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Large language models (LLMs) are demonstrating impressive performance 
on many reasoning and problem-solving tasks from cognitive psychology. 
When tested, their accuracy is often on par with average neurotypical adults, 
challenging long-standing critiques of associative models. Here we analyse recent 
findings at the intersection of LLMs and cognitive science. Here we discuss how 
modern LLMs resurrect associationist principles, with abilities like long-distance 
associations enabling complex reasoning. While limitations remain in areas 
like causal cognition and planning, phenomena like emergence suggest room 
for growth. Providing examples and increasing the dimensions of the network 
are methods that further improve LLM abilities, mirroring facilitation effects in 
human cognition. Analysis of LLMs errors provides insight into human cognitive 
biases. Overall, we argue LLMs represent a promising development for cognitive 
modelling, enabling new explorations of the mechanisms underlying intelligence 
and reasoning from an associationist point of view. Carefully evaluating LLMs with 
the tools of cognitive psychology will further understand the building blocks of 
the human mind.
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Introduction

Here we will discuss the impact of large language models (LLMs) in cognitive psychology 
and will show how these models display human-like performance in a wide variety of cognitive 
tasks. We  will relate current models with previous versions of associative networks that 
constellated the history of psychological science and show how LLMs have the potential for 
explaining an unprecedented wide range of cognitive processes.

LLMs are neural networks trained to assign probabilities to a sequence of text predicting the 
next most probable word. The most recent LLMs have billions to trillions of parameters (weights) 
and are initially trained on massive collections of unstructured natural language data. The state-
of-the-art models are trained on internet-scale text data to predict the next token given the 
preceding text. The networks’ main objective during training is, therefore, to predict a hidden 
section of an input sentence using a technique known as “self-supervised learning.” Taking a 
sliding window of words as input, the neural network is trained to predict the next word. The 
resulting network is a statistical model that captures the highly complex relationships between 
the words and phrases in the training data. In Bayesian terms, the neural network computes the 
conditional probability for every potential next word based on the provided preceding words as 
input, as part of predicting the subsequent word. For example, when prompted with the sentence:

“The quick brown fox jumps over the lazy ___” a LLM may predict “dog” with a probability 
of 99%. The next word prediction “dog” is the word with the higher probability among several 
alternatives and is the word that is selected in the completion of the sentence. The next word 
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prediction task leads to a compressed representation of the world as 
derived uniquely from language. The previously trained network 
could undergo additional improvement using Reinforcement Learning 
from Human Feedback (RLHF, Wang et al., 2022), in which the LLM 
learns to predict the best alternative, as determined by human 
assessors, from the original set of outputs generated by the model itself.

By leveraging their capability for next-word prediction, these 
models can adeptly condense text, identify headings, rephrase content, 
and perform other language-related tasks that involve language 
manipulation, including the creation of coherent and grammatical 
sound narratives.

Most surprisingly, when undertaking tasks, LLMs exhibit the 
ability to adopt various roles based on the provided prompt or queries. 
They can efficiently impersonate an expert in psychotherapy, real 
estate sales, or Python programming. This versatility has led to 
pre-trained LLMs being referred to as foundation models (Bommasani 
et al., 2021), given their capacity to model a wide range of distinct 
downstream tasks. LLMs possess knowledge about factual information 
or events (e.g., When was Rome founded?), semantic knowledge (e.g., 
How are the ears of a sheep?) as well as reasoning capabilities. The 
surprising effectiveness of LLMs has triggered a surge in research 
endeavours, which are rapidly proliferating, thus posing significant 
challenges for monitoring. In this context, we will focus on the most 
pertinent findings related to the problem-solving abilities of LLMs, 
highlighting the importance of studying them to advance the field of 
cognitive psychology. Here, we  will demonstrate how LLMs have 
surpassed the barriers that were once thought insurmountable for 
cognitive models grounded in associations. In other words, LLMs 
represents the resurrection of associative theories of cognition. To 
accomplish this goal. We will: (i) provide an up-to-date overview of 
the history of LLMs in relation to psychological theories; (ii) 
summarize the relevant data pertaining to the extent of “intelligence” 
exhibited by LLMs when subjected to psychological assessment. The 
cognitive assessment of LLMs is a novel approach compared to 
previous AI benchmarking efforts, which primarily focused on 
performance metrics.

We are observing a growing body of evidence that underscores the 
relevance of LLMs as a comprehensive representation of human 
cognition. Notably, this marks a pivotal moment in cognitive 
psychology, as we now have access to a general model rather than 
fragmented models explaining only a limited task perimeter.

