the video. This might occur when, for example, a second caregiver was 
bringing food or play items or walking in the background. We removed 
these data as FaceReader would sometimes classify the facial 
expression of the second person instead of the participant. After 
removing these data, the amount of viable coded data for fathers 
reduced from 17,368 to 15,420 s, and the amount of viable coded data 
for mothers reduced from 11,509 to 10,614 s.

We also normalised the expression intensities (to sum to 1) to 
ensure that there was always a dominant expression within the 
FaceReader output. This was necessary in order to remain consistent 
with the manual coding, which always determines one dominant 
facial expression at any given time. All analyses were carried out using 
Python 3.0 (Van Rossum and Drake, 2009).

2.2.2. Data analysis procedures
To address (A1), we used contingency analysis to quantify the 

amount of time that the parent’s face was found by both the manual 
coder and the automated facial coding, i.e., the facial detection rate. 
This involved a frame-by-frame analysis, categorising each frame 
dependent on whether the human and the software successfully 
detected a face.

To address (A2) we used a second contingency analysis, followed 
by multiple binary logistic regression models. This second contingency 
analysis quantified the agreement on the four descriptive expression 

TABLE 2 Mean (SD) inter-coder agreement by facial expression and parent gender.

Neutral Positive Smile Negative Mock surprise None of the above

Fathers 0.89 (0.09) 0.89 (0.09) 0.96 (0.03) 0.98 (0.00) 0.98 (0.02) 0.94 (0.05)

Mothers 0.89 (0.04) 0.80 (0.05) 0.88 (0.07) 0.91 (0.00) 0.90 (0.04) 0.82 (0.05)

All 0.89 0.84 0.92 0.95 0.94 0.88
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categories—Positive, Neutral, Negative and Surprise—as coded 
manually and automatically. Additionally, we used logistic regression 
models to establish whether the automated facial coding was 
predictive of the manual facial coding. Here, our models used the 
eight normalised FaceReader expression intensities to predict the four 
manually coded categories (which were classified as a 1 if the 
expression was present, and as a 0 if not).

To address (A3), we compared the performance of combined and 
gender specific logistic regression models. The logistic regression 
analyses were therefore carried out in three parts—fathers only, 
mothers only and combined (using both mothers and fathers)—
facilitating an analysis of gender discrepancies within the models.

Across our study, we employed a leave-one-out cross-validation 
approach to train, fit, and evaluate logistic regression models for each 
manually coded expression category. The process involved several 
steps, and this whole process was repeated for each of the manually 
coded categories: Positive, Neutral, Negative and Surprise. The steps 
of this process are outlined below:

Step 1: data preparation and train-test splitting. We prepared the 
dataset by separating it into train-test sets, and then into predictors and 
target variables. For each iteration of cross-validation, we excluded one 
individual as the test set whilst using the remaining individuals as the 
training data. This ensured that each individual had an opportunity to 
serve as the test set. Next, we specified the input variables—the eight 
FaceReader expression intensities—and the target variable—the manually 
coded expression. The target variable was coded as a 1 if the expression was 
present, and a 0 if the expression was not. Separate logistic regression 
models were developed, trained, and optimised for each expression 
category. Note that, in the combined models, we included gender as a 
binary input variable alongside the expression intensities.

Step 2: model training. Logistic regression models were trained 
using the scikit-learn library in Python, specifically the 
LogisticRegression classifier. This classifier is popular for binary 
classification and supports multiple solvers, including the efficient 
LBFGS solver used in this study. The LBFGS solver optimises logistic 
regression models by finding the parameter values that maximise the 
likelihood of the observed data (Fletcher, 2000). The models were 
trained with a maximum of 10,000 iterations, and the class weights 
were balanced to account for the imbalance in expression frequencies. 
This weighting strategy helped ensure that the models were trained 
effectively despite variations in expression frequencies (see Figure 1).

Step 3: model fitting. The trained models were fitted to the 
data, automatically adjusting the model parameters to best fit the 
training data. This step allowed the models to fine-tune their 

performance based on the training data, improving their ability to 
accurately predict the presence or absence of the target 
expression category.

Step 4: model evaluation. To evaluate the model’s performance, 
various metrics—accuracy, specificity, and sensitivity—were calculated 
using the true labels from the test data and the predicted labels (from 
applying the model to the test data). Accuracy indicates the proportion 
of correct predictions for both classes 1 (the expression is present) and 0 
(the expression is not present). Sensitivity indicates the model’s ability to 
predict a true positive; if sensitivity is high, the model correctly classifies 
existing expressions as present, rather than not present. Finally, specificity 
indicates the model’s ability to predict a true negative; if specificity is 
high, the model correctly classes absent expressions as not present, rather 
than present.

To provide a comprehensive understanding of the performance 
estimates and quantify the associated uncertainty, we calculated the 
mean value and 95% lower and upper bounds for each metric. These 
bounds captured the range of likely values for the metrics and offered 
insights into the precision and reliability of the model’s performance. 
They added a measure of confidence to the model’s performance 
evaluation and allowed us to better interpret and compare the results 
across different models and expression categories.

Step  5: repeat. We defined a new train and test set, using a 
different participant as the test data, then repeated steps 2-4 until all 
participants had formed the test set at one stage.

