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In the field of structural equation modeling (SEM), all commonly used case 
influence measures are model-based measures whose performance are 
affected by target-model-misspecification-error. This problem casts light on the 
need to come up with a model-free measure which avoids the misspecification 
problem. the main purpose of this study is to introduce a model-free case 
influence measure, the Deleted- One-Covariance-Residual (DOCR), and then 
evaluating its performance compared to that of Mahalanobis distance (MD) and 
generalized Cook’s distance (gCD). The data of this study were simulated under 
three systematically manipulated conditions: the sample size, the proportion of 
target cases to non-target cases, and the type of model used to generate the 
data. The findings suggest that the DOCR measure generally performed better 
than MD and gCD in identifying the target cases across all simulated conditions. 
However, the performance of the DOCR measure under a small sample size was 
not satisfactory, and it raised a red flag about the sensitivity of this measure to 
small sample size. Therefore, researchers and practitioners should only use the 
DOCR measure with a sufficiently large sample size, but not larger than 600.
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1 Introduction

In structural equation modeling (SEM), normal-distribution-based maximum likelihood 
(NML) is commonly used as a default estimation method for estimating the parameter values. 
The NML procedure yields reasonable parameter estimates if the assumption of normality 
holds in the data distribution. Alternatively, the existence of influential cases in the data might 
make NML yield biased parameter estimates and affect overall model assessment since these 
cases could alter the standard error value and the test statistic (Yuan and Bentler, 1998).

One tool that is used for investigating the influence of these cases on the model results is 
the case influence measures. These measures are built based on the case deletion technique. 
The case deletion technique is based on the quantification of the impact of the ith case by 
finding the difference between the value of the measure before and after the deletion of the ith 
case to evaluate the impact of this case on the overall model fit. The result obtained from this 
measure gives information on which case is more influential. In other modeling frameworks, 
such as OLS regression, there is extensive development and widespread use of case diagnostics 
for identifying cases, which is not the case with confirmatory factor models, path analysis 
models, and other models in the SEM framework.

Several regression-based case influence measures have been applied to the SEM field and used 
with the confirmatory factor models. However, all applied case influence measures are model-
based measures that require a theoretical model to be fitted into the data to identify the influential 
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cases. Because case influence measures are model-based, the accuracy of 
their performance could be impacted by specification errors (Bollen and 
Arminger, 1991). Since influence measures rely on the structure of the 
model, they highlight any case that does not fit the model. The 
determination of one case fits to the model changes depending on the 
model that has been fitted to the data. Thus, if the model is misspecified, 
the case influence measure is expected to yield many cases that cause a 
poor overall model fit. On the contrary, if the case influence measure 
reflects a few influential cases, it could be expected that the model was 
correctly specified, and the actual problem of the influential cases existed 
among the data (Pek and MacCallum, 2011).

The case influence measures that are commonly used in the field 
of SEM are all model-based measures. Up to this point, no model-free 
case influence measure has been proposed in the SEM field. Therefore, 
the main purpose of this study is to avoid the misspecification problem 
associated with the performance of model-based measures by 
developing a model-free case influence measure. The proposed 
Deleted-One-Covariance-Residual (DOCR) measure is based on the 
covariance matrix of the observed data, which allows the DOCR to 
avoid requiring any specific model to fit the data. The DOCR uses the 
deletion technique by comparing the sample covariance matrix that 
resulted from deleting the ith case from the original sample with the 
sample covariance matrix that resulted from considering all cases in 
the original sample s si −( ).2  For standardizing the residuals, the 
residual difference between the two sample covariance matrices, 
s si −( )2 , is divided by observed variances (v v p pm j +( )1 ) . After 

algebraic arranging, the final formula, as seen in Eq. (1), as follows:
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Where S and Si are the sample covariance matrices obtained from 
original and deleted ith case samples, respectively. vm and vj are the 
observed variances of each pair of variables in the covariance matrix, and 
p is the number of observed variables. Since the DOCR measure would 
otherwise yield small values that range between 10−4 and 10−5 for the 
influence of the cases, the formula of this measure includes multiplying 
by 1000 to make these values more readable. Our goal is to determine 
whether the purposed model-free measure DOCR precisely identifies the 
influential cases compared to generalized Cook’s distance (gCD) and 
Mahalanobis distance (MD), which are extensively used in multivariate 
applications to detect outliers. We present the results of two Monte Carlo 
simulation studies that compared the performance of the proposed 
measure to the performance of MD and gCD in identifying the target 
cases. We hypothesized that the DOCR measure would perform better 
than MD and gCD in identifying the target cases across variations in 
sample size, proportion of target cases, and model specifications.

