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Although assessing motor competence is vital to advancing current understandings 
of motor development and its significance in various fields, no consensus exists on 
how the construct should be operationalised and measured. Existing approaches 
to assessing motor competence in children typically involve applying qualitative 
and/or quantitative scoring procedures in which children’s performance is 
evaluated according to certain levels of assessment-specific task performance 
dependent upon predefined sets of instructions and procedures. Building upon 
ecological dynamics as a framework, different levels of motor competence can 
be identified in children’s attempts to coordinate their degrees of freedom while 
trying to complete the interactive task and environmental constraints. Given the 
dynamic, nonlinear features of that coordinating process, assessments need to 
consider the inherit structure of inter- and intra-individual variability in patterns 
of movement. Against that background, we investigated 7–10-year-old children’s 
(n  =  58) whole-body joint kinematics as they freely explored a balance beam in 
a virtual reality playground. Specifically, we used exploratory cluster analysis to 
examine the discriminatory capability of utilising joint-specific sample entropy 
as a window into individual differences in movement coordination that emerged 
from children’s exploration of the constraints embedded in the virtual task. Among 
the results, three clusters of children with distinct profiles of movement variability 
emerged, all of which showed heterogeneous levels of repeatability in joint 
movements in combination with the level of spatiotemporal exploration on the 
balance beam that could not be explained by between-cluster differences in age 
and gender distributions. Those findings suggest that entropy from whole-body 
movements can be  used to cluster children into distinct groups with different 
profiles regarding the structure of movement variability, which can inform new 
understandings and the development of gross motor competence assessments 
for children.
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1. Introduction

There have been many efforts in recent decades to describe, understand, and assess gross 
motor competence in children (Barnett et al., 2020). In children, the term gross motor competence 
refers to the level at which children display fundamental motor skills, which are basic gross 
movements used in activities of daily living and physically demanding pursuits across the human 
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lifespan (Barnett et  al., 2016; Logan et  al., 2018). Gross motor 
competence is typically operationalised in three interrelated 
constructs: locomotion (e.g., running, hopping, jumping, and sliding), 
object control (e.g., kicking, throwing, and catching), and adjusting 
and maintaining balance. Using those (and related) constructs, a 
plethora of test batteries have been developed to assess the level of 
children’s motor performance (Hulteen et  al., 2015, 2020a); those 
assessments can be broadly divided into product-oriented assessments, 
which focus on the quantitative outcomes of movement-based tasks, 
or process-oriented assessments, which consider the qualitative 
characteristics of how movements are performed according to specific 
criteria (Logan et al., 2017; Hulteen et al., 2020b; Palmer et al., 2021). 
Nevertheless, the further development of motor competence 
assessments has been called for, especially assessments that consider 
the dynamic, multidimensional nature of motor development that 
occurs throughout childhood and adolescence, as well as the many 
task-oriented, individual, and environmental constraints that together 
influence children’s gross motor competence (Rudd et  al., 2016; 
Hulteen et al., 2022).

The sensitivity and discriminatory capabilities of assessments to 
detect different levels of gross motor competence are highly dependent 
upon the operationalisation of task performance. Quantitative scoring 
procedures, which rank among the most widely used assessment 
batteries (Kiphard and Schilling, 1974; Bruininks and Bruininks, 1978; 
Ulrich and Sanford, 1985; Henderson et al., 1992), typically involve 
measuring temporospatial data concerning the outcomes of children’s 
movements, including time to complete a task, distance moved, 
accuracy of movement, and/or successful attempts. Qualitative scoring 
procedures, by contrast, involve rating how a given task is executed 
according to criteria for different performance-related components 
and might be dichotomous in nature—for instance, use “1” and “0” to 
mean “present” and “absent,” respectively. Independent of the type of 
scoring procedure, children’s level of motor competence is evaluated 
against certain assessment-specific levels of task performance that 
depend upon predefined instructions and procedures.

Such operational definitions of what constitutes skilled or 
competent movement performance in children appear to be rooted in 
cognitive theories and models of motor behaviour (Schmidt, 1975; 
Magill and Hall, 1990; Summers and Anson, 2009). Assessing the 
potential alignment of a child’s movements with a predefined 
performance template assumes that some ideal form of movement 
(e.g., skill) exists for a specific task. In that view, task performance thus 
depends upon children’s capacity to understand the task and the 
instructions for it, to process and extract relevant information for 
planning the task’s execution, and to execute the movements necessary 
to complete the task (Fitts and Posner, 1967; Henderson and Sugden, 
2007). That conceptualisation converges with assessments of whether 
children have developed cognitive representations that can be matched 
to meet the given task’s criteria as well as serve as an internal reference 
of accuracy. Such internal representations provide the structural basis 
for generating invariant response movements common to a certain 
class of fundamental movements (i.e., balance, locomotion, and object 
control) by adjusting and scaling parameters of basic movements 
(Schmidt, 2003; Keetch et al., 2005). From that perspective, variability 
in task performance is generally considered to indicate deviation from 
skilled performance. For instance, if a child demonstrates movements 
not included in the intended task template or display variations in 
outcomes on tasks, such movements are essentially treated as 

unwarranted noise in the data, which inevitably indicates relatively 
poor motor competence. In cognitively oriented models, those types 
of intra-individual variability might signify the outcome of poorly 
processing information and the less skilful execution of task-
appropriate movements (Schmidt, 2003; Summers and Anson, 2009; 
Schmidt et al., 2018).

As an alternative approach to and rationale for operationalising 
gross motor competence, the ecological dynamics framework provides 
an integrated explanation for children’s motor competence. Therein, 
observable movements are viewed as emerging from a self-organising 
relationship formed between the child, the gross motor task at hand, 
and the environment in which the assessment is performed (Davids 
et al., 1994). By extension, intentional motor actions are understood 
as functional movement solutions that emerge as each child 
continuously interacts and works within the array of constraints 
related to the task and environment (Handford et  al., 1997). The 
ecological dynamics framework combines several theories applied in 
studying motor learning and development, including dynamical 
systems theory (Thelen and Smith, 1994; Kelso, 1995), complexity 
sciences (Edelman, 1987), and ecological psychology (Gibson, 1979; 
Warren, 2006).