In summary, our approach involved preparing the data, separating 
it into training and test sets, specifying the input and target variables, 
training the models, fitting the models to the data, and evaluating the 
model’s performance using cross-validation. This process was repeated 
using each participant as the test set, and using each manually coded 
expression as the target. The inclusion of a leave-one-out cross-
validation strategy allowed us to assess the performance of the models 
for each manually coded expression category. The collected metrics, 
including accuracy, specificity, and sensitivity, were further 
summarised using mean values and 95% lower and upper bounds, 
providing a comprehensive understanding of the models’ performance.

3. Results

Our results are split into two sections. Section 3.1 presents our 
contingency analyses: first to quantify facial detection, second to 
quantify the agreement between AFC and manual coding. Section 3.2 
presents the logistic regression models used to evaluate the 
relationship between human and manual coding, first as with all data, 
and then separated by gender.

3.1. Contingency analyses

Here, we discuss the findings from our contingency analyses. This 
section is split into two parts: (1) quantifying facial detection rate, and 
(2) quantifying the link between manual and automated facial coding.

3.1.1. Quantifying facial detection rate
To address (A1), we used contingency analysis to quantify how 

frequently both the human and the software classified a face. Our 

FIGURE 1

Proportion of each expression category in the data.
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results are provided in Table 3. The following discussion assumes the 
manually coded expressions to be correct.

The contingency analysis included 26,034 s of data (fathers 
n =  15,420, mothers n =  10,614). For the fathers, the researcher 
found a face 42.55% of the time, whilst FaceReader found a face 
11.18% of the time (from Table 3: manual face found = 10.71 + 31.84, 
FaceReader face found = 10.71 + 0.47). For the mothers, the 
researcher found a face 51.97% of the time, whilst FaceReader found 
a face 13.05% of the time.

We can also interpret the percentage of time where FaceReader 
found a face, but the manual coder did not (0.47% for fathers, 0.26% 
for mothers). This is a rare occurrence, and indicates where 
FaceReader mistakenly classifies another object as the parent face (e.g., 
a face on a poster or clothing).

FaceReader facial detection rate can be extracted by looking 
at—of the frames where a face was present (and coded as present 
by the human coder)—how frequently FaceReader successfully 
found a face. To calculate this, we divided the percentage of face 
found by both (manual and FaceReader) by the total manual face 
found. This gives a facial detection rate of 25.17% for the fathers 
and 24.61% for the mothers (or 24.89% overall). The ‘successfully’ 
classified observations comprise the data used in the logistic 
regression models. Explicitly, observations were only included if 
both FaceReader and the manual coder identified a face. For the 
fathers, this reduced the dataset to 49,532 frames (around 1,651 s), 
and for the mothers, this reduced the dataset to 40,721 frames 
(1,357 s).

3.1.2. Quantifying the relationship between 
human and automated facial coding

To address (A2), we  used a contingency table to quantify the 
agreement between four expressions categories—Positive, Negative, 
Neutral and Surprise—as coded manually and automatically. The 
results of this analysis are shown in Table 4.

First, both manual coding and AFC agreed that faces were 
positive 20.40% of the time overall, indicating a moderate level of 
agreement in identifying positive expressions. However, there is a 
significant discrepancy between the two methods in categorising 
faces as Neutral. Manual coding labelled faces as Neutral, whilst AFC 
classified the same faces as Positive in 56.76% of cases. This suggests 
that AFC tends to be biassed towards categorising faces as Positive, 
whilst manual coding leans more towards Neutral. Additionally, AFC 
often identified faces as Neutral whilst manual coding labelled them 
as Positive (9.07% of the time).

There were instances where AFC categorised faces as Negative 
whilst manual coding classified them as Neutral (2.86%). In contrast, 

when manual coding categorised faces as Negative, AFC often believed 
the same faces to be  Positive (3.94%). These findings indicate 
discrepancies in the interpretation of negative expressions between the 
two methods. Similarly, when AFC categorised faces as Surprise, 
manual coding classified them as Positive (2.17%), yet when manual 
coding categorised faces as Surprise, AFC classified them as Neutral 
(1.32%). These results suggest differences in detecting and classifying 
surprise expressions between manual coding and AFC.

3.2. Logistic regression analyses

This section reports the findings from our logistic regression 
analyses, with results split into two parts: (1) the combined models, 
and (2) the gender-specific models. Here we address both aims (A2) 
and (A3). For (A2), this is done by continuing to explore the 
relationship between manual and automated facial coding, using 
logistic regression on the automated outputs in order to predict the 
manual coding. For (A3), this is done by carrying out distinct 
logistic regression analyses for both combined and gender 
specific datasets.

3.2.1. Combined models
This analysis used a combined dataset comprised of both father 

and mother data, employing logistic regression models to predict the 
manually coded expressions using FaceReader expression intensities 
and gender as predictor variables. First, we provide some summary 
statistics from FaceReader, detailing the mean (SD) expression 
intensities (across all time points) for the mothers and fathers 
separately (see Table 5).

Table  5 shows that the mean expression intensity was almost 
always higher in mothers than fathers. The largest differences in 
intensities between genders were found for Happy (mothers = 0.85, 
fathers = 0.56) and Surprised (mothers = 0.17, fathers = 0.07). The 
remaining expressions showed similar intensities (and standard 
deviations) between genders. Notably, the standard deviation for 
Surprised was particularly large in the mothers compared to 
the fathers.

