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Most learning theories agree that the productivity of a rule or a pattern relies on 
regular exemplars being dominant over exceptions; the threshold for productivity 
is, however, unclear; moreover, gradient productivity levels are assumed for 
different rules/patterns, regular or irregular. One theory by Yang, the Tolerance 
Principle (TP), specified a productivity threshold applicable to all rules, calculated 
by the numbers of total exemplars and exceptions of a rule; furthermore, rules 
are viewed as quantal, either productive or unproductive, with no gradient 
levels. We  evaluated the threshold and gradience-quantalness questions by 
investigating infants’ generalization. In an implicit learning task, 14-month-olds 
heard exemplars of an artificial word-order rule and exceptions; their distributions 
were set closed to the TP-threshold (5.77) on both sides: 11 regular exemplars 
vs. 5 exceptions in Condition 1 (productiveness predicted), and 10 regular 
exemplars vs. 6 exceptions in Condition 2 (unproductiveness predicted). These 
predictions were pitted against those of the statistical majority threshold (50%), 
a common assumption which would predict generalization in both conditions 
(68.75, 62.5%). Infants were tested on the trained rule with new exemplars. Results 
revealed generalization in Condition 1, but not in Condition 2, supporting the 
TP-threshold, not the statistical majority threshold. Gradience-quantalness was 
assessed by combined analyses of Conditions 1-2 and previous experiments 
by Koulaguina and Shi. The training across the conditions contained gradually 
decreasing regular exemplars (100, 80, 68.75, 62.5, 50%) relative to exceptions. 
Results of test trials showed evidence for quantalness in infants (productive: 100, 
80, 68.75%; unproductive: 62.5, 50%), with no gradient levels of productivity.
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1. Introduction

Productive knowledge of a rule or a pattern enables one to apply the regularity to novel 
instances. Even young children show productive knowledge. For example, they give the plural 
form of an invented word “wugs” upon hearing the singular “a wug” (Berko, 1958), and they 
produce overgeneralizations such as “goed” (e.g., Pinker, 1995). Much attention has been 
devoted to the understanding of how rules/patterns are represented and how they are acquired.

Models of linguistic representations for rules/patterns differ in certain basic theoretical 
constructs. Morphological processes, for example, have been intensely debated. In some theories 
all morphological patterns are represented as abstract rules (e.g., Chomsky and Halle, 1968), 
regulars and irregulars. The dual-route model (e.g., Pinker, 1999) proposes the co-existent 
representations of abstract rules for regulars and memorized exemplars for irregulars. At the other 
extreme, no abstract symbolic rules are represented; rather, exemplars are encoded as clusters of 
constructions or as networks with shared features (e.g., Rumelhart and McClelland, 1986; 
Goldberg, 2016), and if they are sufficiently regular, productivity can emerge. According to the 
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radical exemplar model of Ambridge (2020), generalizations occur in 
language use through analogy with stored (non-abstract) exemplars in 
the representation that have similar surface forms and semantic/
contextual information. Across these models, a shared view is that 
regular and irregular representations are in competition to yield the 
predicted productivity of regular rules/patterns and overgeneralizations 
(or the avoidance of the latter). Although most of them focus on the 
nature of representations, the models offer insights that impact learning.

While rules can be learned through explicit teaching, as is often 
done in schools, most essentials of morphosyntactic regularities are 
acquired during preschool years from exemplars heard in natural 
environment without any instruction. The question then concerns 
how rules/patterns become productive for children. Drastically 
different theoretical positions have been proposed in the field. For 
some researchers, morphosyntactic structures are productive and 
abstract from the onset of acquisition, with no need for statistical 
learning from the distributional properties of the input. For example, 
Valian et al. (2009) claim that syntactic categories and structures are 
not only abstract, but also innate. Based on their analysis of the 
determiner-noun productions in CHILDES corpora, they concluded 
that young children demonstrate adult-like full productivity as soon 
as they start combining determiners and nouns. In contrast, other 
corpus studies (e.g., Pine and Lieven, 1997; Pine et al., 2013) reported 
that children’s initial NP productions are memorized exemplars, and 
that abstraction and productivity develop (through analogy-based 
inductive learning) in gradual stages. The mixed results and 
conclusions across studies reflect the methodological difficulties in 
working with natural speech samples, both for characterizing input 
distributions and for evaluating children’s productivity.