1.1 Background

In SEM, the case influence measures aim to evaluate the degree of 
the model fit at the person level; stated differently, they aim to identify 
unusual cases under the model (Reise and Widaman, 1999). 
Corresponding to regression, the following factor analysis model as seen 
in Eq. (2) is considered a latent predictor’s multivariate regression model:

 i i iX f e= µ + Λ +  (2)

Where μ is a population mean vector, Ʌ is a p × q factor loadings 
matrix, fi is a vector of q-variate latent factors, and ei is a vector of 
measurement errors. Based on this factor model, Yuan and Zhong 
(2008) stated that the cases with large absolute values of 
measurement error (ei) are termed outliers, disregarding the values 
of the factor scores (fi). The cases with extreme absolute values on 
the exogenous latent variables’ factor scores are termed leverage 
cases. Leverage cases with a small magnitude of measurement errors 
(ei) are considered Good Leverage Cases, while leverage cases with 
a large magnitude of measurement errors (ei) are considered Bad 
Leverage Cases. In SEM, unusual cases with large ei are considered 
influential on both the model fit and the parameters since they 
cause a large change in the off-diagonal elements of S (sample 
covariance matrix). Case influence measures use the deletion 
technique to quantify the influence of these cases by comparing the 
value of the statistic before and after the deletion of the ith case 
from the data. Most of these measures have been proposed and 
developed in the regression field (Belsley et al., 1980; Cook and 
Weisberg, 1982). However, some of these statistics have been 
applied to the SEM field to identify the influential cases and 
quantify their influence on the model findings.

One of the deletion measures that have been applied to SEM is 
gCD. gCD is a model-based measure that is used to quantify the 
influence of the unusual case on the parameter estimates. This 
measure is a generalized version of Cook’s distance (Cook, 1977, 
1986). Atkinson (1981) modified Cook’s distance for influential case 
detection by adding the values of the parameter estimates after 
deleting the ith case and controlling for the sample size effect. Then, 
Lee and Wang (1996) used the generalized least square function to 
generalize Cook’s distance measure to the SEM application.

gCD has been introduced and used in some studies (Zhao and 
Lee, 1998; Pek and MacCallum, 2011) to examine the case influence 
on a set of l parameters on a set of l parameters, as seen in Eq. (3).

 
gCD VARi i i i= −( )′ ( )
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(3)

Where θθ  and θθ i are vectors of parameter estimates that are 
calculated from all cases in the original sample and the sample with 
the ith case deleted, respectively. The VAR



( θθ i) is the estimated 
asymptotic covariance matrix of the parameter estimates calculated 
from the sample with the ith case deleted. Assuming that k is the full 
set of the model parameters and l  is the number of the desirable subset 
of the model parameters, one can calculate gCD for any subset of 
parameters l instead of the full set of model parameters k.

Given the gCD quadratic form, the lower bound of gCD is equal 
to zero, which means that this statistic always takes positive values, 
and that makes gCD give us information on the level of change rather 
than the direction of the change on the model parameters. Thus, a 
small amount of gCD means that a small change in the l subset of 
parameter estimates is associated with the exclusion of the ith case 
from the sample. On the other hand, a large amount of gCD means 
that a large change in the l subset of parameter estimates is associated 
with the exclusion of the ith case from the sample.
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To obtain information about the direction of change in an individual 

parameter, the scaled difference ∆








θ ji  is used for this specific purpose 

(Zhao and Lee, 1998; Pek and MacCallum, 2011) as seen in Eq. (4).
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Where θ j and θ j(i) are the parameter estimates obtained from the 
original and deleted ith samples, respectively. Positive values of 
difference indicate that small change is associated with the exclusion 
of the ith case and vice versa.

Other case diagnostic measures have been developed for latent 
variable models (Pek and MacCallum, 2011; Sterba and Pek, 2012). 
However, these three measures (i.e., LD, ∆χ 2 , and gCD) are currently 
the most readily available due to their inclusion in the R package 
influence. SEM (Pastore and Altoé, 2022).

Due to the slow development of case influence measures in SEM, 
MD is routinely used in multivariate applications to detect unusual 
cases. MD , as seen in Eq. (5), is the distance between the ith case and 
the remaining cases while accounting for the correlation in the data 
(Mahalanobis, 1936). Some studies used the main and derived 
versions of this test mainly for detecting the potential multivariate 
outliers and leveraged cases (Pek and MacCallum, 2011; Yuan and 
Zhang, 2012).

 
MD2 i

1
iY Y C Y Y== −− −−−− ′′( ) ( )

 (5)

 
C Y Yc c==

−−
′′1

n 1
( ) ( )

 
(6)

Where Y is an N × p data matrix containing N cases on p variables, 
Yi  is a 1 × p vector of p variables for the ith case, Y = Y Yc −−  is the 
column-centered data matrix, Y  is an N × p matrix of the column 
means, f and and C, as seen in Eq. (6), is the variance–covariance 
matrix  (De Maesschalck et al., 2000, p.2). MD2 distributes as a central 
chi-square distribution with degrees of freedom (df) equal to the 
number of variables. A significantly low value of p of high MDi

2 in the 
corresponding χ 2(df) means that the ith case is a potential outlier 
(Kline, 2016, p. 73).