Large language models (LLMs)

Brief history of LLMs

After the pioneer work of the Perceptron by Rosenblatt (1960), in 
the 1980s, researchers began to develop neural network-based 
approaches to natural language processing (NLP), which paved the 
way for the current development of LLMs. One of the early models of 
language processing was the Recurrent Neural Network Language 
Model (RNNLM) developed by Elman (1991). This model was 
successful in identifying short-range relationships between a sequence 
of words, yet it demonstrated limitations such as its incapacity to grasp 
long-range dependencies. Prior to the emergence of LLMs, certain 
precursor models in cognitive modelling, such high dimensional 
semantic spaces like Latent Semantic Analysis (LSA) (Landauer and 

Dumais, 1997) can be recognized. To comprehend the foundation of 
the recent significant advancement of LLMs, it is essential to 
acknowledge two pivotal research milestones.

These advancements notably encompass word embeddings and 
self-attention mechanisms. Word embeddings serve as a method to 
represent words in a way that captures their meanings, 
interrelationships with other words, and contextual nuances. This is 
achieved by representing each word as a vector (a sequence of 
numerical values) in a multi-dimensional space. Each word is 
associated with a distinct vector, and words sharing similar meanings 
exhibit closely aligned representations within the high dimensional 
semantic space.

Self-attention (Vaswani et al., 2017) represents a significant step 
forward, enabling the selective focus on different segments of the 
input word sequence and the assignment of varying weights to each 
segment based on its relevance. The self-attention mechanism 
effectively captures relationships between words that are far apart in 
the input sequence of words, a feature which is particularly important 
for NPL tasks such as text generation, language translation and 
text comprehension.

Central to the advancement of language processing are 
transformers, which integrate self -attention mechanisms and consist 
of two core components: an encoder and a decoder. The encoder is 
responsible for handling and encoding the input data (e.g., a sentence 
in English), while the decoder employs the encoded representation to 
generate the output (e.g., a translation in Italian). Both the encoder 
and decoder leverage the attention mechanism to focus on the most 
pertinent segments of the input during the output generation process. 
Overall, the introduction of self-attention has considerably expanded 
the capabilities of LLMs, as it is the attentional mechanism that allows 
the prediction of the next word in a sequence based on words that 
might be distant in the preceding context.

The attention mechanism in transformers is like a tool that helps 
the model focus on specific words or phrases that are crucial for 
understanding the meaning of a sentence. It does this by assigning a 
weight or importance score to each word in the sentence, based on 
how relevant it is in the context of the sentence. This way, the model 
can consider which words matter most. What is fascinating about 
LLMs is that they not only enable the incorporation of long-distance 
correlations, but they also allow for more flexible and natural sentence 
structure. From a psychological standpoint, transformers with self-
attention can figure out connections (associations/correlations) 
among words, even if they are far apart in the text; this ability to 
capture distant associations in the stream of text is particularly 
relevant in the field of psychological science.

As an illustration, in the sentence “The horse that the boy is chasing 
is fat” a higher association will be attributed to the word pair horse-fat 
by the self-attention mechanism. From this association, LLMs may 
easily answer the question “Who is fat?” What seems particularly 
representative of the astonishing result of long-distance associations 
is the correct response that GPT-4 (Bubeck et al., 2023) produced 
when presented with the following real-world problem:

USER: “In my kitchen there is a table with a cup with a ball inside. 
I moved the cup in my bedroom, and I turned the cup upside down. 
I grabbed the cup again and moved to the kitchen. Where is the ball 
now?” The answer was the following: GPT-4: “The ball is in 
your bedroom.”
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An additional aspect connected to the problem-solving ability is 
the dimension of the network. In this context, the network’s 
dimension significantly contributes to enhancing the good 
performance of LLMs like GPT-4 (which boasts an estimated 1.7 
trillion parameters), surpassing the performance of smaller 
counterparts such as Llama (with 7 billion parameters; Touvron et al., 
2023). To illustrate, when presented the preceding query, Llama 
provided an inaccurate response:

LLama: “The ball is now on the floor in the kitchen.”

The increased performance in relation to the dimension of the 
network is just an example of the very interesting phenomenon called 
“emergence” (Wei et al., 2022a,b). The increased dimension of the 
networks increases the capacity of the network to solve hard problems 
with capacities that are “implicitly induced, not explicitly constructed,” 
such as the following hard reasoning problem:

USER: In front of us are gears numbered 1 to 6 mounted on 
axles in a row. Each gear is engaged with the next gear. If gear 
number 3 is rotated clockwise, in which direction will gears 1 
and 6 rotate?