Various induction-based models attempted to specify the input 
properties enabling the learning of productive rules/patterns when 
regular and irregular exemplars are co-present. Type frequency, 
namely, the number of different exemplars of a rule/pattern, is 
important in most models (e.g., Plunkett and Marchman, 1991; 
Baayen, 1993; Bybee, 1995; Yang, 2016). The ways to quantify the 
contribution of type frequency differ across theories. In their 
connectionist model of morphological learning, Rumelhart and 
McClelland (1986) showed that input needed to contain a large 
number of regular exemplars (i.e., high type frequency1) relative to 
exceptions before a network start generalizing. Bybee (1995) suggested 
that to achieve productivity, regular exemplars must be dominant in 
type frequency relative to exceptions, although the exact level of the 
types was unspecified. Baayen’s model (Baayen, 1993) proposed 

1 Hare et al. (1995) further showed that in the case of a low-type-frequency 

default inflection alongside other non-default inflections, their models 

succeeded in generalizing the default pattern. Whereas a default inflection 

had no specified phonological template for the stem, the stems of the 

non-default inflections had well-defined phonological shapes. Their models 

learned the non-default inflections as different processes irrelevant to the 

default process, rather than treating them as exceptions to the default. In this 

sense, the non-default processes were not in competition with the default; as 

a result, the type frequency of the default regular exemplars was still dominant 

relative to true exceptions (i.e., those that did not comply with the default 

pattern and also did not resemble the stem templates of the non-defaults), 

and thus the default was generalizable.

indices aiming at comparing morphological processes (e.g., regulars 
vs. irregulars within a rule, or unrelated rules) in a language, by 
quantifying them into varying degrees of productivity. The variables 
in the calculation of his indices, which are properties of spoken 
corpora, seem relevant for learning. In particular, the productivity 
index p* = n/h divides the number of singletons n with a given suffix 
by the sum of singletons h with a range of suffixes in a corpus. For 
example, regular and irregular suffixes can be  ranked in their p* 
values, with the higher type frequency of regular exemplars producing 
a higher p* (and thus more productive) than irregular exemplars. The 
emphasis on singletons (i.e., non-repeated exemplars) in p* highlights 
the importance of low token frequency for regular exemplars, an 
indication of generalization to novel instances, according to Baayen. 
Bybee’s learning model also stresses the importance of high type 
frequency and low token frequency of regular exemplars. Nearly all 
theories assume that rules/patterns vary in gradient degrees of 
productivity, and the threshold at which productivity emerges 
remains unspecified.

One theory (Yang, 2016), the Tolerance Principle (TP), departs 
from other learning theories in two major aspects. First, productivity 
cannot be gradient. The learner either has a productive rule or no rule. 
Second, TP specifies a productivity threshold, by e ≤ θN where θN=N/
lnN, with e being the exceptions to the rule in question, θN the 
TP-threshold, and N the sum of rule exemplars and the exceptions. 
Only type frequencies matter in this theory. Thus, if e does not exceed 
the threshold, the rule is learned and fully productive. If e is above the 
threshold, no rule is learned, and the learner resorts to rote 
memorization. Recent corpus studies showed support for TP-predicted 
(un)productiveness and quantalness of morphosyntactic patterns in 
adult speech (Pearl and Sprouse, 2021; van Tuijl and Coopmans, 2021; 
Henke, 2022) and in historical texts (Kodner, 2023). Furthermore, 
experiments on English-speaking 5-8-year-olds’ and Icelandic-
speaking 2.5-to-6-year-olds’ production of morphological patterns 
(Schuler et al., 2016; Bjornsdottir, 2021) and on Russian-speaking 
4-6-year-olds’ ordinal acquisition (de Vries et  al., 2021) provided 
evidence for this theory. Yang (2016)’s analysis of the CHILDES 
corpora showed that children’s productivity and overgeneralization of 
English verb morphology was fully predictable by TP; notably, TP also 
correctly predicted the finding that children almost never produced 
irregularizations such as “wipe-wope” (only 0.02% such analogy errors 
in Xu and Pinker, 1995). Such errors would be predicted by analogy- 
and exemplar-based theories (e.g., Bybee, 1995; Ambridge, 2020).

Contrary to TP, gradient productivity was reported in many 
studies, typically using adults’ acceptance ratings or computer 
simulations of learning. Various linguistic rules/patterns were tested, 
such as English past tense (Albright and Hayes, 2003), final devoicing 
in morphological alternations in Dutch (Ernestus and Baayen, 2003), 
vowel harmony in Hungarian (Hayes et al., 2009), velar palatalization 
in Russian (Kapatsinski, 2010), and consonant cluster phonotactics in 
English (Olejarczuk and Kapatsinski, 2018). Participants were asked 
to produce novel words (i.e., the Wug test) or to make a perceptual 
response to novel word stimuli (e.g., force choice, parsing), and their 
performance showed gradient productivity, correlating with their 
ratings of the stimuli and matching the lexical distributions of the 
morphophonological patterns in the native languages.