However, MD is a model-free measure of outlying status rather than 
case influence, and it is generally used in multivariate applications to 
detect outliers (Mahalanobis, 1936). In practice, some researchers use 
MD to identify the outliers and delete them prior to fitting the model to 
the data. The problem with this practice is that influential cases could 
be outlying cases (i.e., outliers), but not all outlying cases are influential. 
That is, some outlying cases are not regression outliers because they do 
not deviate from the linear pattern of the data, so they are considered 
good cases since their inclusion in the estimation process could lead to 
a better overall model fit and precise parameter estimates (Rousseeuw 
and van Zomeren, 1990). Based on this fact, Pek and MacCallum (2011) 
recommended against using such practice since the removal of good 
cases, because MD identifies them as outlying cases, might lead to 

worsening the overall model fit. Thus, this practice sheds light on the 
limitations of using MD in the case influence analysis to identify 
influential cases. On the contrary, model-based measures demand to fit 
a theoretical model to the data for quantifying the impact that each case 
exerts on the findings of modeling. The latter measures consider the 
structure of the model, and their values change as the model structure 
and set of independent variables change (Belsley et al., 1980).

The purpose of this study is to introduce a model-free case 
influence measurement that overcomes the problem of specification 
error and the limitations of using an outlying status measure (i.e., MD) 
in identifying the influential cases. This proposed measure is 
compared to MD and gCD to evaluate its ability to identify target cases 
under a variety of systematically manipulated conditions while 
accounting for sampling variability using Monte Carlo simulation.

2 Methods

2.1 Data generation

2.1.1 Simulation study 1
The data for this simulation study were generated under a 

population confirmatory factor analysis (CFA) model with two factors 
and three indicators per factor. For scaling the factors, the unit 
variance identification method was used. Target cases were generated 
from a N 0 2 25, . I6( )  distribution (c.f., Lee and Wang, 1996), where 
I6 is a 6 × 6 identity matrix. Non-target cases were generated using the 
common factor model N 0,ΣΣ( ) , where ΣΣ ΛΛΦΦΛΛ ΨΨ= +′  is the 6 × 6 
population covariance matrix, ΛΛ  is the loading matrix with 

′ =

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correlation matrix, and ΨΨ = { }diag 0 36 0 36 0 36 0 75 0 75 0 75. . . . . ., , , , ,  is 
the 6 × 6 diagonal matrix of unique variances.

2.1.2 Simulation study 2
The data for this simulation study were generated under a 

population path model with five observed variables. Data sets were 
simulated with target cases from a N 0 5, .6 49I( ) distribution , where 
I5 is the 5 × 5 identity matrix, and 6.49 was the result of multiplying the 
largest variance in the diagonal of the covariance matrix of the data by 
4 following the same process of generating the target cases used within 
the first simulation study (c.f., Lee and Wang, 1996). Non-target cases 
were generated using the population path model 
from a N 0,ΣΣ( ) , where

Y = ΓΓX + BY+ ζζ , ΓΓ = 
0 7 0 6

0 0 6
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ΣΣ  is the v × v population covariance matrix, ΓΓ is a parameter 
matrix of the direct effect of exogenous variables on the endogenous 
variables, B is the parameter matrix of the direct effect of endogenous 
variables on each other, and ζζ  is the matrix of the disturbances.

2.2 Case diagnostics

The DOCR, MD, and gCD were compared. The confirmatory 
factor analysis models fit in Study 1 are shown in Figures 1, 2. The path 
analysis models fit in Study 2 are shown in Figures 3, 4. Since model 
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misspecification can affect the identification of target cases, both 
correctly specified models, shown in Figures 1, 3, and misspecified 
models, shown in Figures 2, 4, were fit to the simulated data using the 

R package lavaan (Rosseel, 2012). The DOCR was calculated using 
basic matrix functions from the matlib package in R (Friendly et al., 
2022). The MD was calculated using the mahalanobis function from 
the stats package that is part of base R. The gCD was calculated using 
the genCookDist and explore.influence functions from the R package 
influence.SEM (Pastore and Altoé, 2022) for both the correctly 
specified model and the misspecified models in both studies.

2.3 Implementation

Data were simulated in R v3.4.1 (R Core Team, 2017) with three 
different sample sizes: 200, 400, and 600. Four proportions of target 
cases to the number of non-target cases were applied: 0.10, 0.05, 0.02, 
and 0.01. The sample size and proportion of target cases were fully 
crossed for a factorial design with 12 conditions. The correctly 
specified models and misspecified models in both studies were fitted 
to the data using the R package lavaan (Rosseel, 2012). The default 
boxplot criterion was used to determine cases with high influence 
(Pastore and Altoé, 2022). The cut-off that determined multivariate 
outlier cases using MD was 12. A preliminary cut-off for DOCR was 
set at 0.01. The miss rate (MR) is the ratio of missed target cases to 
generated target cases, and the false alarm rate (FAR) is the ratio of 
flagged non-target cases to generated non-target cases. Their 95% 
confidence intervals were computed for each statistic for each 
replication using R package psych (Revelle, 2023). Results were 
averaged over 100 replications in R with confidence intervals 
computed using the standard error of the mean and the inverse t 
distribution. Averages were compared across different statistics and 
systematic manipulations of the conditions. Example R syntax for 
computing DOCR, as well as gCD and MD, has been provided in 
Appendix A. The example in Appendix A has been expanded from the 
package “influence.SEM” (Pastore and Altoé, 2022).