The ecological dynamics framework recognises the longstanding 
knowledge that human motor systems consist of an extraordinary 
number of independent biomechanical and neuroanatomical 
properties (e.g., bones, joints, muscles, and neurons), or degrees of 
freedom, which can be  combined in countless ways (Bernshteĭn, 
1967). Furthermore, there is abundant evidence of how the 
coordination of degrees of freedom emerges through self-organisation 
in complex neurobiological systems (i.e., between muscles, joints, and 
limbs) during motor development, learning, and performance (Thelen 
et al., 1987; Mayer-Kress et al., 2009; Kelso, 2022). Self-organisation in 
coordinating movements is a process in which patterns of movement 
at the global level (i.e., overall motor behaviour in a task) emerges 
from the multiple interactions of lower-level components of the motor 
system (i.e., degrees of freedom). The interaction between degrees of 
freedom in the motor system, in being nonlinear, dynamic, and 
continual, provides adaptability and flexibility in the face of changing 
constraints. Coordinated patterns of movement are emergent 
properties of those interactions and cannot be  understood as the 
simple addition of individual contributions of lower-level degrees of 
freedom (Sneyd et al., 2001). All the cited investigations have verified 
that children’s motor performance, as the outcome of human systems 
of movement, can be modelled and understood as complex dynamic 
systems in which functional patterns of motor behaviour emerge in 
specific contexts.

The natural tendency for self-organisation as it applies to 
coordinating human movements suggests that children’s motor 
competence in each task is an emergent property of an attempt to 
control individual degrees of freedom and work within the interacting 
constraints and, as such, provides enormous variation in children’s 
choice of and control over their movements (Chow et al., 2011). The 
level at which that control is achieved and/or the corresponding 
movement outcome is thus interconnected to defining features of 
gross motor competence. As a result, self-organisation in coordinating 
movement can promote relatively stable patterns of movements as 
solutions in response to the demands of tasks, especially in conditions 
with relatively little complexity (Sneyd et  al., 2001). In such 
assessments, children can readily be  observed to form a precise 

https://doi.org/10.3389/fpsyg.2023.1227469
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lorås et al. 10.3389/fpsyg.2023.1227469

Frontiers in Psychology 03 frontiersin.org

pattern of movements, especially if instructions are provided (e.g., as 
a blueprint, recipe, or specific guideline); however, it is less obvious 
how a definite pattern of movement can be produced in the absence 
of such instructions. In terms of dynamical systems theory, those 
instructions, as task constraints, might heavily influence the use of 
specific patterns (or states) of coordination that children display 
during assessment (Kelso and Schöner, 1988; Newell and Ranganathan, 
2010). By adjusting important task and environmental constraints, 
however, essential information about gross motor competence in 
terms of the level of adaptability and flexibility in coordination 
can emerge.

The nonlinear nature of the self-organising process by which 
children control their degrees of freedom in performing motor tasks 
highlights that movement variability, or fluctuation, is an integrated 
feature of children’s motor competence. Indeed, variability is a 
hallmark of the coordination of human movement (Latash et al., 2002; 
Hadders-Algra, 2010; Hossner and Zahno, 2022) and is conspicuous 
in the execution of even highly repetitive, well-rehearsed tasks, 
including self-preferred gait, in which intra-individual variability can 
be observed on a step-by-step basis (Hausdorff, 2005; Jordan et al., 
2007). That dynamic is captured in the term repetition without 
repetition, meaning that no movement or task is performed with the 
same exact pattern of coordination (Bernshteĭn, 1967). Movement 
variability has long been identified not as mere random noise in 
behavioural data that needs to be filtered out but, on the contrary, to 
contain important information regarding the dynamic status, in 
developmental terms, of systems of movement (Gibson, 1988; Davids 
et al., 2006). Indeed, inter-individual differences in the structural and 
statistical properties of movement variability have been systematically 
linked to mechanisms of ageing, developmental disabilities, and 
neurological disorders and are sensitive to systematic variations in 
environmental and task constraints (Stergiou and Decker, 2011; 
Stergiou et al., 2013).

The operationalisation of children’s motor competence through 
the lens of movement variability also addresses the feature of 
degeneracy inherit in complex neurobiological systems, which 
captures the idea that similar movement outcomes can be achieved in 
many ways using different degrees of freedom (Kello et al., 2007). Such 
potential relates to the redundancy of the motor system, meaning the 
existence of more elements (i.e., degrees of freedom) than necessary 
to execute motor tasks, thereby resulting in multiple possible solutions 
to a given motor problem (Scholz and Schoner, 1999). Children’s 
coordination of degrees of freedom under the confluence of 
constraints, at least from the perspective of dynamical systems theory, 
might display variability up to a certain point (i.e., become unstable) 
and shift to a more stable pattern of movement with less variability. 
That potential transition between states of behaviour implies that a 
persistent lack of movement variability may indicate rigid, inflexible 
motor behaviours with limited adaptability to changing tasks and/or 
environmental demands (i.e., lower motor competence). Higher 
movement variability, in that view, might therefore signify the 
development of a richer repertoire of behaviours and indicate higher 
motor competence (Stergiou and Decker, 2011; Bisi et al., 2019).