Interestingly, these findings of gradient productivity for native 
language patterns resemble the performance of adults in artificial 
language learning experiments. Artificial language paradigms are 
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advantageous because precise input characteristics during training can 
be specified and manipulated for determining learning mechanisms. 
A number of studies (Hudson Kam and Newport, 2005, 2009; 
Wonnacott et al., 2008; Austin et al., 2022) used a task in which the 
training input contained exemplars representing a phrase structure 
pattern, with certain levels of inconsistencies. Hudson Kam and 
Newport found that adults’ performance at test matched the 
inconsistent distribution of their training input (called “probability 
matching”), but children regularized, generalizing beyond the 
inconsistent input. Most notably, Austin and colleagues, who showed 
the same difference between adults and children in their recent study, 
further found that younger children (5- to 6-year-olds) regularized 
more than older children (7- to 8-year-olds). These results are 
important, demonstrating that adults and children have distinct 
learning mechanisms. While probability matching might be associated 
with adults’ gradient productivity, the regularization found in 
children, especially in younger ages, seems compatible with 
quantal representation.

Our interest thus concerns how infants at the earliest stage of 
cognitive development generalize, given inconsistent input. Do 
they probability match the input and show gradient productivity 
as do adults, or do they regularize as shown in 5- to 7-year-olds 
(Hudson Kam and Newport, 2005, 2009; Austin et al., 2022) and 
operate according to TP? In perceptual experiments that trained 
infants with 100% regular artificial language input, 7–9-month-old 
infants learned algebraic-like patterns (Marcus et  al., 1999; 
Gerken, 2006), 12-month-olds learned grammatical categorization 
patterns (Gómez and Lakusta, 2004), and 14-month-olds 
generalized word-order movement (Koulaguina and Shi, 2013). 
Productive knowledge was demonstrated by infants’ discrimination 
of novel test exemplars that conformed with the trained pattern vs. 
violating it. Limited work exists on infants’ learning under 
inconsistent input. In Gomez and Lakusta infants who heard 
regular exemplars with 17% exceptions (by type frequency) 
succeeded in generalization, but infants exposed to 33% exceptions 
failed to show learning. In Koulaguina and Shi (2019), infants’ 
generalization of word-order patterns was successful when the 
training input contained 20% exceptions, but unsuccessful when 
exceptions were increased to 50%. These results suggest that the 
type frequency of regular exemplars indeed needs to be relatively 
high to ensure productivity, as is assumed across theories. Taking 
the raw numbers of exemplars instead of the proportions, we find 
that both the learning success and failure in these studies are as 
predicted by the TP algorithm (Yang, 2016).

However, the productivity threshold remains unclear, as this was 
never tested in these studies. To do so, the numbers of exceptions in 
contrasting training conditions (i.e., predicted learning success vs. 
failure) must be close to the threshold on both sides. Considering 
Yang (2016)’s algorithm, the 8 exceptions out of 24 total exemplars in 
the “failure” condition of Gómez and Lakusta (2004) was closely above 
the tolerance threshold (θN=N/lnN = 24/ln24  =  7.55), but the 
contrasting ‘success’ condition with 4 exceptions (out of 24) was far 
below the threshold. In Koulaguina and Shi (2019) the exceptions 
(e = 2) in a ‘success’ condition was far below the threshold (θN = 10/
ln10 = 4.34), whereas the contrasting “failure” condition with 8 
exceptions was far above the threshold (θN = 16/ln16 = 5.77). Thus, the 
exceptions in these studies were not set in a way to be informative of 
the productivity threshold.

The present study aimed at better understanding rule/pattern 
learning in infants, by testing precise theoretical predictions. 
Specifically, we  directly tested the threshold of productivity. 
Furthermore, we asked whether productivity is quantal or gradient. 
We built on our previously published experiments (Koulaguina and 
Shi, 2013, 2019), in which generalization success and failure were 
consistent with TP as well as with other pattern-learning theories, but 
the numbers of exceptions were not designed to test the productivity 
threshold. We report two new conditions that used the same implicit 
learning task and the same stimuli (of the word-order movement 
patterns) as in our prior studies, but where the numbers of exceptions 
in training were set close to the TP-threshold. Moreover, our new and 
previous studies form a continuum of training conditions with 
gradually increasing exceptions, allowing us to analyze the combined 
data and address the gradience-quantalness question.

In the remainder of this article that report our study, the term 
“rule” is used for convenience to mean either abstract symbolic rule 
or non-abstract pattern, without a bias, as our study is not designed to 
test the distinction of abstract rule representation vs. analogy-based 
generalization. The learning shown in our study is compatible with 
both theoretical assumptions.

2. Methods

2.1. Participants

Forty-eight non-Russian-learning 14-month-olds completed this 
experiment (Condition 1: mean age = 462 days; range = 446–483; 11 
girls; Condition 2: mean age = 459 days; range: 435–478; 12 girls). The 
data of another eight infants were excluded from analyses because of 
fussiness (2), out of the camera view during test trials (1), and lack of 
interest in the task (5).