3 Results

The Study 1 results with the confirmatory factor analysis models 
are shown in Tables 1, 2, and the Study 2 results with the path 
analysis models are shown in Tables 3, 4. Tables 1, 3 summarize the 
miss rates of the three measures, MD, DOCR, and gCD, by sample 
size. The DOCR measure had the smallest miss rates compared to 

FIGURE 1

The correctly specified common factor model.

FIGURE 2

The orthogonal common factor model.

FIGURE 3

The correctly specified path model.

FIGURE 4

The misspecified path model.
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MD, gCD-CS, and gCD-MS for all sample sizes and under the four 
proportions of the target cases to non-target cases. In addition, the 
miss rate of the DOCR increased significantly as the sample size 
increased from 200 to 600 under all proportions of target cases to 
non-target cases. On the other hand, the miss rates of the MD and 
gCD remained the same when the sample size increased from 200 
to 600 since their miss rates did not differ significantly with the 

increase in sample size for all proportions of target cases to 
non-target cases.

Tables 1, 3 show that the miss rate of the DOCR decreased as the 
proportion of target cases to non-target cases decreased. The DOCR 
measure also showed the same pattern of performance under all 
proportions of target cases to non-target cases through all sample sizes. 
Similarly, the MD and gCD measures showed the same pattern of 

TABLE 1 Miss rates for three case detection statistics by proportions of the target to non-target cases for the CFA model.

Prop 0.1 0.05 0.02 0.01

N  =  200 (180  +  20) N  =  200 (190  +  10) N  =  200 (196  +  4) N  =  200 (198  +  2)

Statistic M 95%CI M 95%CI M 95%CI M 95%CI

MD 0.429 (0.410, 0.448) 0.340 (0.312, 0.368) 0.353 (0.308, 0.397) 0.280 (0.213, 0.347)

DOCR 0.024 (0.017, 0.029) 0.017 (0.010, 0.024) 0.015 (0.003, 0.027) 0.005 (−0.005, 0.015)

gCD, CS 0.388 (0.368, 0.408) 0.327 (0.298, 0.356) 0.315 (0.270, 0.359) 0.270 (0.208, 0.332)

gCD, MS 0.351 (0.329, 0.371) 0.301 (0.273, 0.329) 0.295 (0.252, 0.338) 0.230 (0.169, 0.291)

N = 400 (360 + 40) N = 400 (380 + 20) N = 400 (392 + 8) N = 400 (396 + 4)

MD 0.417 (0.405, 0.429) 0.349 (0.329, 0.367) 0.303 (0.272, 0.333) 0.290 (0.245, 0.335)

DOCR 0.163 (0.151, 0.174) 0.116 (0.103, 0.129) 0.090 (0.071, 0.109) 0.108 (0.077, 0.138)

gCD, CS 0.377 (0.364, 0.391) 0.329 (0.309, 0.348) 0.288 (0.256, 0.322) 0.283 (0.238, 0.327)

gCD, MS 0.348 (0.334, 0.362) 0.297 (0.275, 0.319) 0.275 (0.244, 0.306) 0.275 (0.230, 0.319)

N = 600 (540 + 60) N = 600 (570 + 30) N = 600 (588 + 12) N = 600 (594 + 6)

MD 0.422 (0.410, 0.433) 0.342 (0.326, 0.359) 0.331 (0.307, 0.354) 0.288 (0.253, 0.323)

DOCR 0.331 (0.321, 0.340) 0.259 (0.244, 0.274) 0.244 (0.220, 0.268) 0.207 (0.175, 0.238)

gCD, CS 0.385 (0.374, 0.395) 0.322 (0.304, 0.338) 0.318 (0.294, 0.343) 0.293 (0.257, 0.329)

gCD, MS 0.349 (0.339, 0.359) 0.294 (0.277, 0.311) 0.308 (0.285, 0.331) 0.275 (0.237, 0.313)

Prop, proportions of target cases to non-target cases; CI, confidence interval; MD, Malahanobis distance; CS, correctly specified model; gCD, generalized Cook’s distance; MS, misspecified 
model.

TABLE 2 False alarm rates for three case detection statistics by proportions of the target to non-target cases for the CFA model.