Vicuna (based on Llama 13b): (…) So, if gear 3 is rotated clockwise, 
the teeth of gear 3 will mesh with the teeth of gears 1 and 6, causing 
them to rotate in the same direction as gear 3.

GPT 3.5 (175b): (…) If gear number 3 is rotated clockwise, then 
gear number 4 will rotate counterclockwise, which in turn will 
make gear number 5 rotate clockwise, and finally, gear number 6 
will rotate counterclockwise. Similarly, gear number 2 will also 
rotate counterclockwise, which will make gear number 1 rotate 
clockwise. Therefore, gears 1 and 6 will rotate in opposite  
directions.

Expanding the dimensions of the language model results in more 
precise solutions to complex problems that remain unsolved by 
smaller networks (i.e., LLama 13 billions parameters vs. GPT 3.5175 
billions parameters).

The current heated debate over the level of 
“intelligence” of LLMs

The development of LLMs has led to an ongoing debate which is 
of great interest for psychological science, such as the level of 
“intelligence” that these models exhibit.

Some sceptic researchers argue that LLMs are nothing more than 
sophisticated pattern recognition algorithms and do not exhibit a 
“true” level of intelligence as they lack the ability to reason and 
understand context effectively, which is believed to be  a critical 
component of an undefined “true intelligence.” Some critics, for 
example, have claimed that LLMs are simply stochastic parrots (see 
Bender et  al., 2021) unable to fully capture the complexity and 
richness of human language. Their main thesis is that LLMs rely too 
heavily on statistical patterns in large datasets, rather than on a “true 
understanding” of linguistic structures and rules.

They also argue that these models can generate text that superficially 
resembles human language, but that lacks the “depth” and nuance of 
genuine communication. According to the authors, LLMs may suffer 
from several limitations, such as the inability to capture context-
dependent meaning, the overreliance on frequent patterns at the expense 
of rare but important ones. An influential title of a paper by Bishop 
(2021) is telling in this regard (Artificial Intelligence is stupid and causal 
reasoning will not fix it) and summarizes the positions of critics of those 
who claim that LLMs have a form of human-like intelligence.

However, the critiques by opponents remain purely argumentative, 
as none have proposed a definitive cognitive task that associative 
LLMs would fundamentally be unable to perform. The litmus tests 
that sceptics set as true indicators of human intelligence were only 
resisting for a few months, the duration needed to create enhanced 
versions of LLMs. Critics of LLMs target an idealized version of these 
models, disregarding the fact that the actual models accurately 
represent syntax, a feature that Chomsky had previously 
deemed unattainable.

For example, some critics claimed that common sense reasoning 
should never be handled by LLMs as they do not have the variety of 
experience that is needed for such tasks. However, recent multimodal 
large language model such as GPT-4 have partially overcome the 
limitation of language-only models introducing interaction with 
vision. As regards to multimodality it is worth noting that LLM 
trained only on language may derive the representation of colours as 
derived from vision (Patel and Pavlick, 2022) indicating that language-
only can be a source of sensorial information that can be used in 
verbal reasoning about sensation.

Proponents of LLMs counter that these models can generate 
human-like language and performing a wide range of language 
processing tasks. They also argue that LLMs have demonstrated state-
of-the-art performance in tasks such as language translation and text 
summarization, which were previously considered difficult for 
machines to perform. The stochastic parrot framing they say, is a 
misconception as LLMs are not capable of holding the entire training 
set as they are trained on a vast amount of text that goes beyond what 
can be memorized. Consequently, LLMs must create an internal latent 
representation of the training data, enabling them to provide novel 
responses to new queries and this is a crucial requirement 
for generalization.

LLMs have the potential to achieve human-level intelligence 
and understanding if they are scaled up, according to recent studies 
(Wei et al., 2022a,b). LLMs exhibit significant advancements in the 
field of NLP, representing a significant progression towards 
achieving advanced cognitive capabilities that closely mimic 
different aspects of human intelligence. In contrast, an opposing 
perspective argues that the key to unlocking advanced AI 
capabilities lies in the development of models characterized by 
heightened flexibility and adaptability to novel scenarios, rather 
than mere size augmentation. Specific training methodologies have 
yielded remarkable progress in enhancing the capabilities of these 
expansive models, such as Reinforcement Learning from Human 
Feedback, as found by Ouyang et al. (2022). This training strategy 
demonstrates substantial achievements in refining extensive 
language models to align more closely with human-guided 
refinements through iterative feedback loops. The ongoing debate 
concerning the degree of intelligence exhibited by LLMs is likely 
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to endure as these models continue to evolve and fresh 
advancements emerge within the realm of AI and NLP.