2.2. Stimuli

Stimuli were those of our previously published studies 
(Koulaguina and Shi, 2013, 2019), adapted for the distributions of our 
new training conditions. They were three-word sentences in Russian, 
16 used for constructing training exemplars and two for testing 
exemplars. Given the TP-threshold θN=N/lnN = 16/ln16 = 5.77 for the 
training, we set 11 rule exemplars and 5 exceptions for Condition 1 
(i.e., productive), and 10 rule exemplars and 6 exceptions for 
Condition 2 (unproductive). In terms of proportion, rule exemplars 
were above 50% in both conditions.

As in our previous studies, the stimuli were prepared by applying 
each rule sentences to two word-order movement rules. For Rule 1, 
Words 1 and 2 were switched (i.e., abc-bac), whereas Words 2 and 3 
were switched for Rule 2 (i.e., abc-acb). Exceptions were sentences 
appearing only in the base form (i.e., abc), with no word-order-shifted 
version. The two test sentences were each applied to the two word-
order rules. Table 1 shows the base sentences that we used to construct 
our stimuli.

The sentences were recordings of a Russian female speaker from 
Koulaguina and Shi (2013, 2019). The recording was produced in 
infant-directed speech style. The speech rate was slow such that a brief 
pause occurred naturally between words in all sentences. The pauses 
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were helpful cues to word segmentation, allowing our task to focus on 
testing the learning of word order movement without the complication 
of word segmentation difficulty in an unknown language.

The recorded stimuli were organized as follows. For Condition-1 
training, 11 exemplars in Rule 1 (abc-bac) and five exceptions (in abc) 
formed the input for one subgroup of infants. The 11 same base 
sentences in Rule 2 (abc-acb) and the same five exceptions formed the 
input for another subgroup. For Condition-2 training, one of the 11 
rule exemplars of Condition 1 was removed, and we  added an 
exception; thus, the 10 remaining Rule-1 exemplars and six exceptions 
formed the input for one subgroup, and 10 Rule-2 exemplars and the 
six exceptions for the other subgroup.

Thus, the distributions of the training input were organized in 
terms of exemplars. For both conditions, each rule exemplar consisted 
of a base sentence and its shifted version. For example, the sentences 
Dozhd’ zalil cherdak and Zalil dozhd’ cherdak constituted one exemplar 
of the abc-bac rule. Exceptions were singletons in the abc base order. 
For example, Stanut reki polny was counted as one exception exemplar.

To construct our test stimuli, we applied each of the two new test 
sentences to Rule 1 (abc-bac) and to Rule 2 (abc-acb).

For Condition-1 training, the average sentence duration (with 
base and shifted versions measured separately) was 2.88 s (SD = 0.46) 
for Rule 1, 2.86 s (SD = 0.42) for Rule 2, and 2.48 s (SD = 0.18) for the 
exceptions. For Condition-2 training, the average sentence duration 
was 2.91 s (SD = 0.47) for Rule 1, 2.89 s (SD = 0.43) for Rule 2, and 
2.43 s (SD = 0.20) for the exceptions. The average sentence duration in 
the test phase was 2.55 s (SD = 0.09) for Rule 1, and 2.55 s (SD = 0.09) 
for Rule 2.

Visual stimuli included animations of colorful moving circles and 
moving blue geometric forms. Between trials, a moving star with the 
sound of birds singing served as the attention-getter. During the 
pre-trial and post-trial, electric sound of a bouncing ball was used.

2.3. Procedure and apparatus

The experiment used two IAC sound-attenuated rooms. In the 
training room the child and the parent sat on a sofa before two small TV 
screens. A box of soft toys was available. The parent wore headphones 
playing masking music and were asked not to talk. They could play 
together using the toys. Habit 2 software was used to present the stimuli 
and record the child’s looking times (Oakes et al., 2019). In an adjacent 
room, a researcher blind to the stimuli launched the experiment and 
coded the child’s looking to the screens. The training stimuli were 
presented fully in one trial, and repeated in three other trials, regardless 
of whether the child looked at a screen. The order of exemplars was 
randomized during each trial, with the restriction that the pair of 
sentences within each rule exemplar always occurred together (for 
maintaining the cohesion of a rule exemplar), i.e., the base abc sentence 
followed immediately by its shifted version. The visual display, i.e., the 
colorful moving circles for the initial three training trials and the blue 
geometric forms for the last trial, appeared on both screens 
simultaneously and were presented together with the speech stimuli.

Immediately following training, the parent and the child moved 
to the other sound-attenuated room with no toy. The infant sat on the 
parent’s lap facing a large central screen. The parent wore headphones 
playing masking music. The researcher, blind to all stimuli, launched 
the experiment and coded the infant’s looking through a monitor 
using Habit 2. The test trials were infant-controlled, i.e., initiated by 
the infant’s looking and terminated when she looked away from the 
screen for at least 2 s. A test trial would also terminate if the maximum 
trial length was reached in case of no lookaway. The presentation of 
audiovisual stimuli would stop if a trial was terminated (either by the 
child’s lookaway or by the maximum trial length). The visual stimuli 
for every trial of the test phase were the blue geometric forms, which 
was presented together with speech stimuli.