We then used logistic regression models to quantify the 
relationship between manual and automated coding. Gender was 
included as an additional, binary input variable within the models—
represented by either a 0 (mothers) or a 1 (fathers). By interpreting 
the direction of this coefficient (negative or positive), we can assess 
which parent gender is most important for predicting a given 
expression. We  used the combined dataset for this analysis, 
comprising both father and mother data, fitting separate binary 
logistic regression models for each expression category (Positive, 
Neutral, Negative and Surprise). The leave-one-out, cross validation 
approach for model evaluation was outlined in Section 2.2.2. The 
resulting predictive performance measures—accuracy, sensitivity and 
specificity—are provided in Table  6, along with the value of the 
gender coefficient.

The results in Table 6 indicate variations in performance across 
different facial expression categories. Overall, the Surprise models 
showed the highest accuracy with a mean of 0.80 (range = 0.69–0.92), 
indicating strong overall prediction performance for both the presence 
and absence of Surprise expressions. Additionally, the mean sensitivity 
for Surprise was notable at 0.81 (range = 0.69–0.93), indicating the 

TABLE 3 Face found vs. not found by FaceReader and the manual coder.

Parent Manual FaceReader (%)

Face found Face not 
found

Fathers Face found 10.71 31.84

Face not found 0.47 57.00

Mothers Face found 12.79 39.18

Face not found 0.26 47.77
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model’s ability to correctly identify existing Surprise expressions. 
However, the mean specificity for Surprise was the lowest amongst all 
expressions at 0.34 (range = 0.15–0.53), suggesting challenges in 
accurately classifying absent Surprise expressions. The Positive models 
exhibited a high mean accuracy of 0.76 (range = 0.70–0.81), indicating 
a relatively high proportion of correct predictions for both the 
presence and absence of Positive expressions. They also demonstrated 
the highest sensitivity amongst all the models, with a mean of 0.83 
(range = 0.76–0.91), meaning they effectively captured and correctly 
classified existing Positive expressions as present. Additionally, the 
models showed moderate specificity, with a mean of 0.60 (range = 0.46–
0.73), suggesting a reasonable ability to accurately classify absent 
Positive expressions as not present.

The Negative models exhibited a relatively lower accuracy 
compared to other categories (mean = 0.54, range = 0.40–0.67), a 
modest sensitivity (mean = 0.54, range = 0.39–0.68), and a moderate 
specificity (mean = 0.51, range = 0.30–0.72). Together, these results 
indicate that the Negative models demonstrated greater accuracy in 
correctly identifying non-Negative expressions compared to 
identifying Negative expressions, suggesting a tendency for more 
accurate detection of expressions other than Negative. The Neutral 
models achieved a relatively high accuracy (mean = 0.68, range = 0.62–
0.74), a moderate sensitivity (mean = 0.57, range = 0.44–0.70), and a 
high specificity (mean = 0.76, range = 0.66–0.86). These findings 
suggest that the models had a reasonable ability to correctly identify 
non-Neutral expressions compared to identifying Neutral expressions. 
They demonstrated a higher tendency to accurately classify 
expressions as non-Neutral, indicating a relatively stronger capability 
in detecting and distinguishing other types of expressions.

Table 6 also reveals insights into the links between gender and 
facial expressions. Mothers’ faces, as automatically coded, play a larger 

role than fathers’ faces in predicting Positive expressions, as indicated 
by the negative coefficient of −0.06 (with variability as shown by the 
range = −0.14 to 0.03). Similarly, mothers’ faces are more important 
for predicting Neutral expressions (coef = −0.03, range = −0.10 to 
0.04). Conversely, fathers’ faces are more important for predicting 
Negative (coef = 0.67, range = 0.58 to 0.78) and Surprise expressions 
(coef = 1.42, range = 0.93 to 1.54), as indicated by the 
positive coefficients.

3.2.2. Gender-specific models
This section carries out identical logistic regression analyses, but 

with two separate datasets: one of mother data and one of father data 
(gender is no longer included as a predictor variable). For these two 
gender specific datasets, we fit separate logistic regression models for 
each manually coded category, as outlined in Section 2.2.2. Following 
a cross-validated approach, mean predictive performance measures 
for these models are shown in Table 7.

Table 7 shows that for fathers, the mean accuracy ranged from 
0.58 to 0.84 across the expression categories. The highest accuracy 
was observed for the Surprise models—indicating that models 
performed well in predicting the presence or absence of surprise in 
fathers—whilst the lowest accuracy was observed for the Negative 
models. Mean specificity ranged from 0.38 to 0.79, suggesting varying 
success in correctly identifying non-expressions. Notably, the 
Surprise category had the lowest specificity, indicating that models 
particularly struggled to classify the absence of Surprise in fathers. 
Mean sensitivity ranged from 0.54 to 0.85, with the Surprise category 
displaying the highest value and Neutral displaying the lowest. This 
suggests that models were able to correctly classify when Surprise was 
present, but could not accurately predict the presence of Neutral.

Shifting to mothers, the mean accuracy ranged from 0.53 to 0.74 
across the expression categories. Similar to fathers, high accuracy for 
mothers was observed in the Surprise and Positive models. Mean 
specificities were low to moderate, ranging from 0.35 to 0.69, 
indicating that models struggled to identify absence of expressions. 
The highest specificity was observed in the Neutral category, and the 
lowest was for Surprise. Mean sensitivity values for mothers ranged 
from 0.52 to 0.81, with the highest observed in the Positive models, 
and the lowest for the Negative models. This suggests that models 
performed well at classifying when Positive was present, but not so 
well at classifying presence of Negative.