Entropy has been identified as a nonlinear measure and theoretical 
concept that captures the structure of variability in human movement. 
Indeed, in many instances, patterns of movement might display a 
similar statistical dispersion able to be captured by linear measures but 
have important differences in the underlying structure of movement 

variability (Yentes et  al., 2013). Entropy analysis has provided 
important insights into the underlying processes of motor control, 
especially in postural control and gait, across the lifespan (Torres et al., 
2013; Busa and van Emmerik, 2016; Bisi and Stagni, 2018). First 
introduced in thermodynamics, entropy can be defined as the loss of 
information in a time series (Shannon, 1948; Yentes and Raffalt, 2021). 
Based on what is known about the current state of a movement time 
series, entropy quantifies the probability of the next state of the 
movement system. It can also be regarded as a measure of randomness, 
for it captures the probability that similar patterns of coordinated 
behaviour will not be followed by additional similar patterns (Stergiou, 
2018). When applied to children’s movements in gross motor 
assessments, entropy is the amount of (microscopic) variability that 
the motor system displays within various degrees of freedom in the 
observable behaviour and thus follows self-organisation’s principle of 
distribution and the coordination of configurations of degrees of 
freedom that give rise to children’s performance on each motor task 
(i.e., macroscopic state). Entropy is thus considered to be fundamental 
to the understanding of emergent properties in complex 
neurobiological systems considering motor competence in children, 
which allows establishing variability in coordinating movements 
ranging from low entropy with highly predictable, repetitive patterns 
of movement (i.e., potentially lower gross motor competence) to high 
entropy consisting of less repetitiveness in patterns of movement (i.e., 
potentially higher gross motor competence).

Applying nonlinear measures such as entropy in assessing gross 
motor competence requires re-examining the design of motor tasks. 
Such measures require tasks that allow the continuous recording of 
patterns of movement at sufficient length, which are traditionally 
examined with relatively low complexity walking and static balancing 
tasks. E.g., gait patterns are typically assessed by having participants 
walking a fixed short distance back and forth, and static balance tasks 
consist of upright quiet standing on a force plate for a fixed period 
(Yentes et al., 2013; Busa and van Emmerik, 2016; Bisi et al., 2019). 
These tasks commonly applied to study mechanisms of entropy in 
human motor control, is also quite like tasks that are a part of widely 
used assessment batteries for children’s motor competence, such as 
one-leg (stork) standing for balance assessment and running back and 
forth a short distance as a part of locomotor assessment (Hulteen 
et al., 2020a). In the current study, to allow children to freely explore 
and coordinate their degrees of freedom, we applied a novel balance 
beam task to be performed on a virtual reality (VR) playground in an 
urban setting (see Figure 1). In this task, children might potentially 
integrate various locomotor and static/dynamic balance strategies 
when they navigate the balance beam. Furthermore, participating 
children are also provided 3 min of exploration-time, allowing for 
sampling movement data that can be subjected to entropy analysis.

Emergent motor behaviour on such a VR playground is 
spontaneous, unpredictable, and self-generated, for there are no 
specific instructions other than “Explore for yourself, and do not fall 
off.” Although VR technology is mostly known for simulating 
environments in gaming or movies, it is increasingly used in different 
types of health-related research geared towards rehabilitation and 
physical and/or psychological disabilities (Snider et al., 2010; Ravi 
et al., 2017; Bortone et al., 2018) and has demonstrated its feasibility 
in assessments of motor impairments among children. In the latter 
application, movement strategies have been found to be better assessed 
in VR scenarios than by using traditional rating scales (Levac et al., 
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2019). Viewed from an ecological dynamics framework, a realistic 
balance beam task in VR potentially allows for taking into account the 
interacting motor, perceptual, cognitive, and affective features that can 
have an impact upon an individual child’s handling of task and 
environmental constraints. E.g., it is well known in the context of 
sports that relatively young children can extract salient cues relevant 
for maintaining their dynamic balance (Peker et al., 2021; Duncan 
et al., 2022). Thus, different environmental situations and children’s 
perceptions of these environments can alter how they successfully 
achieve a gross motor task (Golding et al., 2014). In the assessment of 
gross motor competence, VR can thus be  applied to design and 
standardise dynamic tasks in high-complexity environments that 
might feel realistic and contain recognisable real-world features 
previously experienced by children (Hulteen et al., 2022).

Altogether, the conceptual frameworks of ecological dynamics 
that guided the current study advances that children’s motor 
competence emerges as children attempt to coordinate their degrees 
of freedom while at once seeking to work within the constraints of the 
task and environment. Given the dynamic, nonlinear features of that 
process of coordination, the assessment of motor competence needs 
to consider the inherit structure of inter- and intra-individual 
variability in children’s emergent patterns of movement. Against that 
backdrop, the objective of the current study was to investigate whether 
measures of whole-body entropy have discriminatory capability 
through being able to classify individual differences in children’s 
coordination of movements. Specifically, we performed exploratory 
cluster analysis to determine whether movement entropy in children’s 
exploration of constraints embedded in a virtual reality balance beam 
can be used to cluster children into distinct groups with different 
profiles regarding the structure of movement variability. Provided the 
features of entropy as a nonlinear metric, we hypothesised that clusters 
of children would emerge with profiles of relatively low entropy and 
repetitive patterns of movement, higher entropy consisting of less 
repetitiveness in patterns of movement, or a combination of these 
profiles. Furthermore, it was also hypothesised that cluster differences 
would emerge in the spatiotemporal measures of the children’s 
exploration of the VR balance beam.

2. Methods

2.1. Participants

We invited 76 children 7–10 years old (i.e., in Grades 2–4  in 
Norwegian schools) attending a primary school in a rural area in 
Central Norway to participate in our study. The school was selected for 
convenience sampling given its proximity to our university, which 
facilitated transportation and the twice-daily installation of equipment 
on each visit. In the school, parents or guardians for 64 of the children 
(84%) provided their written informed consent for their children’s 
participation. However, two of the 64 children (3%) declined their 
consent; thus, the initial sample consisted of 62 children, all of whom 
started the VR simulation. Of them, two children failed to complete the 
test; one experienced virtual reality sickness (cyberkinetosis), while the 
other thought that the tasks were too complicated. Beyond that, data 
from two other children were omitted from analysis due to technical 
malfunctions. The final sample therefore consisted of 58 children (31 
boys, 27 girls); 12 were from Grade 2, 23 from Grade 3, and 23 from 
Grade 4, and their mean (SD) age was 8.9 (0.8) years. The Norwegian 
Social Science Data Services (NSD), part of the Norwegian Agency for 
Shared Services in Education and Research, approved the project 
(Project No. 324155), and all data and information related to the project 
were handled in accordance with the NSD’s ethics guidelines.