The inter-stimulus interval was 1,200 ms in-between exemplars, 
and 700 ms separating a base sentence from its shifted version within 
a rule exemplar.

2.4. Design

Within each condition, infants were randomly assigned to one of 
the two subgroups, either to Rule 1 with exceptions, or to Rule 2 with 
exceptions. This design ensured that subgroups hearing different rules 
(during training) served as each other’s control, such that a particular 
new test exemplar in one rule that was grammatical for one subgroup 
would be ungrammatical for the other subgroup, and vice versa.

Infants heard four training trials (total duration 412 s for 
Condition 1 and 400 s for Condition 2). Each trial contained the 16 
exemplars (11 rule cases and 5 exceptions for Condition 1; 10 rule 
cases and 6 exceptions for Condition 2). Table 2 shows the design. 
Recall that each rule exemplar consisted of a base sentence (abc order) 
and its shifted version (e.g., bac), and that each exception exemplar 
was a singleton sentence without a shifted version. To illustrate, 
Table 3 shows the detailed training exemplars and test stimuli for one 
of the subgroups of Condition 1.

The test phase started with a pre-trial, followed by two 
introduction trials, 14 test trials and a post-trial. The pre-trial served 
to familiarize the child with the equipment. The post-trial marked the 
end of the experiment. The two introduction trials presented the two 
new sentences that would be later used in the test trials. One sentence 

TABLE 1 Sentences used in the two conditions.

Base abc 
sentences for the 
word-order shift 
rules (either 
abc→bac or 
abc→acb; each 
rule exemplar 
consisted of a 
base sentence 
and its shifted 
version)

Exception 
sentences (non-
shifted; abc)

Training Dozhd’ zalil cherdak.

Veter gnjot derev’ja.

Vorona nashla pugovitsy.

Machty gnutsja lukom.

Zina gladit plat’e.

Pojte pesnju druzhno.

Dimke snilos’ pole.

Chistim tufli vaksoj.

Budesh vilkoj kushat’.

Flagi utrom snjali.

Veter vybil okna. (removed 

in Condition 2)

Stanut reki polny.

Otzvuk smekha sladok.

Seno pahnet volej.

Skrojut tuchi solntse.

Obuv’ skinul rezvo.

Tanets veren bubnu. (added 

in Condition 2)

Test Vizhu nosik belki.

Snova milyj vessel.
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was applied to Rule 1  in one introduction trial, and the second 
sentence was applied to Rule 2 in the other introduction trial. See the 
examples in Table 3. Once initiated, the two introduction trials were 
presented in full (each 6,000 ms) so that the child could hear and 
encode both the base and shifted version of each sentence. In 
Conditions 1 and 2, the introduction trials were counterbalanced 
across babies for the specific sentence in which the rules appeared 
(half heard the first sentence in Rule 1 and the second sentence in Rule 
2; the other half heard the first sentence in Rule 2 and the second in 
Rule 1) and for the order of the presentation of the rules (half heard 
Rule 1 in the first trial, and the other half heard Rule 2 in the first trial).

The 14 test trials followed the introduction trials, presenting the 
same two test sentences in their respective rules in alternate trials, 
with the same counterbalancings as the introduction trials. For 
example, if the first sentence in Rule 1 was the first introduction trial, 
it was also the first test trial. The test trials were fully infant-controlled, 
initiated and terminated by the child’s looking. The maximum length 
for each test trial was 21 s if the child looked till the end of the trial, 
and in this case the rule exemplar in the trial would be repeated and 
heard for a total of three times. Across all counterbalancing subgroups, 
each infant received two types of test trials according to the training: 
the trained rule vs. the non-trained rule.

2.5. Predictions

Our study was designed to test distinct theoretical predictions. 
Rule exemplars in the input of the two conditions were 68.75% vs. 
62.5%, both greatly surpassing the statistical majority of 50%. Thus, 

both should show successful learning if statistical majority determines 
productivity. However, if the onset of productivity is determined by 
TP, then Condition 1, but not Condition 2, should show success, as the 
exceptions were set just below the TP-threshold in the former (e = 5), 
but just above the threshold in the latter (e = 6).