The models for fathers and mother expressions exhibited 
differences in their accuracy, specificity and sensitivity across the 
categories, with the father models performing slightly better overall. 
Both genders showed high accuracy in the Surprise and Positive 
models, and showed considerably lower performance in the Negative 
models. The models for Neutral were most specific in each case, 
whilst Surprise was least specific. Finally, there were differences in 
sensitivity, as Surprise models were most sensitive for fathers, whilst 
Positive were the highest for mothers.

4. Discussion

4.1. Summary of results

Manual facial coding can be laborious, time consuming, and 
subject to human biases. Automated facial coding (AFC) offers a 

TABLE 4 Confusion matrix of manually and automatically coded 
expressions (%).

Manual AFC

Positive Neutral Negative Surprise

Positive 20.40 9.07 0.73 0.62

Neutral 56.76 0.78 2.86 1.32

Negative 3.94 0.05 0.28 0.08

Surprise 2.17 0.16 0.12 0.64

TABLE 5 Mean (SD) expression intensities, as coded by FaceReader, 
separated by gender.

Expression Mean intensity (SD)

Mothers Fathers

Happy 0.85 (0.21) 0.56 (0.22)

Sad 0.11 (0.16) 0.09 (0.12)

Neutral 0.15 (0.25) 0.14 (0.21)

Angry 0.08 (0.12) 0.05 (0.08)

Scared 0.04 (0.09) 0.01 (0.03)

Surprised 0.17 (0.21) 0.07 (0.09)

Disgusted 0.06 (0.11) 0.04 (0.08)

Contempt 0.01 (0.02) 0.01 (0.02)
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rapid and objective alternative. Previous literature has evaluated 
applications of AFC across various contexts, however, most work has 
focused on videos taken by stationary cameras, in heavily controlled 
environments, with good lighting and homogenous backgrounds 
(Benţa et al., 2009; Danner et al., 2014; Brodny et al., 2016). Fewer 
studies have investigated the use of AFC for more dynamic and 
naturalistic observations, which is important to investigate as it 
allows for a better understanding of spontaneous emotional 
expressions in real-world contexts, capturing the intricacies of 
human interactions and reactions (Lee et al., 2017). Additionally, 
whilst some works have used AFC to analyse parent facial 
expressions (Karreman and Riem, 2020; Lyakso et al., 2021), there 
remains scope for deeper investigations, including those evaluating 
differences in gender.

Thus, our study was carried out with three primary aims: (A1) 
assess the facial detection rate of the software, (A2) quantify the 
agreement between automated and manual facial coding: by assessing 
the concordance between the two methods, and using the automated 
outputs to predict the manual coding, and (A3) investigate the 
influence of parent gender on the relationship between manual and 
automated facial coding, by analysing combined datasets as well as 
separate datasets for fathers and mothers. To address these aims, 
we compared manual and automated facial coding for 65 videos of 
parents (n =  36 fathers, n = 29 mothers), taken using wearable 
headcams during interactions at home. We used a total of 26,034 s of 
data after pre-processing (fathers n = 15,420, mothers n = 10,614). 
The videos were coded both manually—using the MHINT coding 
scheme (Costantini et  al., 2021)—and automatically—using the 
FaceReader software (Noldus, 2014). The first stage of our analyses 

involved using contingency tables to quantify automated facial 
detection rate, as well as the agreement between manual and 
automated coding. The second stage used combined and gender 
specific logistic regression models to further evaluate this relationship, 
and estimate the influence of gender on the models.

Section 3.1.1 showed that automated facial coding detected a face 
around 25% of the time that the human coder did. Similarly, the 
contingency analysis in Section 3.1.2 found that whilst there was a 
large overlap in classifying expressions as Positive, automated facial 
coding showed a large bias towards classifying faces as Positive, where 
manual coding denoted them as Neutral. There were additional 
discrepancies between the other expression categories.

Using the full dataset, Table  6 revealed variations in model 
performance across different facial expression categories. Overall, 
the Surprise and Positive models exhibited the highest accuracies 
and sensitivities, indicating strong predictive capabilities for these 
expressions. The Negative models were low poor performing, whilst 
the Neutral models achieved reasonable accuracy and high 
specificity. Regarding gender differences, the coefficient values 
highlighted that mothers’ faces play a slightly more important role 
than fathers’ faces in predicting Positive and Neutral expressions, 
whilst fathers’ faces are more influential in predicting Negative and 
Surprise expressions.

The father specific models showed the highest accuracy in the 
Surprise models, whilst the mother specific models showed highest 
accuracy was observed in the Positive models. Both had lowest 
accuracy in the Negative models, and the gender specific models 
varied in their ability to accurately identify the presence or absence 
of each expression.

TABLE 6 Accuracy, sensitivity and specificity metrics for cross-validated, combined models.

Accuracy Specificity Sensitivity Coef**

Mean Range* Mean Range Mean Range Mean Range

Positive (n = 26,706) 0.76 0.70–0.81 0.60 0.46–0.73 0.83 0.76–0.91 −0.06 −0.14–0.03

Negative (n = 3,776) 0.54 0.40–0.67 0.51 0.30–0.72 0.54 0.39–0.68 0.67 0.58–0.78

Neutral (n = 50,682) 0.68 0.62–0.74 0.76 0.66–0.86 0.57 0.44–0.70 −0.03 −0.10–0.04

Surprise (n = 2,671) 0.80 0.69–0.92 0.34 0.15–0.53 0.81 0.69–0.93 1.42 0.93–1.54

*Range indicates the 95% upper and lower bounds on the given performance metric (e.g., accuracy). **Coef refers to the value of the ‘gender’ coefficient in the LR models.