2.2. Apparatus

The VR equipment (HTC VIVE, New Taipei City, Taiwan) was 
installed in the school’s gymnasium, and a 7 × 6 m area was established 
and calibrated for the VR software (Steam VR 2.0) with a Steam VR 
Base Station located in each corner. Participating children were 
equipped with the VIVE Pro Eye Headset and five VIVE 3.0 trackers 
on the right and left wrists, the right and left feet, and another just 
below the navel. For motion capture, 17 wireless inertial measurement 
units (IMUs) from the MTw Awinda system (Xsens Technologies, 
Enschede, the Netherlands) were attached to the children with Velcro 

FIGURE 1

Overview of the virtual reality playground scenario with the balance beam. The red X marks the childrens initial position.
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straps on the forehead, sternum, palmar side of the right and left 
hands, the lateral side of the upper right and left arms, the wrist right 
and left wrists, the lateral side of the lower right and left legs, the 
lateral side of the right and left thighs, the right and left feet, the upper 
part of the right and left scapulae, and the lower back (i.e., L5, height 
of the iliac spine). In general, MTw Awinda samples data at 60 Hz, and 
the IMUs are 47 × 30 × 13 mm and weigh 16 g. The system provides 3D 
kinematical data (i.e., position, velocity, acceleration, and orientation) 
on the movement of 23 body segments as well as the angular 
movements of 22 joints.

2.3. Procedure

Participating children were retrieved one by one from their 
respective classrooms and escorted to the gymnasium. After being 
familiarised with the equipment and safety routines, the child entered 
the VR environment in a warm-up scenario in which they could 
explore an urban park. In that scenario, necessary calibrations of the 
motion capture and VR systems were conducted. After 3–5 min of 
warm-up and familiarisation, the surround-sound headset was turned 
on for further verbal instructions, and the child entered the first 
scenario. The first two scenarios were not analysed in the current 
paper because they are being examined in a larger-scale study titled 
“Virtual Risk Management – Exploring Effects of Childhood Risk 
Experiences through Innovative Methods”; for additional specific 
information regarding the larger-scale study, interested readers are 
referred to a protocol paper (Sandseter et  al., 2023). Children 
completed each scenario in the same order, which took approximately 
15 min. The last 3 min was devoted specifically to the playground 
scenario that we analyse in the current paper.

2.4. The virtual reality balance beam

The playground scenario (see Figure 1) presented a play structure 
for balancing in an urban playground environment. At the beginning 
of the scenario, children are provided with in-ear information via a 
pre-recorded woman’s voice that they are free to move, explore, and 
play as they like but to try to avoid falling from the structure. If the 
child fell off, then the voice told the child that they have fallen off, and 
the software allows the child to return to the starting point and to 
resume moving around freely. Thus, the scenario did not contain a 
fixed objective for the children to achieve. In the current sample of 
children, only 7 (12%) of the children had a virtual fall off the 
playground. In the VR environment, the children could see their feet 
displayed as transparent shoes. The virtual balancing structure 
comprised a complex pattern of balance beams of varying widths, 
vertical pillars with varying diameters, and four different height zones. 
As visible in Figure 1, the scenario allows for navigating various paths 
on the balance beam, which were too narrow to allow for normal gait 
patterns. It was also possible to jump between isolated beams and 
pillars, while at the same time considering different heights beneath. 
The blue and orange colours on the beams were chosen to add some 
variation in the texture of the balancing structure. The children 
received 3 min to explore the scenario, while sounds of the urban 
environment (e.g., cars, bikes, and people) played through the 
headphones to facilitate the immersive VR experience. About half of 

the children (56%) reported to have tried any type of virtual reality 
experience before participating in the current study.

2.5. Data analysis

Data files were pre-processed in MTv Awinda software (Xsens, 
Enschede, the Netherlands) to ensure that all data were transferred and 
re-transmitted. Raw data were exported and further processed in 
MATLAB R2022a (MathWorks Inc., Natick, MA, United States) using 
in-house algorithms. Data selected for processing included the 3D 
positions of the right and left feet and forearms (i.e., determined 
segments in the Xsens system), the kinematics of the pelvis (i.e., 
position, velocity, and acceleration), and joint data from the head and 
the right and left shoulders, elbows, hips, knees, and ankles. The start 
and end of the entire playground epoch were first determined in Matlab 
(i.e., the n of frames of total playground epoch was 10,800), and 
thereafter visually inspected to ensure that the stationary start or stop 
(i.e., when the children were not moving) of raw signals were removed 
from further analysis. To preserve variability in the data, no further 
filtering was applied before entropy analysis (Stergiou, 2018). Sample 
entropy (SampEN) was thereafter calculated using MATLAB code 
provided by PhysioNet (Goldberger et al., 2000), based upon algorithms 
developed by Richman and Moorman (2000). Entropy was defined as 
the negative logarithm for conditional properties that a series of data 
points within a certain distance (m) would be  repeated within the 
distance m + 1. Two parameters thus needed to be  set before the 
calculation of SampEN: (a) the relative tolerance limit (r), or the number 
times the standard deviation (SD) of the data, and (b) the vector length 
(m). In our study, m was set at 2 and r at 0.2 (Yentes et al., 2013; Yentes 
and Raffalt, 2021). Time series varied in length from 10,000–10,800 
frames due to the removal of the mentioned stationary start and stop. 
SampEn was calculated from the entire movement time series of the 
following joints bilaterally: ankle dorsiflexion–extension, knee flexion–
extension, hip flexion–extension, shoulder abduction–adduction, elbow 
flexion–extension, and head yaw and pitch. Those joint movements, 
selected to capture whole-body movements, constituted important 
degrees of freedom in locomotory behaviours (Assaiante, 1998; Brandes 
et  al., 2006; Da Costa and Rocha, 2013). Furthermore, a modest 
selection of joint variables was needed for statistical purposes due to our 
modest sample size. As overall spatiotemporal measures of the children’s 
exploration of the VR balance beam, the area (i.e., range moved in x 
direction × range moved in y direction), distance (i.e., sum of 
displacement in x and y directions), mean velocity (i.e., anterior–
posterior, and mediolateral), and mean acceleration (i.e., anterio-
posterior, and mediolateral) were computed after. Before the 
computation of these variables, the frequency spectrum content of the 
raw data was inspected with the periodogram method, and a low pass, 
zero phase, 1 Hz, 4th order, Butterworth filter was applied. Velocity (m/
s2) and acceleration (m/s3) were measured directly in the MTv Awinda 
system, and all spatiotemporal measures were obtained from the 
movements captured by the pelvis segment.