3. Results

We first analyzed whether productivity was present in Conditions 
1 and 2. For each infant, the average looking time per trial for each 
type of test trials (trained rule vs. non-trained rule) was calculated. 
Then, we calculated the differential score of the looking times for 
every infant (i.e., non-trained minus trained). Based on the results of 
our previous studies on rule generalization from the same kind of 
stimuli in the same task (Koulaguina and Shi, 2013, 2019), 
we predicted a priori that successful generalization should yield a 
novelty effect (longer looking toward the non-trained rule than the 
trained rule, i.e., differential scores >0). Specifically, this novelty effect 
was expected for Condition 1, given that the input distribution should 
lead to successful generalization according to both statistical majority 
and TP theories, whereas this may or may not be the outcome of 
Condition 2 depending on the particular theory. The novelty effect 
was confirmed for Condition 1, with differential scores significantly 
above the 0 chance level, M = 2.3 s, SE = 0.82, t(23) = 2.816, p = 0.005. 
However, the differential scores in Condition 2 did not differ 
significantly from chance [M = 0.54 s, SE = 0.55, t(23) = 0.975, p = 0.17], 
suggesting no generalization. These results agree with the predictions 
of TP (Yang, 2016), but much less with that of statistical majority. 

TABLE 2 Experimental design.

Training

(TP-threshold: e = 5.77)

(statistical-majority threshold: 50%)

Condition 1:

11 abc→bac exemplars

5 exceptions

Condition 1:

11 abc→acb exemplars

5 exceptions

Condition 2:

10 abc→bac exemplars

6 exceptions

Condition 2:

10 abc→acb exemplars

6 exceptions

Test

(new exemplars)

abc→bac (trained rule)

abc→acb (non-trained rule)

abc→acb (trained rule)

abc→bac (non-trained rule)

TABLE 3 Stimuli for one subgroup of Condition 1.

Exemplars for the abc→bac word-order shift rule 
(each rule exemplar consisted of a base sentence 
and its shifted version)

Exemplars of exceptions 
(non-shifted; abc)

Training

(11 rule exemplars and 5 exemplars of 

exceptions)

Dozhd’ zalil cherdak. → Zalil dozhd’ cherdak.

Veter gnjot derev’ja. → Gnjot veter derev’ja.

Vorona nashla pugovitsy. → Nashla vorona pugovitsy.

Machty gnutsja lukom. → Gnutsja machty lukom.

Zina gladit plat’e. → Gladit zina plat’e.

Pojte pesnju druzhno. → Pesnju pojte druzhno.

Dimke snilos’ pole. → Snilos’ dimke pole.

Chistim tufli vaksoj. → Tufli chistim vaksoj.

Budesh vilkoj kushat’. → Vilkoj budesh kushat’.

Flagi utrom snjali. → Utrom flagi snjali.

Veter vybil okna. → Vybil veter okna.

Stanut reki polny.

Otzvuk smekha sladok.

Seno pahnet volej.

Skrojut tuchi solntse.

Obuv’ skinul rezvo.

Test
Vizhu nosik belki. → Nosik vizhu belki. (abc-bac)

Snova milyj vessel. → Snova vessel milyj. (abc-acb)
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We further predicted that the differential scores in Condition 1 should 
be greater than those in Condition 2, which was confirmed, with 
respective means being 2.3 s vs. 0.54 s, unpaired t(46) =1.785, p = 0.04, 
Cohen’s d = 0.515 (see Figure 1). We also conducted a Bayes factor 
analysis of the data of the two conditions to compare the null 
hypothesis (i.e., no difference between the conditions) and an 
alternative hypothesis (the differential scores in Condition 1 greater 
than those in Condition 2). The analysis was performed with a Cauchy 
distribution prior for the effect size, a standard choice indicating 
minimal prior information. We  obtained a Bayes factor of 2.067, 
indicating that the data were two times more likely to occur under the 
alternative hypothesis than under the null hypothesis. This result was 
in line with that of the t-test.

Next, we analyzed the data of the present study together with 
those of our previous studies (see Figure 2), to determine whether 
productivity is gradient or quantal. Gradient productivity with 
increasing consistency of regular exemplars is assumed in various 
models (e.g., Baayen, 1993; Bybee, 1995), whereas TP predicts a 
quantal shift between non-productivity and productivity at the 
tolerance threshold. In one previous experiment we presented 50% 
regular exemplars (e = 8, far above the TP-threshold, θN=N/lnN = 16/
ln16 = 5.77), and infants showed no discrimination of test trials, i.e., 
no productivity (Koulaguina and Shi, 2019). Condition 2 of the 
present study (62.5% regular exemplars), with exceptions (e = 6) just 
above the TP-threshold (5.77), also showed no productivity. The 
comparison of the differential scores of the previous 50%-experiment 
(M = −0.47 s, SE = 0.84) and those of Condition 2 (62.5% regular 
exemplars: M = 0.54 s, SE = 0.55) showed comparable performance 
[unpaired t(38) = 1.046, p = 0.302], that is, no evidence of a gradient 
difference between these two levels of regularity. Next, we took the 
data from two previous experiments that showed rule productivity, 
one presenting 100% regular exemplars (Koulaguina and Shi, 2013), 
and another 80% regular exemplars with exceptions (e = 2) far below 
the TP-threshold (θN=N/lnN = 10/ln10 = 4.34) (Koulaguina and Shi, 
2019). We  calculated the differential scores of test trials (i.e., 
non-trained minus trained) of each infant in those experiments (100% 
regular exemplars: M = 1.87 s, SE = 0.77; 80% regular exemplars: 