TABLE 7 Accuracy, sensitivity and specificity metrics for cross-validated, gender-specific models.

Accuracy Specificity Sensitivity

Mean CI (95%) Mean CI (95%) Mean CI (95%)

Fathers

Positive (n = 15,152) 0.74 0.71–0.78 0.58 0.46–0.67 0.81 0.75–0.88

Negative (n = 2,507) 0.58 0.46–0.70 0.42 0.25–0.59 0.59 0.45–0.73

Neutral (n = 25,713) 0.70 0.65–0.75 0.79 0.71–0.88 0.54 0.44–0.65

Surprise (n = 1,003) 0.84 0.76–0.91 0.38 0.18–0.58 0.85 0.77–0.92

Mothers

Positive (n = 11,554) 0.74 0.69–0.84 0.67 0.52–0.82 0.81 0.72–0.91

Negative (n = 1,269) 0.53 0.43–0.63 0.48 0.27–0.68 0.52 0.41–0.63

Neutral (n = 24,969) 0.66 0.58–0.73 0.69 0.56–0.81 0.64 0.49–0.79

Surprise (n = 1,668) 0.73 0.61–0.85 0.35 0.15–0.55 0.74 0.61–0.86
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4.2. Failures in facial detection

Whilst it is important that we begin to trial automated facial 
coding in more naturalistic environments (Matlovic et al., 2016), 
this is very difficult in practise (Gómez Jáuregui and Martin, 2013). 
Across many of the videos in our work, FaceReader struggled to 
locate and classify faces, as indicated by the low detection rates of 
around 25%. A detection rate of 25% is not surprising, as real-
world conditions are dynamic and complex—for example, on 
account of varied movements and surroundings—meaning that 
automated facial recognition is disadvantaged (Gómez Jáuregui 
and Martin, 2013). We thus consider the low FaceReader success 
to be indicative of the high ecological validity of our videos. As 
opposed to previous studies—where data were excluded based on 
FaceReader’s ability to analyse it (Weth et al., 2015)—we retained 
these data for the purpose of validating the software for real-
life conditions.

By looking back through our videos, we have identified potential 
reasons for the failures in facial detection; an overview of this is 
provided in Figure 2. This figure shows eight images taken using the 
headcams, with an accompanying explanation to describe why 
automated facial detection would not work well within the image. 
These reasons are: poor lighting conditions (a), blurry images (b), 
incomplete view of the face (c, d, and e), obstructed view of the face (f 
and g), or mistaken classification (h). For confidentiality reasons, 
we  could not share photos of the participants used in this work. 
However, Figure 2 contains comparable images from a mother and 
father who consented to have their data shared.

Previous work has highlighted that dark lighting (Loijens et al., 
2020) or artificial illumination (Gómez Jáuregui and Martin, 2013) 
negatively impacts automated facial detection. In our videos, many 
interactions took place in artificially lit rooms with no natural light, 
in front of bright windows, or in rooms with no lighting at all 
(depending on the time of day). These factors impacted the 
illumination on parents’ faces, resulting in reduced capability of the 
automated facial coding software to accurately identify crucial facial 
features necessary for expression determination. In some cases, the 
software faced challenges in detecting faces altogether (see 
Figure 2A).

The type of interactions used in this work—feeding (n = 43), free 
play (n = 16), stacking (n = 4) and combination (n = 2)—meant that 
our videos contained dynamic, fast body movements and variation 
between positions (e.g., sitting and lying on the floor during play). 
These rapid movements sometimes led to blurry images (see 
Figure 2B), causing the automated facial coding software to struggle 
to identify the facial features required for expression classification.

Additionally, these dynamic interactions often meant that the face 
was out of view of the camera (see Figure 2C). This happened when 
the infant looked away, the parent moved too close or far away (see 
Figure 2D), and when the parent faced away from the infant (see 
Figure 2E). In feeding interactions, for example, the parent might 
be  sat at the table or next to the infant, leading to sideways or 
otherwise indirect views of the face. Whilst humans can identify facial 
expressions from an angled (or partially obscured) view, FaceReader 
is not able to distinguish faces beyond a 40-degree tilt (Loijens et al., 
2020). As another example, consider free play or stacking tasks; if the 

FIGURE 2

Video snapshots where FaceReader fails to detect a face, for reasons as specified: (A) poor lighting conditions, (B) blurry images, (C) part of face out of 
view, (D) distance from headcam, (E) parent facing away, (F) face obstructed by object, (G) face obstructed by headcam, and (H) mistaken classification.
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infant threw a toy out of view, the parent would move further away to 
retrieve it. This distance would decrease the software’s ability to detect 
facial features. Although these factors are indicative of natural 
interactions, they led to a decrease in successful automated 
facial detection.

Figure 2F demonstrates an obstruction of the face. Previous 
studies indicate that glasses, facial hair, hats, or other objects can 
hinder automated facial detection (Gómez Jáuregui and Martin, 
2013; Booijink, 2017; Loijens et al., 2020). Amongst our participants, 
a small subset of six fathers sported facial hair, whilst a few fathers 
and seven mothers were observed wearing glasses. It is also 
noteworthy that several parents had hairstyles featuring fringes that 
partially obstructed their eyebrows. Additionally, during the 
interactions, objects such as cutlery or toys were frequently raised 
in front of the parent’s or infant’s face, resulting in partial or 
complete obstruction of the facial region. In such cases, automated 
facial detection is at a disadvantage compared to human 
facial detection.