2.6. Statistical analysis

Prior to analysis, all variables were tested and confirmed for 
normality by non-significant Kolmogorov–Smirnov tests and the 
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inspection of histograms and Q–Q plots. Before proceeding to cluster 
analysis, intercorrelations (Pearson’s r) between entropy measures were 
examined based on the rationale that, in the presence of a strong 
correlation between variables (r ≥ 0.80), the variables are not sufficiently 
unique to identify distinct clusters and can be overrepresented in the 
clustering solution. In the remaining data, close inspection of the 
correlation matrix indicated that the correlations between sample 
entropy from the right and left knees (r = 0.93) and between sample 
entropy from right and left hips (r = 0.87) were at that level. Thus, mean 
entropy across the right and left knees and across the right and left hips 
were used in further analysis.

Cluster analyses were conducted to group children’s sample 
entropy profiles into potential distinct clusters by comparing two 
hierarchical agglomerative clustering methods: the Ward method and 
the between-groups average linkage method. These methods were 
chosen to strike a balance between minimizing the variance within 
each cluster (Ward method) and minimizing the average dissimilarity 
between all pairs of data points in merged clusters (average linkage). 
For both methods, the squared Euclidean distance was the measure of 
proximity as it comprises the most common dissimilarity metric when 
working with numeric data (Yim and Ramdeen, 2015). The final 
number of clusters was determined by examining the agglomeration 
schedules and dendrograms generated for both techniques. The visual 
inspection of each cluster’s membership was performed to assess the 
utility of each potential cluster solution. Once the most statistically 
robust and theoretically relevant cluster solution was identified, 
k-means iterative partitioning was used to fine-tune the clusters 
(Eldred and Darrah, 2010; Yim and Ramdeen, 2015). Last, 
comparative cluster analysis was conducted on demographic data, 
spatiotemporal linear measures, and SampEN with one-way ANOVAs 
with the partial eta squared (η2) applied as the indicator of the effect 
size, interpreted as small (0.01), medium (0.06), and large (0.14; 

Richardson, 2011). Post hoc pairwise comparisons at the level of the 
overall main effects were conducted with Bonferroni-corrected paired 
samples t tests with Cohen’s d applied as a measure of the effect size, 
in which 0.2, 0.5, and 0.8 were considered to indicate small, moderate, 
and large effects, respectively (Lakens, 2013). All statistical calculations 
were performed in SPSS Predictive Analytics (IBM, Armonk, NY, 
United  States) version 29.0 with α = 0.05 as the criterion for 
statistical significance.

3. Results

3.1. Cluster analysis

Hierarchical agglomerative clustering with the between-groups 
average linkage method and the Ward method indicated that the most 
discrete change in squared Euclidean distance between the adjacent 
number of clusters appeared between the change in distance between 
six compared with three clusters. As evident from the dendrogram in 
Figure 2, a three-cluster pattern represented the point which an abrupt 
change in the squared Euclidean distance appeared in the 
agglomeration schedule. Further k-means cluster analysis with the 
iterative partitioning method indicated significant between-cluster 
differences for all SampEN measures for a three-cluster solution 
(F ≥ 10.64, df = 2, p < 0.001).

3.2. Comparative cluster analysis

Descriptive statistics of the variables studied appear in Table 1. No 
significant between-cluster differences emerged in age, grade, or 
number of boys and girls (p > 0.05).

FIGURE 2

Dendrograms for the average linkage method (A) and the ward linkage method (B).
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3.2.1. Sample entropy
As indicated in Table  1, one-way ANOVAs indicated that all 

measures of sample entropy significantly differed between clusters for 
both upper-extremity joints (F ≥ 10.66, df = 2, p < 0.001, η2 ≥ 0.28) and 
both lower-extremity joints (F ≥ 22.01, df = 2, p < 0.001, η2 ≥ 0.44). Post 
hoc pairwise comparisons of clusters for lower-extremity joints 
indicated that ankle entropy (i.e., right, and left) differed significantly 
between Clusters I  and II and Clusters I  and III (t = 6.26, df = 27, 
p < 0.001, d = 2.01), albeit no significant difference was found between 
Clusters II and III (t = 1.42, df = 32, p = 0.08, d = 0.41). Similarly, knee 
joint entropy (i.e., flexion-extension) significantly differed between 
Clusters I and II and Clusters I and III (t = 6.79, df = 25, p < 0.001, 
d = 2.52) but not between Clusters II and III (t = 1.28, df = 25, p = 0.11, 
d =  0.41), while hip joint entropy (i.e., flexion-extension) differed 
significantly between Clusters I and II and Clusters I and III (t = 8.32, 
df = 34, p < 0.001, d = 2.54) but not between Clusters II and III (t = 1.29, 
df = 31, p = 0.21, d = 0.38).