Prop 0.1 0.05 0.02 0.01

N  =  200 (180  +  20) N  =  200 (190  +  10) N  =  200 (196  +  4) N  =  200 (198  +  2)

Statistic M 95%CI M 95%CI M 95%CI M 95%CI

MD 0.024 (0.022, 0.026) 0.035 (0.033, 0.037) 0.049 (0.046, 0.052) 0.053 (0.051, 0.056)

DOCR 0.701 (0.692, 0.709) 0.759 (0.753, 0.765) 0.804 (0.798, 0.811) 0.820 (0.810, 0.821)

gCD, CS 0.059 (0.056, 0.062) 0.070 (0.066, 0.074) 0.082 (0.079, 0.086) 0.084 (0.079, 0.088)

gCD, MS 0.059 (0.055, 0.062) 0.070 (0.067, 0.074) 0.083 (0.079, 0.087) 0.085 (0.080, 0.089)

N = 400 (360 + 40) N = 400 (380 + 20) N = 400 (392 + 8) N = 400 (396 + 4)

MD 0.023 (0.022, 0.025) 0.036 (0.034, 0.037) 0.048 (0.047, 0.049) 0.053 (0.052, 0.055)

DOCR 0.209 (0.205, 0.215) 0.286 (0.282, 0.292) 0.345 (0.341, 0.350) 0.367 (0.362, 0.370)

gCD, CS 0.058 (0.056, 0.061) 0.071 (0.068, 0.073) 0.079 (0.077, 0.082) 0.083 (0.080, 0.085)

gCD, MS 0.057 (0.055, 0.059) 0.072 (0.069, 0.075) 0.081 (0.079, 0.083) 0.084 (0.082, 0.087)

N = 600 (540 + 60) N = 600 (570 + 30) N = 600 (588 + 12) N = 600 (594 + 6)

MD 0.023 (0.022, 0.025) 0.036 (0.035, 0.037) 0.050 (0.049, 0.051) 0.053 (0.052, 0.054)

DOCR 0.054 (0.052, 0.056) 0.093 (0.089, 0.095) 0.130 (0.128, 0.133) 0.142 (0.139, 0.144)

gCD, CS 0.057 (0.055, 0.058) 0.071 (0.069, 0.073) 0.079 (0.076, 0.080) 0.082 (0.080, 0.084)

gCD, MS 0.056 (0.054, 0.058) 0.072 (0.070, 0.074) 0.082 (0.079, 0.84) 0.082 (0.080, 0.084)

Prop, proportions of target cases to non-target cases; CI, confidence interval; MD, Malahanobis distance; CS, correctly specified model; gCD, generalized Cook’s distance; MS, misspecified 
model.
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performance under all proportions of target cases to non-target cases. 
However, the pattern of performance for the three measures (MD, 
DOCR, and gCD) was not always statistically significant, mainly when 
the sample size was small.

Tables 2, 4 show the false alarm rates of the three measures, MD, 
DOCR, and gCD, by sample size. As these tables show, the DOCR 
measure had the highest false alarm rates compared to MD, gCD–CS, 
and gCD–MS for all sample sizes and under the four proportions of the 

target cases to non-target cases. Unlike the miss rate, the false alarm rate 
of the DOCR decreased as the sample size increased from 200 to 600 
under all four proportions of target cases to non-target cases. In 
addition, the false alarm rate of the DOCR measure differed significantly 
with the increase in sample size. In other words, there was a significant 
decrease in the false alarm rate of the DOCR measure with the increase 
in sample size. Conversely, the false alarm rates of the MD and gCD 
measures did not change significantly with the increase in sample size.

TABLE 3 Miss rates for three case detection statistics by proportions of target cases to non-target cases for the path model.

Prop 0.1 0.05 0.02 0.01

N  =  200 (180  +  20) N  =  200 (190  +  10) N  =  200 (196  +  4) N  =  200 (198  +  2)

Statistic M 95%CI M 95%CI M 95%CI M 95%CI

MD 0.225 (0.207, 0.242) 0.135 (0.114, 0.156) 0.100 (0.071, 0.129) 0.100 (0.060, 0.140)

DOCR 0.013 (0.008, 0.017) 0.005 (0.001, 0.009) 0.005 (0.002, 0.012) 0.000 (0.000, 0.000)

gCD, CS 0.103 (0.090, 0.116) 0.075 (0.058, 0.092) 0.075 (0.050, 0.099) 0.075 (0.039, 0.111)

gCD, MS 0.088 (0.076, 0.100) 0.060 (0.044, 0.076) 0.065 (0.041, 0.089) 0.050 (0.020, 0.080)

N = 400 (360 + 40) N = 400 (380 + 20) N = 400 (392 + 8) N = 400 (396 + 4)

MD 0.229 (0.218, 0.242) 0.136 (0.121, 0.150) 0.095 (0.076, 0.114) 0.090 (0.063, 0.117)

DOCR 0.070 (0.063, 0.077) 0.034 (0.026, 0.041) 0.033 (0.019, 0.046) 0.025 (0.010, 0.040)

gCD, CS 0.101 (0.091, 0.111) 0.069 (0.058, 0.079) 0.066 (0.049, 0.083) 0.073 (0.045, 0.100)

gCD, MS 0.087 (0.078, 0.096) 0.054 (0.044, 0.063) 0.060 (0.044, 0.076) 0.060 (0.035, 0.086)

N = 600 (540 + 60) N = 600 (570 + 30) N = 600 (588 + 12) N = 600 (594 + 6)