M = 1.64 s, SE = 0.58), and analyzed them together with the differential 
scores of Condition 1 of the present study [68.75% regular exemplars 
with exceptions (e = 5) just below the TP-threshold 5.77] in a one-way 
ANOVA. The scores did not differ across the three conditions [F(2, 
53) = 0.198, p = 0.821], indicating no evidence of gradually decreasing 
performance, as was already visible in the pattern of their means (1.87, 
1.64 and 2.3). Taken together, the lack of difference in the above two 
statistical comparisons suggest that the learning was not gradient.

We conducted additional analyses of the five experiments to further 
assess if infants’ generalization was gradient-like or quantal-like. First, a 
linear regression analysis was done, using the differential score as the 
dependent measure and the five levels of training as the independent 
measure. The results revealed that the levels of training significantly 
predicted the differential scores, F(1, 94) = 4.16, p = 0.0442. The regression 
model explained a small proportion of the variance in differential scores 
(adjusted R2 = 0.032). Notably, each increase of 1% in regular exemplars 
in training was associated with a positive change in the differential score, 
with a coefficient of B = 0.043 (β = 0.206). This positive trend was 
compatible with both gradient and quantal performance.

Therefore, we  subsequently assessed if infants’ performance 
showed a discrete change from 62.5 to 68.75% training. A step 
function model compared the TP-predicted unlearnable conditions, 
scored 0, and the TP-predicted learnable conditions, scored 1, in the 
format of a regression. This approach allowed us to compare the 
adjusted R2 of the step function model with that of the initial linear 
regression based on the five levels of training as the predictor. The 
results of the step function analysis indicated that the binary 

FIGURE 1

Differential scores (means and standard errors) of looking times in 
the test trials (i.e., the average looking time per trial for the untrained 
rule minus that for the trained rule). The differential scores were 
significantly above chance in Condition 1 [68.75% rule exemplars (11); 
the number of exceptions e  =  5 was just below the TP-threshold, 
θN=N/lnN  =  16/ln16  =  5.77], but not in Condition 2 [62.5% rule 
exemplars (10); the number of exceptions e  =  6 was just above the 
TP-threshold 5.77].

FIGURE 2

Differential scores (means and standard errors) of looking times of 
the test trials (i.e., the average looking time per trial for the untrained 
rule minus that for the trained rule). The five training conditions 
contained different proportions of rule exemplars relative to 
exceptions. The 68.75% (i.e., 11R/16) and 62.5% conditions (i.e., 
10R/16) were those of the present study. The other conditions with 
more extreme proportions of rule exemplars were from our previous 
studies (the 100% condition from Koulaguina and Shi, 2013, and the 
80 and 50% conditions from Koulaguina and Shi, 2019), i.e., 10R/10, 
8R/10, 8R/16. The 100, 80, and 68.75% conditions showed successful 
productive learning, and the learning performance across the three 
conditions was comparable statistically. The 62.5 and 50% conditions 
showed no productive learning, and their performance was also 
comparable statistically. The black dashed line across the columns 
represents the linear regression. Note that the linear regression line is 
a straight line; however, it has been slightly adjusted due to the 
uneven spacing between the different proportions of rule exemplars 
across the five training conditions. The orange line contains two 
horizontal lines representing the two values of the step function, 
with the break points between the 68.75 and 62.5% conditions.
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learnability index significantly predicted the differential scores, F(1, 
94) = 8.00, p = 0.0057. The step function model explained still a small 
proportion of the variance in differential scores, although more than 
twice than was explained by the gradually increasing model (adjusted 
R2 = 0.068 in the step function, compared to 0.032).

When the predictors based on the above two analyses (i.e., the 
gradual and the single step increase functions) were entered together, 
the overall fit degraded [F(1, 93) = 3.96, p = 0.0224, adjusted R2 = 0.059] 
relative to the second analysis alone, due to the loss of one degree of 
freedom. Importantly, the test for the step function, once the other 
predictor is taken into account, still approached significance, despite 
the loss of one degree of freedom [t(93) = 1.91, p = 0.0595], while that 
for the gradual increase predictor, after taking the other predictor into 
account, indicated a total absence of effect [t(93) = 0.002, p =0.9985]. 
Overall, the results of the above analyses were consistent with quantal 
rather than gradient performance.