For the upper extremities, shoulder entropy (i.e., right, and left) 
differed significantly between Cluster I and Cluster II (t = 7.20, df = 23, 
p < 0.001, d = 2.49) and between Clusters II and III (t = 5.77, df = 15, 
p < 0.001, d = 1.92) but not between Clusters I and III (t = 0.43, df = 25, 
p = 0.41, d = 0.11). Elbow entropy (i.e., right, and left) differed 
significantly between Clusters I  and II (t = 4.42, df = 21, p < 0.001, 
d = 1.40), between Clusters I  and III (t = 3.08, df = 26, p < 0.001, 
d = 1.16), and between Clusters II and III (t = 8.89, df = 41, p < 0.001, 

d = 2.95). Furthermore, head pitch entropy differed significantly 
between Clusters I  and II (t = 3.99, df = 26, p < 0.001, d = 1.31) and 
between Clusters I and III (t = 3.90, df = 26, p < 0.001, d = 1.46) but not 
between Clusters II and III (t = 0.42, df = 25, p = 0.34, d = 0.13). Last, 
head yaw entropy differed significantly between Clusters I  and II 
(t = 5.68, df = 22, p < 0.001, d = 1.99) and between Clusters I and III 
(t = 3.63, df = 26, p < 0.001, d = 1.37) but not between Clusters II and III 
(t = 1.18, df = 19, p = 0.26, d = 0.43).

3.2.2. Spatiotemporal variables
As indicated in Table 1, no significant between-cluster differences 

emerged in the size of the area explored in the playground scenario 
(F ≥ 0.39, df = 2, p = 0.068, η2 ≥ 0.01). For overall distance moved in the 
3-min period, overall significant between-cluster differences were 
found (F ≥ 12.98, df = 2, p < 0.001, η2 ≥ 0.32). Bonferroni-corrected 
pairwise comparisons indicated significant differences between 
Clusters I  and II (t = 4.01, df = 19, p < 0.001, d = 1.49) and between 
Clusters I and III (t = 3.59, df = 25, p < 0.001, d = 1.33) but not between 
Clusters II and III (t = 0.21, df = 20, p = 0.84, d = 0.07). Furthermore, 
significant between-cluster differences for mean acceleration (i.e., 
anterior–posterior and mediolateral) were observed (F = 14.48, df = 2, 
p < 0.001, η2 = 0.35). Pairwise comparisons indicated a significant 
difference between Clusters I  and II (t = 4.03, df = 24, p < 0.001, 
d = 1.41) and between Clusters I and III (t = 4.56, df = 25, p < 0.001, 
d = 1.71) but not Clusters II and III (t = 1.34, df = 23, p = 0.08, d = 0.52). 

TABLE 1 Descriptive statistics of demographics, sample entropy, and spatiotemporal measures across clusters.

Overall difference

Variable Custer I (n = 15) Cluster II (n = 30) Cluster III (n = 13) Between clusters

Demographics

Age (years) 9.28 (0.89) 8.72 (0.79) 8.92 (0.71) ns

Girls/boys (n) 5/10 13/17 9/4 ns

2nd/3rd/4th grade (n) 3/3/9 7/14/9 2/6/5 ns

Sample entropy

Ankle dorsiflexion-extension Right 0.32 (0.03) 0.22 (0.04) 0.23 (0.03) p < 0.001

Left 0.33 (0.04) 0.24 (0.04) 0.25 (0.04) p < 0.001

Knee flexion-extension 0.28 (0.05) 0.19 (0.05) 0.17 (0.04) p < 0.001

Hip flexion-extension 0.25 (0.03) 0.18 (0.03) 0.19 (0.02) p < 0.001

Shoulder abduction-adduction Right 0.15 (0.03) 0.10 (0.02) 0.14 (0.04) p < 0.001

Left 0.15 (0.03) 0.09 (0.02) 0.15 (0.04) p < 0.001

Elbow flexion-extension Right 0.12 (0.05) 0.07 (0.03) 0.18 (0.05) p < 0.001

Left 0.13 (0.07) 0.07 (0.04) 0.20 (0.06) p < 0.001

Head rotation Pitch 0.10 (0.02) 0.08 (0.02) 0.07 (0.02) p < 0.001

Yaw 0.12 (0.03) 0.08 (0.02) 0.09 (0.03) p < 0.001

Spatiotemporal playground measures

Distance (m) 56.58 (15.40) 39.27 (9.21) 38.55 (11.06) ns

Area (m2) 24.99 (2.41) 25.91 (7.32) 24.28 (3.97) p < 0.001

Velocity (m/s2) Mediolateral 0.29 (0.05) 0.20 (0.06) 0.22 (0.06) p < 0.001

Anterior – posterior 0.32 (0.09) 0.22 (0.05) 0.22 (0.06) p < 0.001

Acceleration (m/s3) Mediolateral 0.90 (0.18) 0.68 (0.16) 0.61 (0.15) p < 0.001

Anterior - posterior 0.93 (0.22) 0.69 (0.14) 0.62 (0.16) p < 0.001

ns: no significant difference between clusters (p > 0.05).
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Similarly, for mean velocity (i.e., anterior–posterior and mediolateral), 
significant between-cluster differences also emerged (F = 14.15, df = 2, 
p < 0.001, η2 = 0.34). Pairwise comparisons indicated a significant 
difference between Clusters I  and II (t = 5.41, df = 30, p < 0.001, 
d = 1.67) and between Clusters I and III (t = 3.56, df = 25, p < 0.001, 
d = 1.41) but not between Clusters II and III (t = 0.82, df = 23, p = 0.21, 
d = 0.27).

4. Discussion

The chief aim of our study was to investigate individual differences 
in movement variability within 7–10-year-old children’s exploration 
of a balance beam on a VR playground, and whether these individual 
differences could be  classified via whole-body entropy. The 
discriminatory capability of these measures was examined by 
performing an exploratory cluster analysis of sample entropy estimates 
obtained from a 3-min time series of upper-extremity (i.e., head, 
shoulder, and elbow) and lower-extremity (i.e., ankle, knee, and hip) 
joint movements, specifically to examine whether entropy from 
multiple joints could be used to group children in distinct clusters 
with different profiles of structural movement variability. The cluster 
analysis indicated the presence of three clusters, each with a distinct 
profile, with sufficient internal (i.e., within-group) homogeneity and 
external (i.e., between-group) heterogeneity (see Table 1). Overall, 
effects for between-cluster comparisons were found for all joint-
specific measures of sample entropy and spatiotemporal measures 
(i.e., distance, velocity, and acceleration) describing children’s 
exploration of the VR balance beam. Furthermore, no between-cluster 
differences emerged for demographic variables (i.e., age, grade, and 
number of boys and girls).