Figure 2G shows how the headcam itself could also serve as an 
obstruction. This often occurred when the headcam was placed too 
low on the parents’ face, covering the eyebrows. Without the ability to 
locate the eyebrows, the automated facial coding software would 
struggle to map the key points on the face and classify an expression. 
In this case, the human coder is likely to still be able to classify an 
expression based on other visible facial features (e.g., eyes, mouth). 
Previous work using headcams to capture dyadic interactions allowed 
the researchers to adjust the cameras on the participants themselves 
(Park et al., 2020), to ensure that they were well fitted and angled 
correctly. This was not possible in our work, as the parents fitted both 
their own and their infants’ headcams, meaning that errors in 
placement were more likely to occur.

Table 3 highlighted the amount of time where automated facial 
detection found a face within the image, but the human coder did not 
(fathers = 0.47%, mothers = 0.26%). These percentages describe 
instances where the software misclassified another object or person as 
a face (see Figure 2H). As these values are low, this was not a common 
occurrence. We  removed frames with additional people present 
during pre-processing, such that software misclassifications in our 
data were more likely caused by items with faces (or shapes resembling 
faces) on (e.g., clothing, photos or stuffed animals). The negative 
impact of complex backgrounds on automated facial detection has 
been reported previously (Gómez Jáuregui and Martin, 2013).

4.3. Implications for automated facial 
coding in naturalistic environments

Our research has highlighted the importance of incorporating 
naturalistic observations in training AFC models, addressing 
limitations associated with relying solely on standardised and 
controlled environments. Whilst FaceReader, a widely used AFC 
software (Den Uyl and Van Kuilenburg, 2005; Noldus, 2014), has 
shown efficacy in specific conditions (Höfling et al., 2021), challenges 
persist in accurately distinguishing between neutral and unpleasant 
stimuli and effectively handling non-standardised expressions 
(Höfling et al., 2020; Küntzler et al., 2021). Nevertheless, AFC has 
demonstrated promise beyond academic research, particularly in 
predicting self-reported emotions and providing valuable insights in 

marketing research, where it captures non-verbal aspects (Höfling and 
Alpers, 2023).

Unlike previous studies that primarily used laptop webcams 
(Danner et al., 2014; Booijink, 2017; Talen and den Uyl, 2022), which 
fail to capture dynamic and complex real-life interactions, our study 
employed wearable headcams, offering a first-person perspective that 
aligns with naturalistic observations. Through evaluating scenarios 
where automated facial detection and coding faced challenges, 
we  provide recommendations to optimise future studies’ success. 
These recommendations [1]–[6], previously introduced in (Burgess 
et  al., 2022), are reiterated here with two additional points and 
further details.

 1. Provide participants with clear guidance on how to properly fit 
the headcam, ensuring it sits above the eyebrows and points in 
the appropriate direction to capture the partner’s face.

 2. Advise participants on optimal lighting conditions, preferably 
recording in natural light. Alternatively, explore options such 
as FaceReader’s new infrared video analysis feature (Noldus 
Information Technology, 2023) to improve accuracy in videos 
with poor lighting.

 3. Encourage participants to minimise facial occlusions by 
avoiding glasses, hats, and keeping hair away from the face. 
However, recognise that certain behaviours involving objects 
in front of the face should not be  discouraged to 
maintain authenticity.

 4. In some contexts (e.g., feeding), participants may be informed 
of specific body positions to maintain, whilst in others, 
maintaining the dynamic nature of naturalistic interactions is 
essential (e.g., play).

 5. Participants should be advised against wearing clothing with 
faces displayed on them and recording in areas with complex 
backgrounds. Alternatively, future research could explore post-
production techniques to reduce mistaken classification, such 
as blurring or obscuring backgrounds.

 6. Supporting the development of more powerful compact 
cameras that are robust against rapid head movements can 
further enhance the performance of AFC models in 
naturalistic settings.

 7. Advise participants to maintain a comfortable distance from 
the camera to avoid excessive close-ups or wide-angle shots 
that may affect the accuracy of facial expression analysis. 
Providing specific guidance on the optimal distance can help 
standardise the data collection process.

 8. Conduct a pilot study to help familiarise participants with the 
headcam and its proper usage, allowing them to adjust and 
become more comfortable with the equipment. Additionally, a 
pilot study can provide an opportunity to fine-tune the 
recording setup, lighting conditions, and other variables to 
optimise the performance of the AFC models in 
naturalistic settings.

Implementing these recommendations can help researchers 
optimise the success of automated facial detection and coding on 
videos of naturalistic observations. However, it may be necessary to 
combine automated facial coding with manual coding or other 
complementary techniques at this stage, such as: using human raters 
for specific facial expressions that automated systems struggle to 
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accurately detect, or employing machine learning algorithms to 
improve the performance of automated coding in challenging 
scenarios. Another approach could be  to use FaceReader to 
automatically code a portion of the data, approximately 25% based on 
observed success rates, and supplement the remaining data with 
manual coding. Even with a success rate of 25%, automated coding 
techniques can be valuable, especially when dealing with large datasets 
or time constraints.

Table  4 demonstrated both areas of agreement and notable 
disagreements between manual coding and AFC in classifying 
naturalistic facial expressions. Whilst there was some agreement in 
identifying positive expressions, substantial differences arose in 
categorising faces as Neutral, Negative and Surprise. These findings 
suggest the presence of biases in the classifications of both methods 
and highlight the importance of considering human judgement or 
complementary techniques alongside automated systems like AFC for 
a comprehensive analysis of facial expressions.