MD 0.232 (0.222, 0.242) 0.143 (0.131, 0.155) 0.098 (0.082, 0.113) 0.087 (0.063, 0.109)

DOCR 0.157 (0.147, 0.166) 0.089 (0.079, 0.100) 0.058 (0.044, 0.070) 0.033 (0.019, 0.047)

gCD, CS 0.105 (0.095, 0.113) 0.078 (0.069, 0.088) 0.057 (0.045, 0.068) 0.055 (0.037, 0.073)

gCD, MS 0.089 (0.082, 0.098) 0.068 (0.059, 0.077) 0.046 (0.035, 0.056) 0.037 (0.023, 0.050)

Prop, proportions of target cases to non-target cases; CI, confidence interval; MD, Malahanobis distance; CS, correctly specified model; gCD, generalized Cook’s distance; MS, misspecified 
model.

TABLE 4 False alarm rates of three case detection statistics by proportions of target cases to non-target cases for the path model.

Prop 0.1 0.05 0.02 0.01

N  =  200 (180  +  20) N  =  200 (190  +  10) N  =  200 (196  +  4) N  =  200 (198  +  2)

Statistic M 95%CI M 95%CI M 95%CI M 95%CI

MD 0.003 (0.002, 0.003) 0.007 (0.006, 0.008) 0.017 (0.015, 0.018) 0.024 (0.022, 0.026)

DOCR 0.421 (0.408, 0.433) 0.571 (0.560, 0.581) 0.687 (0.678, 0.697) 0.736 (0.727, 0.744)

gCD, CS 0.066 (0.062, 0.069) 0.086 (0.083, 0.089) 0.095 (0.092, 0.099) 0.095 (0.092, 0.99)

gCD, MS 0.092 (0.089, 0.095) 0.122 (0.118, 0.125) 0.137 (0.134, 0.141) 0.140 (0.136, 0.143)

N = 400 (360 + 40) N = 400 (380 + 20) N = 400 (392 + 8) N = 400 (396 + 4)

MD 0.002 (0.0017, 0.003) 0.0065 (0.006, 0.007) 0.016 (0.014, 0.017) 0.021 (0.019, 0.023)

DOCR 0.064 (0.061, 0.068) 0.139 (0.133, 0.145) 0.237 (0.231, 0.243) 0.292 (0.285, 0.299)

gCD, CS 0.066 (0.064, 0.069) 0.085 (0.082, 0.088) 0.093 (0.090, 0.096) 0.094 (0.091, 0.096)

gCD, MS 0.092 (0.089, 0.095) 0.121 (0.119, 0.124) 0.137 (0.135, 0.139) 0.141 (0.139, 0.143)

N = 600 (540 + 60) N = 600 (570 + 30) N = 600 (588 + 12) N = 600 (594 + 6)

MD 0.0018 (0.001, 0.002) 0.005 (0.0045, 0.006) 0.016 (0.014, 0.017) 0.022 (0.021, 0.023)

DOCR 0.011 (0.009, 0.011) 0.033 (0.031, 0.036) 0.079 (0.076, 0.082) 0.112 (0.109, 0.115)

gCD, CS 0.068 (0.066, 0.069) 0.083 (0.082, 0.086) 0.089 (0.087, 0.091) 0.094 (0.093, 0.097)

gCD, MS 0.095 (0.093, 0.097) 0.119 (0.117, 0.120) 0.134 (0.133, 0.137) 0.141 (0.139, 0.143)

Prop, proportions of target cases to non-target cases; CI, confidence interval; MD, Malahanobis distance; CS, correctly specified model; gCD, generalized Cook’s distance; MS, misspecified 
model.

https://doi.org/10.3389/fpsyg.2023.1245863
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Jaffari and Koran 10.3389/fpsyg.2023.1245863

Frontiers in Psychology 07 frontiersin.org

Tables 2, 4 show that the false alarm rate of the DOCR increased as 
the proportion of target cases to non-target cases decreased. The DOCR 
and MD measures reflected the same performance pattern under all four 
proportions of target cases to non-target cases through all sample sizes. 
That is, within the same sample size, the false alarm rates of the DOCR 
and MD increased significantly as the proportion of the target cases to 
non-target cases decreased. Similarly, the gCD measure reflected the same 
performance pattern under all proportions of target cases to non-target 
cases. However, this performance pattern was not always statistically 
significant, mainly when the small sample size was relatively small.

4 Discussion

This study introduced the DOCR, a new model-free case influence 
measure appropriate for SEM analysis. Two simulation studies 
compared the performance of the DOCR with the performance of two 
other statistics that may be employed to screen cases in this context. 
The first was gCD, which is a model-based measure of case influence. 
Like other similar model-based case influence measures, such as 
likelihood distance and chi-square difference, gCD is sensitive to 
model misspecification. The greater the extent of the model 
misspecification, the less accurately gCD will identify influential cases.

The new DOCR statistic was also compared with the performance 
of MD. MD is a model-free measure. Thus, it is not sensitive to model 
misspecification. However, MD is a measure of outlying status rather 
than case influence. Thus, this statistic is less appropriate for detecting 
cases that will ultimately influence the model results.