4.1. Cluster I: higher overall whole-body 
entropy and degree of spatiotemporal 
exploration

Cluster I of children (n = 15) was highly different from the other 
clusters given high between-cluster effect sizes (Cohen’s d ≥ 1.4) on 
higher sample entropy from lower-extremity joints and across 
spatiotemporal measures (see Table 1). Children in Cluster I  thus 
moved and accelerated faster while exploring the VR scenario, which 
allowed a greater distance of movement in the 3-min period and at 
once preserved more joint-specific entropy than for their peers in the 
sample of typically developing children. Despite the lack of consensus 
regarding the interpretation of entropy in the coordination of 
movement (Stergiou and Decker, 2011; Yentes and Raffalt, 2021), 
higher entropy levels are typically considered to indicate less 
repetitiveness and different states of variability in functional patterns 
of movement. Because the children in Cluster I  spent more time 
navigating the VR scenario, they also necessarily spent more time 
adapting to changing constraints embedded in their choices made 
throughout the 3-min period.

As shown in Figure 1, the structure of the balance beam seemed 
to present many types of locomotory and stability challenges, which 
must be adapted according to where and how children navigate. For 
example, moving towards the outer layer of the VR scenario (high 
ground, see Figure 1) ultimately presents the choice of moving farther 

out to a single pillar or turning and moving back in the direction 
travelled. In the case of the first choice, a new pattern of movement 
can emerge when a child moves out to a single pillar; in the latter case, 
a child turns and potentially repeats a pattern of movement in the 
opposite direction. Higher entropy in Cluster I  can therefore 
be explained by the emergence of different levels of functional and 
adaptive variability in the VR scenario, compared with their peers in 
the sample. For an explanation of between-cluster differences in 
entropy and overall spatiotemporal exploration, those children might 
have a richer repertoire of motor strategies that can be adapted and 
varied according to the specifics of the situation (Hadders-Algra, 
2010). Thus, the degree of entropy (i.e., variability) in their control of 
locomotion and stability allows their dynamic motor system to 
transition between coordinative states more rapidly (Stergiou and 
Decker, 2011). In our study, that dynamic laid the foundation for 
higher average speed and acceleration and more distance covered in 
the VR scenario. Indeed, higher entropy in coordinative states has 
been linked to facilitated adaptation towards environmental and task 
constraints in many different contexts (Cordier et al., 1994; Stergiou, 
2018; Becker and Hung, 2020).

4.2. Cluster II: lower overall whole-body 
entropy and less spatiotemporal 
exploration

Cluster II (n = 30) that emerged from the hierarchical 
agglomerative clustering analysis (see Table  1) appeared to 
demonstrate the lowest overall whole-body, joint-specific sample 
entropies in between-cluster comparisons, as well as less variability in 
spatiotemporal patterns than in Cluster I. Cluster II, the largest group 
in our sample, appeared to explore the VR scenario with more 
repetitive joint movements (i.e., lowest overall variability in the 
sample) and with less speed, acceleration, and, consequently, distance 
covered than the children in Cluster I. It has previously been shown 
that younger children (i.e., 6–7 years old) might display less entropy 
in stride-to-stride variability in simple walking tasks than older 
children (i.e., 9–10 years old), which has been interpreted as an 
age-dependency of such nonlinear metrics when capturing 
locomotory maturation (Bisi and Stagni, 2018; Bisi et al., 2019). In our 
sample of children, however, we  did not observe any significant 
between-cluster difference in age. That outcome indicates that 
measuring joint-specific entropy from whole-body movements can 
reveal individual differences in children’s coordination of movements 
that is sensitive to other developmental processes beyond what can 
be ascribed to a less mature motor system, even within cohorts of 
similarly aged children.

Lower values of sample entropy, as observed in Cluster II, can 
be interpreted as greater similarity in patterns of movement across the 
3-min period and more repetitive, less exploratory gross motor 
movements (Smith et  al., 2017) when navigating the VR balance 
beam. From the perspective of ecological dynamics (Davids et al., 
1994; Seifert et  al., 2013; Button et  al., 2020), less entropy and 
spatiotemporal exploration demonstrated by the children in Cluster 
II indicate a different self-organising process in the dynamic 
interaction between the child (i.e., individual constraints) and the VR 
scenario (i.e., environmental and task constraints). As children freely 
explore and navigate the VR balance beam, there are many 
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opportunities for locomotory and balance-related actions that can 
be utilised. That process depends upon the affordances emerging in 
the individual child–VR scenario interactions as a part of ongoing 
perception–action cycles. Although there are many possibilities for 
action embedded and afforded in the VR scenario, differences in the 
utilisation of those affordances might explain the between-cluster 
differences in entropy and exploration observed in our study. That 
might occur through several integrated dynamic processes, for lower 
entropy can provide a less diverse repertoire of movements and impact 
the perception of affordances, while moving with less entropy impacts 
the ongoing perception–action cycle. Differences in entropy can also 
occur because of perceiving and acting upon different affordances. In 
either case, our results warrant further examination regarding the 
possibility that nonlinear measures such as entropy can provide an 
indication of the individual–environment fit (O’Sullivan et al., 2020) 
that emerges in the assessment of gross motor competence when 
children are allowed to freely explore tasks.

4.3. Cluster III: higher upper-extremity 
entropy and lower spatiotemporal 
exploration

Cluster III, indicating the last distinct profile suggested by 
hierarchical analysis, consisted of children (n = 13) with the highest 
sample entropy obtained from upper-extremity joints and lower 
spatiotemporal measures obtained from exploring the VR balance 
beam. Children in Cluster III thus moved more slowly and explored 
less than children in Cluster I and with more variability in their upper-
extremity joints than children in Cluster II. The difference between 
Clusters II and III indicates the degeneracy and redundancy inherit in 
motor coordination, as captured by the application of principles 
derived from perspectives on complex neurobiological systems 
(Seifert et  al., 2016). That is, the two clusters show similarity in 
spatiotemporal exploration while at the same time achieving that 
exploration with different structure of movement variability. 
Moreover, self-organisation in movement coordination, as a nonlinear 
process, assumes that patterns of movement at the global level (i.e., 
overall motor behaviour) can emerge from multiple interactions 
between lower-level components of the motor system, which is not 
simply an addition of the various components’ contributions (Kelso, 
1995; Sneyd et al., 2001).