Overall, the limitations and challenges in applying AFC to real-life 
recordings are evident. We have provided practical recommendations 
for optimising AFC in naturalistic settings based on the insights 
gained. By bridging the gap between previous literature and our 
findings, we  contribute to the ongoing dialogue on the validity, 
limitations, and applications of AFC. These insights are valuable for 
improving the interpretation of facial expressions in real-life settings. 
Future studies should continue integrating wearable headcams, 
exploring complementary techniques, and refining AFC algorithms 
to effectively handle the complexities of naturalistic expressions, in 
order to further advance our understanding of emotional expressivity 
in diverse contexts.

4.4. Gender differences in parent 
expressions

Applications of automated facial coding in parenting research 
have been minimal; we  identified only a handful of studies using 
videos of mothers (Mahoor et al., 2009; Messinger et al., 2009; Haines 
et al., 2019; Karreman and Riem, 2020; Lyakso et al., 2021) and none 
using videos of fathers. Without these father-specific studies, nobody 
has yet linked automated facial coding and parent gender; we believe 
that our work is the first. Previous studies (Terzis et al., 2010; Lewinski 
et al., 2014) have shown that automated facial detection using the 
FaceReader software can vary by gender. Thus, it is not surprising that 
our models showed gender-related differences in performance, with 
the fathers’ models exhibiting slightly higher accuracy, specificity, and 
sensitivity compared to the mothers. To reflect on the disparities in 
model performance, we  must also examine the similarities and 
differences between the mother and father datasets.

Looking first at similarities, we used an almost identical number 
of participants of each gender (13 fathers, 14 mothers). Both sets of 
parents were recruited via the same longitudinal cohort study, and 
attended assessment clinics within a year of infant birth. The parents 
also followed identical video recording procedures: they were given 
headcams, and asked to use them to record multiple interactions with 
their infant at home. As such, the interactions were consistently 
naturalistic in structure.

In terms of differences, we  believe that many examples are 
present within the videos themselves. For example, a higher 

proportion of mothers were wearing glasses in the videos compared 
to the fathers. This could explain why we  observed decreased 
performance in the mother models (which was modulated to a 
degree in the combined models). It is well established that glasses 
cause detection issues in FaceReader (Loijens et al., 2020), so it 
would not be  surprising if the impact of this imbalance was 
reflected in our model performance. Additionally, our data 
pre-processing removed a higher percentage of data where a 
second person was present in the frame for the father dataset 
compared to the mothers (the father data was reduced by 91%, the 
mother data reduced by 88%). This could mean that whilst the 
fathers were recording their videos, it was more likely that another 
person was present somewhere nearby. It is possible that the 
presence of another person altered the fathers’ actions 
and expressions.

We also observed differences in the types of interactions recorded 
by both fathers (67% feeding, 28% free play and 5% combination) and 
mothers (66% feeding, 20% free play and 14% stacking). Although 
the proportion of feeding interactions was consistent, the fathers 
engaged in more free play, and the mothers included an additional 
interaction type. Considering the potential impact of different 
interaction types on parent (and infant) movements, body orientation 
and positions, future work could explore the use of an interaction 
term to investigate how interaction type influences the performance 
of models. The changing orientations during different interactions 
may pose challenges for FaceReader in accurately detecting 
facial expressions.

Table  5 showed a summary of the expression intensities (as 
quantified by FaceReader) in mothers and fathers, revealing that 
mothers exhibited higher intensities of Happy, Sad, Surprise and 
Disgust compared to fathers. The mean intensities for Neutral, Angry, 
Scared and Contempt expressions were similar between mothers and 
fathers, with generally low intensities observed for these emotions in 
both groups. This is consistent with previous literature that found that 
men are less emotionally expressive (Campos et al., 2013), display less 
intense happy expressions (Oveis et al., 2009) and smile less than 
women (LaFrance et al., 2003).

Figure 1 highlighted that whilst there was a similar balance of 
facial expressions across the mother and father datasets, the 
percentages were not identical. Some expressions occurred more in 
the father dataset—i.e., Positive and Negative—whilst others occurred 
more in the mother dataset—i.e., Neutral and Surprise. Whilst these 
differences may in part explain the variation in model performance 
between genders, they might also explain some of the values of the 
gender coefficient in our combined logistic regression models. For 
example, we saw that: (1) there was a higher percentage of Negative 
in the father dataset, and (2) the gender coefficient in Table  6 
indicated that father’s faces were predictive of Negative expressions. 
As another example, Neutral occurred more in the mother dataset, 
and the gender coefficient in Table 6 indicated that mother’s faces 
were more predictive of Neutral expressions.

Following a comparison of these datasets and results, we are well 
placed to discuss the future of linking automated facial coding and 
parent gender. Future studies should continue to investigate 
applications of automated facial coding to parents (regardless of 
gender), aiming for consistency in study processes in order to 
evaluate any gender differences where possible. Maintaining 
consistency in recruitment procedures, for example, is important to 
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prevent inherent biases in the data (e.g., population biases from 
recruiting in certain geographic regions). To better assess gender 
influence, future studies should aim for consistency between videos, 
by: recruiting an equal number of glasses-wearing mothers and 
fathers, using the same interaction types for the two genders, and 
collecting data on other people present during filming. By addressing 
these factors, researchers can remove their impact on models to 
obtain more reliable results.