The DOCR overcomes problems with both of these alternative 
measures employed to screen cases in SEM analysis. The DOCR is model-
free. Thus, it is not sensitive to model misspecification. The DOCR is also 
a true case influence measure for SEM analysis, in which the model is fit 
to the sample covariance matrix. By detecting cases that exert a strong 
influence on the covariance matrix, the DOCR detects cases that will 
impact the results for the model fit to that covariance matrix.

The results of the two simulation studies suggest that more work 
is needed to find the optimal cut point for the DOCR. The DOCR 
performed better than the other measures in flagging target cases 
because it recorded the lowest miss rate across all conditions. 
However, the false alarm rate of the DOCR was not reasonable since 
it incorrectly flagged 42–80% of cases as target cases under a sample 
size of 200 cases. Although this percentage dropped to 10–30% when 
the sample size increased, it was still not satisfactory compared to 
other measures.

With all such measures, there is a compromise between the miss 
rate and the false alarm rate. Thus, the values of the false alarm rate for 
the DOCR can be made more reasonable by adjusting the cut point to 
yield a better balance between the miss rate and the false alarm rate. 
Since establishing a criterion cut point for the DOCR measure was 
outside the scope of this study, it is recommended that future studies 
establish an optimal cut point criterion for this measure.

The results of the two simulation studies also suggest that the 
DOCR is sensitive to sample size. The DOCR’s miss rate increased, and 
the false alarm rate decreased significantly with an increase in sample 
size, while the miss rate and false alarm rate of MD and gCD remained 
the same. This finding was consistent with previous studies. Previous 
studies have noted how sample size may affect the performance of case 
influence measures because the influence of the individual case is 

weighted by the inverse of the sample size (Pek and MacCallum, 
2011). Therefore, a large influence is expected from individual cases 
in small samples. The findings of this study were consistent with 
studies that showed the performance of some measures, such as 
chi-square, that were extremely sensitive to sample size (Boomsma, 
1982; Fan et al., 1999). Future studies should investigate methods for 
reducing the sensitivity of the DOCR to sample size.

Given these two limitations, practitioners are recommended not 
to use the DOCR measure with overly small sample sizes (i.e., N ≤ 200) 
or overly large sample sizes (i.e., N > 600). Instead, practitioners 
should use the range of sample sizes recommended for SEM studies 
(Kline, 2016) to obtain the best performance of the DOCR measure. 
Care should be exercised in investigating the cases that are flagged, 
considering that some of the influential cases identified may be due to 
sampling variability alone. However, used within these guidelines, the 
DOCR shows promise as a model-free case influence measure 
appropriate for SEM analysis due to its ability to overcome the 
limitations of existing measures. Example R syntax for computing 
DOCR has been provided in the Appendix.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

FJ and JK designed the study and created the routine. FJ 
contributed to the write-up of the manuscript, the R code for the 
DOCR and other indices, the analysis of the data, and summarizing 
the results. JK contributed to the write-up of the manuscript and to 
the improvement of all sections of this manuscript. All authors 
contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated organizations, 
or those of the publisher, the editors and the reviewers. Any product 
that may be evaluated in this article, or claim that may be made by its 
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary material for this article can be found online 
at: https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1245863/
full#supplementary-material

https://doi.org/10.3389/fpsyg.2023.1245863
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1245863/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2023.1245863/full#supplementary-material


Jaffari and Koran 10.3389/fpsyg.2023.1245863

Frontiers in Psychology 08 frontiersin.org

References
Atkinson, A. C. (1981). Two graphical displays for outlying and influential 

observations in regression. Biometrika 68, 13–20. doi: 10.1093/biomet/68.1.13

Belsley, D. A., Kuh, E., and Welsch, R. E. (1980). Regression Diagnostics: Identifying 
Influential Data and Sources of Collinearity, Vol. 571. Hoboken, New Jersey: John Wiley 
& Sons.

Bollen, K. A., and Arminger, G. (1991). Observational residuals in factor analysis and 
structural equation models. Sociol. Methodol. 21, 235–262. doi: 10.2307/270937

Boomsma, A. (1982). “The robustness of LISREL against small sample sizes in factor 
analysis models” in Systems under Indirect Observation: Causality, Structure, Prediction. 
eds. K. G. Jöreskog and H. Wold (Amsterdam: North-Holland), 149–173.

Cook, R. D. (1977). Detection of influential observation in linear regression. 
Technometrics 19, 15–18. doi: 10.1080/00401706.1977.10489493

Cook, R. D. (1986). Assessment of local influence. J. R. Stat. Soc. Series B 48, 133–155. 
doi: 10.1111/j.2517-6161.1986.tb01398.x

Cook, R. Dennis, and Weisberg, Sanford. Residuals and Influence in Regression. New 
York: Chapman and Hall, (1982).