The explanation as to why higher entropy in upper extremities 
emerged as a between-cluster difference is not a straightforward one. 
The nature of the VR balance beam primarily promoted exploration 
through the movement of the lower extremities, thereby making it 
highly plausible for between-cluster differences to originate from 
those sources. At the same time, upper-body movements, especially 
those of the arms, are known to assist children in maintaining 
dynamic balance in locomotory tasks (Meyns et al., 2012; Hill et al., 
2019), and moving with less regularity in the upper extremities (i.e., 
higher entropy) can boost flexibility and adaptability in maintaining 
balance. Indeed, lower entropy in movements involved with 
maintaining dynamic processes that contribute to the control of task-
specific upright standing has been linked to changes in various 
physiological functions due to age and disease (Busa and van 
Emmerik, 2016; Anderson and Button, 2017). However, less 
repeatability in upper body movements can also be interpreted as a 

sign of excessive and/or redundant movements. From that perspective, 
it might be hypothesised that higher entropy in the upper extremities, 
as observed among the children in Cluster III, might emerge due to 
compensatory arm movements (e.g., to regain balance) that are not 
necessarily associated with adaptivity provided by the individual 
motor repertoire. Whether this feature provides an explanation for our 
differences between cluster II and II, relates to the divergence in 
interpretating variability and highlights the problematic nature of 
assessing what is potentially “good variability,” so to speak, versus 
potentially “bad variability” in evaluating children’s performance 
using gross motor assessments (Hossner and Zahno, 2022). Viewed 
through the lens of ecological dynamics, all movements and their 
outcomes contain variability, and the further development of measures 
(e.g., sample entropy) for assessing children’s gross motor competence 
stands to disentangle the relative contribution of functional and 
non-functional variability in adapting motor repertoires to shifting 
environmental and task constraints.

4.4. Between-cluster differences in entropy 
and spatiotemporal exploration

Although age did not seem to be a discriminatory factor in our 
study for between-cluster differences, other demographic variables 
such as gender have been shown to be associated with the level of 
gross motor competence. For example, a typical finding is that boys 
outperform girls on tests associated with more gross movement 
coordination (Bolger et al., 2021; Gosselin et al., 2021). In our study, 
we did not observe such gender-based differences, however, because 
the ratio of boys to girls across clusters was not significantly different 
(see Table  1). As a novel finding of our study that awaits further 
research, it can be hypothesised that individual differences in whole-
body measures of joint-specific entropy emerging from relatively free 
exploratory tasks such as the VR balance beam scenario cannot 
be  explained by children’s age (i.e., 7–10 years old in our study) 
or gender.

The overall finding of heterogenous clusters of children that is 
based upon their structure of movement variability, as well as in aspects 
of their overall spatiotemporal behaviour in the virtual balance beam, 
suggests that novel methods for classifying children’s motor 
competence can be developed that is based upon a combination of free 
task exploration and whole-body movement coordination. This 
provides a conceptually different approach compared to the common 
taxonomies of motor competence in children where classification to a 
larger degree is based upon assessment-specific levels of task 
performance dependent upon predefined instructions and procedures 
(Newell, 2020). Classification based upon entropy-based metrics in 
exploratory task paradigms relies to a larger extent on aspects of 
adaptability and flexibility in children’s motor behaviour (Stergiou and 
Decker, 2011; Bisi et  al., 2019) and might therefore guide the 
development of different motor competence profiles, not just level of 
motor competence based upon task performances. E.g., children in 
cluster I, in which demonstrated the highest overall degree of entropy 
in the current study, might represent a motor competence profile with 
children capable of changing movement strategies and utilise 
functional variability (Phillips et  al., 2012) that allow for a richer 
repertoire in handling of various environmental and task constraints. 
This might be advantageous when children navigate various sport, 

https://doi.org/10.3389/fpsyg.2023.1227469
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lorås et al. 10.3389/fpsyg.2023.1227469

Frontiers in Psychology 10 frontiersin.org

physical education and/or physical activity contexts, when compared 
to motor competence profiles of children less able to adapt to, and 
flexibly explore, various confluence of constraints. It might 
be speculated that children in cluster II and III of the current study 
might represent aspects of these latter motor competence profiles, 
which may display a different developmental and learning process in 
movement contexts compared to children in cluster I. The utility of 
classifying children’s motor competence level based upon the structure 
of their whole-body motor variability as they freely explore various 
interacting constraints, however, needs to be further evaluated against 
various task and individual constraints. As a limitation of the current 
study that warrants further investigation, group organisation based 
upon entropy needs to be  compared with existing standardized 
assessment batteries and other potential evaluations of children’s motor 
level. Furthermore, longitudinal studies with multiple timepoints can 
provide important insights into the developmental process associated 
with the structure of movement variability and the impact of, e.g., level 
and type of sports/physical activity practice by children, as well as other 
individual constraints that might impact upon motor competence 
(Barnett et al., 2016).

5. Conclusion

In our study, based on a modest sample size, a hierarchical 
clustering analysis of sample entropy obtained from multiple joints 
throughout the body revealed three clusters of children 7–10 years old 
with distinct profiles. Those clusters are heterogeneous in terms of the 
repeatability of joint movements in combination with the level of 
spatiotemporal exploration, a dynamic that could not be explained by 
between-cluster differences in age and gender distributions. Those 
findings suggest that providing children with opportunities for motor 
action via free exploration and discovery, as embedded in the balance 
beam task on the VR playground used in our study, can lead to the 
identification of specific profiles and individual differences in the 
nonlinear structure of movement variability, which can aid in further 
understanding and developing assessments for children’s gross 
motor competence.
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