Finally, we analyzed if infants received the same amount of active 
exposure during training, measured by their looking time to the screens, 
where the sound source was. Results showed no difference in looking 
during training in Condition 1 (M = 110.73 s, range = 33.23–273.77) vs. 
Condition 2 (M = 112.09 s, range = 31.62–289.44), t(46) = −0.07, p = 0.944. 
Individual infants’ looking times during training did not correlate with 
their differential scores in the test, neither in Condition 1 (r = −0.135, 
n = 24, p = 0.53) nor Condition 2 (r = 0.008, n = 24, p = 0.972). Infants 
spent more time playing with the toys and with the parent. Their looking 
times were low (on average about 1/4 of the training duration) and 
variable. However, infants in each subgroup received the same full 
passive exposure of the training input, suggesting that their performance 
during test reflected implicit/unconscious learning.

4. Discussion

We examined infants’ generalization from input containing 
different levels of regular exemplars and exceptions. Globally, 
productivity depended on regular exemplars being high in type 
frequency relative to exceptions, as predicted in all rule/pattern 
learning theories (e.g., Baayen, 1993; Bybee, 1995; Yang, 2016). Most 
theories focus on ranking different patterns with varying productivity 
indices, without specifying a threshold of productivity. TP (Yang, 
2016), in contrast, specifies an algorithm for the threshold of learning 
any rule, calculated from the number of rule exemplars and 
exceptions. Our training input was therefore set closed to the 
TP-threshold, with Condition 1 predicting productivity and 
Condition 2 no productivity. In terms of proportions, the regular 
exemplars were in statistically majority (over 50%) in both conditions 
(68.75, 62.5%), contrasting with the 50% training in one of our 
previous experiments (which yielded no learning) (Koulaguina and 
Shi, 2019). If statistical majority is the productivity threshold, infants 
should show generalization in both Conditions 1 and 2 of the present 
study. Therefore, statistical majority was pitted against Yang’s 
TP-threshold. For these three training conditions (68.75, 62.5, 50%), 
the number of total types was equal (N = 16) whereas the regular 
exemplars vs. exceptions varied (11 + 5, 10 + 6, 8 + 8). Infants showed 
productivity only in the 11 + 5 (68.75%) condition, consistent with 
TP, but not with statistical majority.

Another novel finding emerged from the combined analysis of our 
present and previous experiments: Infants’ productivity was quantal 

rather than gradient. As existing theories are often concerned with 
ranking the levels of productivity of regulars and irregulars within a 
rule/pattern or even unrelated rules/patterns (e.g., comparing English 
affixal rules such as re-, -able, -ness), their assumption is that 
productivity levels are gradient (e.g., Baayen, 1993; Bybee, 1995). In 
contrast, according to TP, productivity is quantal, depending on 
whether the exceptions to a rule sit below or above the TP-threshold 
(Yang, 2016); a productive rule, once learned, is equally productive 
regardless of the number of exceptions. Our infants showed evidence 
not only for the TP-predicted threshold, but also for the quantal effect. 
Infants in different learnable conditions were equally successful, 
whether input consistency was 100, 80%, or 68.75%. Likewise, the 
conditions that yielded no learning did not differ from each other. The 
linear regression and step function analyses indicated that the learning 
was categorical, rather than gradient. That is, infants responded 
quantally, as did older children in Bjornsdottir (2021). The lack of 
productivity gradience in infants is consistent with the regularization 
performance (rather than probability matching) shown in 5- to 
7-year-old children (Hudson Kam and Newport, 2005, 2009; Austin 
et al., 2022).

Finally, we showed that rule/pattern learning can be implicit. In 
other studies testing TP with older children and adults (Schuler et al., 
2016; Bjornsdottir, 2021), training required participants to maintain 
active attention. In our present and previous experiments (Koulaguina 
and Shi, 2013, 2019) infants relied mostly on passive input exposure, 
suggesting that learning can also operate at an unconscious 
neurocognitive level, at least for certain kinds of knowledge. Similarly, 
in Saffran et al. (1997) adults and 6- to 7-year-olds passively tracked 
transitional probabilities in an artificial language while actively 
performing another task unrelated to the background training speech. 
Since infants and toddlers, who typically have limited attention span, 
receive abundant passive/incidental exposure to various stimuli in 
daily life (e.g., language input), the implicit learning demonstrated by 
our infants offers insight into mechanisms of early cognitive and 
language development.

Exceptions used in TP studies are typically overt violation 
cases (comparable to the irregular past-tense form went in 
English). The exceptions in our input, however, are not direct 
violations of a rule/pattern but absence of evidence, a scenario 
occurring commonly in natural speech and important for 
language learnability theories. Our results show that such cases 
function equivalently as overt violation cases for learners; for both 
kinds, it is the number of positive data (i.e., attested regular cases) 
that determines productivity.

In conclusion, our findings suggest that rules or patterns can 
be learned from inconsistent input implicitly without attention. The 
evidence supports the threshold and quantalness of productivity as 
defined in TP (Yang, 2016). We demonstrate both success and failure 
of rule/pattern learning and generalization as predicted by the theory 
in infants as young as 14 months of age, indicating that the mechanism 
is available early in life.
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