De Maesschalck, R., Jouan-Rimbaud, D., and Massart, D. L. (2000). The Mahalanobis 
distance. Chemom. Intell. Lab. Syst. 50:18. doi: 10.1016/S0169-7439(99)00047-7

Fan, X., Thompson, B., and Wang, L. (1999). Effects of sample size, estimation 
methods, and model specification on structural equation modeling fit indexes. Struct. 
Equ. Model. Multidiscip. J. 6, 56–83. doi: 10.1080/10705519909540119

Friendly, M., Fox, J., Chalmers, P., Monette, G., and Sanchez, G. (2022). Matlib: Matrix 
Functions for Teaching and Learning Linear Algebra and Multivariate Statistics. R 
package version 0.9.6.

Kline, R. B. (2016). Principles and Practice of Structural Equation Modeling (4th ed.). 
New York, NY: The Guilford Press.

Lee, S.-Y., and Wang, S.-J. (1996). Sensitivity analysis of structural equation models. 
Psychometrika 61, 93–108. doi: 10.1007/BF02296960

Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proc. Natl Inst. Sci. 
India 2, 49–55.

Pastore, M., and Altoé, G. (2022). Influence. SEM: Case Influence in Structural 
Equation Models. R package version 2.3. Available at: https://CRAN.R-project.org/
package=influence.SEM

Pek, J., and MacCallum, R. C. (2011). Sensitivity analysis in structural equation 
models: cases and their influence. Multivar. Behav. Res. 46, 202–228. doi: 
10.1080/00273171.2011.561068

R Core Team (2017). R: A Language and Environment for Statistical Computing. 
Available at: https://www.R-project.org/

Reise, S. P., and Widaman, K. F. (1999). Assessing the fit of measurement models at 
the individual level: a comparison of item response theory and covariance structure 
approaches. Psychol. Methods 4, 3–21. doi: 10.1037/1082-989X.4.1.3

Revelle, W. (2023). psych: Procedures for Psychological, Psychometric, and Personality 
Research. Northwestern University, Evanston, Illinois. R package version 2.3.12. 
Available at: https://CRAN.R-project.org/package=psych

Rosseel, Y. (2012). Lavaan: an R package for structural equation modeling. J. Stat. 
Softw. 48, 1–36. doi: 10.18637/jss. v048

Rousseeuw, P. J., and Van Zomeren, B. C. (1990). Unmasking multivariate outliers and 
leverage points. J. Am. Stat. Assoc. 85, 633–639. doi: 10.1080/01621459.1990.10474920

Sterba, S. K., and Pek, J. (2012). Individual influence on model selection. Psychol. 
Methods 17, 582–599. doi: 10.1037/a0029253

Yuan, K.-H., and Bentler, P. M. (1998). Structural equation modeling with robust 
covariances. Sociol. Methodol. 28, 363–396. doi: 10.1111/0081-1750.00052

Yuan, K.-H., and Zhang, Z. (2012). Structural equation modeling diagnostics using R 
package semdiag and EQS. Struct. Equ. Model. Multidiscip. J. 19, 683–702. doi: 
10.1080/10705511.2012.713282

Yuan, K.-H., and Zhong, X. (2008). 8. Outliers, leverage observations, and influential 
cases in factor analysis: using robust procedures to minimize their effect. Sociol. 
Methodol. 38, 329–368. doi: 10.1111/j.1467-9531.2008.00198.x

Zhao, Y., and Lee, A. H. (1998). Theory and methods: influence diagnostics for 
simultaneous equations models. Aust. N. Z. J. Stat. 40, 345–358. doi: 10.1111/1467- 
842X.00038

https://doi.org/10.3389/fpsyg.2023.1245863
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1093/biomet/68.1.13
https://doi.org/10.2307/270937
https://doi.org/10.1080/00401706.1977.10489493
https://doi.org/10.1111/j.2517-6161.1986.tb01398.x
https://doi.org/10.1016/S0169-7439(99)00047-7
https://doi.org/10.1080/10705519909540119
https://doi.org/10.1007/BF02296960
https://CRAN.R-project.org/package=influence.SEM
https://CRAN.R-project.org/package=influence.SEM
https://doi.org/10.1080/00273171.2011.561068
https://www.R-project.org/
https://doi.org/10.1037/1082-989X.4.1.3
https://CRAN.R-project.org/package=psych
https://doi.org/10.18637/jss. v048
https://doi.org/10.1080/01621459.1990.10474920
https://doi.org/10.1037/a0029253
https://doi.org/10.1111/0081-1750.00052
https://doi.org/10.1080/10705511.2012.713282
https://doi.org/10.1111/j.1467-9531.2008.00198.x
https://doi.org/10.1111/1467-842X.00038
https://doi.org/10.1111/1467-842X.00038

	Model-free measurement of case influence in structural equation modeling
	1 Introduction
	1.1 Background

	2 Methods
	2.1 Data generation
	2.1.1 Simulation study 1
	2.1.2 Simulation study 2
	2.2 Case diagnostics
	2.3 Implementation

	3 Results
	4 Discussion
	Data availability statement
	Author contributions

	References