4.5. Strengths

The biggest strength of our work is the inclusion of real-life videos. 
This meant that our interactions were varied, complex and dynamic, 
capturing a range of ecologically valid, unposed facial expressions. 
Previous research has also highlighted that interactions recorded at 
home are more likely to contain less socially desirable behaviours (Lee 
et  al., 2017). Further, by using headcams to record the videos, 
we captured a closer, more full view of parents’ faces, as opposed to if 
we  had used stationary cameras (which can miss capturing facial 
expressions; Lee et al., 2017). Another strength is the inclusion of both 
mother and father videos. As facial expressivity has been studied more 
in women than men, it was advantageous to include both genders in 
this work for the purposes of evaluating differences.

Finally, both our participants and double coders were blind to our 
research aims, meaning that they were not influenced by expectations 
of the study. For the coders, this helped to improve validity of the 
coding (facial expressions were analysed based solely on the data in 
the videos), and enhanced the objectivity of our research process. For 
the participants, this increased the validity of recordings, as 
participants would not (knowingly or otherwise) modify their facial 
expressions to align with the study expectations, leading to more 
natural behaviours.

4.6. Limitations

Our data showed a poor balance of facial expressions, which is not 
unusual since certain expressions are likely to be  less common in 
parent-infant interactions (e.g., Negative). Although we  used a 
weighting parameter in the models to account for imbalanced classes, 
providing more data for some expressions may have improved 
model performance.

It is likely that our data contained biases. Firstly, the length of 
video material provided by each participant was varied, and these 
imbalances might have led to biases in model training. Although 
we  mitigated this effect by ensuring that all data from a single 
participant was contained in either the training or the test dataset. 
Secondly, the cohort study from which our participants were recruited 
(ALSPAC) likely contains biases that potentially reduce the 
representativeness of the sample (Lawlor et al., 2019). For example, 
there is a high percentage of White-European participants, meaning 
our findings may not be generalisable to the wider population.

Facial recognition algorithms are prone to racial biases 
(Buolamwini and Gebru, 2018), especially for dark-skinned females. 
This bias is due to the lack of diversity in training datasets, which 
mostly feature light-skinned individuals. The Karolinska Directed 

Emotional Faces dataset (Lundqvist et  al., 1998), used to train 
FaceReader, comprises models of European descent. Although the 
software includes an ethnicity classifier, the creators highlight the need 
for adjustments to better detect expressions on dark-skinned people 
(Loijens et al., 2020).

The manual and automated coding categories used in this 
study did not align perfectly, as indicated in Table 1. In order to 
address this discrepancy, we aggregated the categories into four 
overall categories that were mutually exclusive. However, this 
approach may have resulted in a potential loss of valuable 
information. Specifically, the aggregation of the manual codes 
‘Smile’ and ‘Positive’ into the singular category of ‘Positive’ 
overlooks the meaningful distinction between these expressions 
(Costantini et al., 2021). Smile involves engagement of both the 
eyes and the mouth, whilst positive expressions are limited to the 
mouth and encompass positive interest and excitement. 
Maintaining the original categories would have allowed for a more 
nuanced analysis, particularly regarding the differences in 
intensities. Another example is the differentiation between Mock 
surprise and Surprise, which are distinct expressions (Costantini 
et al., 2021). Mock surprise represents a “posed” surprise, whilst 
Surprise captures genuine reactions. Retaining the original 
categories would have provided a more comprehensive 
understanding of these expressions and their relationship to 
parent responses and emotional communication. Nevertheless, 
despite the need for aggregation to align with the facial expressions 
detected by the automated coding software, it remains valuable to 
employ facial recognition technology to quantify and explore the 
nuances within these original expressions. This approach can 
provide insights into the captured variations and contribute to a 
deeper understanding of parent-infant interactions.

The final limitation of our study is that parents’ expressions may 
have been affected by the headcams. For instance, parents might have 
reacted positively to seeing their infant wear the headcam, or might 
have frowned if the headcam placement was distracting. However, 
we  believe including ecologically valid expressions from real-life 
interactions mitigated this effect.

4.7. Conclusion

In summary, our work investigated the use of an automated facial 
coding software as an alternative to manual facial coding (which is 
time intensive, and may be  biassed). Our analyses used real-life 
videos of parents, captured using wearable headcams during 
interactions with infants in the home. We found that the software 
classified parent facial expressions around 25% of the time, and the 
software outputs predicted manually coded expressions with 
relatively high accuracy, sensitivity, and specificity. Our findings also 
highlighted which expressions were more or less likely to occur 
depending on parent gender.

Our work is novel in its inclusion of unstructured, naturalistic 
observations, captured using headcams; previous studies have used 
structured recordings, captured using webcams or other stationary 
cameras. These procedures ensured that our videos were representative 
of real-life conditions, and that our participants displayed natural, 
unposed facial expressions. Whilst this led to a reduced automated 
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facial detection rate, we were able to evaluate reasons for this in order 
to provide robust, evidence-based recommendations for 
future researchers.

Finally, automated facial coding has only been applied to 
videos of mothers in a handful of studies (and never to fathers); 
ours was the first study to use an automated facial coding 
software to analyse both concurrently. This allowed us to explore 
the influence of gender, and discuss how future work should 
modify data collection to promote greater consistency between 
father and mother videos (allowing for an improved comparison). 
As we  set a benchmark in examining FaceReader gender 
differences, future studies can build upon our work to further 
explore this area.

Overall, our research not only advances the field of facial coding 
but also offers valuable insights into improving the efficiency and 
accuracy of automated methods.
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