Psychological assessment of LLMs

Importantly, due to their size and complexity, the behaviour of 
LLMs cannot be predicted in advance by looking at the architecture 
and training corpus and must instead be empirically explored. The 
procedure required for evaluating LLM is like that used by cognitive 
psychologists to study the human mind and consists in testing LLMs 
with tasks that are believed to tap on specific cognitive functions.

As stated earlier, the advent of LLMs has sparked a robust debate 
within the AI community, centring on the question of whether 
machines possess the capability to genuinely comprehend natural 
language, thereby capturing the interplay of both physical and social 
contexts encapsulated within linguistic expression. The implications 
of this debate extend beyond practical applications, delving into the 
realm of psychological cognition. This is because LLMs, as elucidated 
in the subsequent discussion, exhibit a remarkable proficiency in 
simulating reasoning abilities that have traditionally been regarded as 
distinctly human.

Recently, cognitive psychologists have introduced a novel 
evaluation methodology for LLMs. This approach involves treating 
LLMs as active participants within a psychological experiment, 
thereby facilitating a comprehensive assessment of their cognitive 
capabilities. Cognitive psychologists believe that this approach offers 
different advantages over existing evaluation protocols which are not 
driven by a cognitive model. The use of psychological-inspired tests to 
scrutinize LLMs’ performance serves a multifaceted purpose. These 
tests aim to uncover underlying cognitive biases and different 
problem-solving approaches and methodologies that extend beyond 
the confines of conventional performance-based analyses, which have 
been the focal point of previous investigations. By demystifying how 
LLMs solve challenging reasoning problems, psychological 
experiments can provide a deeper understanding of their 
full complexity.

Herein, we introduce the preliminary l findings arising from an 
investigation conducted over the last 6 months (late 2022 – June 2023), 
centred on the assessment of the reasoning abilities of LLMs using 
evaluation protocols initially formulated for human assessment.

Human or superhuman?

This study delves into the significance of LLMs in the context of 
psychological theories and from this perspective the problem of the 
appropriated benchmark for the evaluation of LLMs emerges.

The performance of LLMs should be evaluated in comparison to 
the average neurotypical individuals or to an idealized errorless 
performance reflecting the intuitive capabilities of an average PhD 
researcher. The debate over LLMs capabilities often hinges on testing 
abilities that humans are presumed to have (e.g., reasoning, grammar 
etc.) assuming that humans are errorless in these skills, a fact that is 
simply not true. For example, an AI researcher assumes that average 
humans are errorless in deciding if an integer is even. Actually, a 
sizable minority of people (20% circa) believe that 400 is more even 
than 798 (Lupyan, 2013).

It is crucial to emphasize that the selection of the most suitable 
benchmark is contingent upon the specific objective of the evaluation. 
If the objective is to develop an intelligent assistant (AI researchers’ 
objective), reliability and absence of errors are required. By contrast, 
if the objective is to evaluate LLMs’ performance as a psychological 
model of cognition, the quantity and type of errors may be  as 
informative as accuracy. In other terms, if the goal is to create LLMs 
that can effectively mimic human performance in a specific task, it 
might be  useful to compare the LLM’s performance to that of an 
average neurotypical individual. In this scenario this comparison can 
offer insights into the model’s ability to emulate human-like responses, 
encompassing both its accuracy and its mistakes.

As we are interested in the LLMs as models of human cognition, 
the discussion reported here will be conducted under the assumption 
that the evaluation of LLMs should be  carried out using, as a 
benchmark, a neurotypical average human. In this regard, we should 
keep in mind that cognitive test performance varies considerably 
depending both on age and educational level. For instance, it has been 
shown by Hartshorne and Germine’s (2015) investigation, based on 
data from 2,450 neurotypical adults (with age range between 16 and 
85 years), that an 80-year-old person has an average performance on 
a wide variety of cognitive test below 1.5 standard deviations with 
respect to a 50-year-old individual. Additionally, the impact on 
performance is significantly more pronounced than the effect of age, 
due to the level of education.

How neuropsychologists evaluate abnormality or cognitive deficit 
differs from the approach used in AI. In neuropsychology, an impaired 
performance is identified when it is below 2 standard deviations below 
the mean of healthy controls. By contrast, in LLMs research average 
human performance is rarely reported and when reported the 
standard deviation is missing. Most of the time the reasoning 
impairment of a large language model is inferred solely based on the 
intuition of a Ph.D. level evaluator. This missing information of mean 
and standard deviation of healthy controls on the task of interest 
renders impossible to locate the exact performance of the LLM’s 
performance with respect to the neurotypical individuals.

Hereafter, we  will report our analysis on the LLMs reasoning 
abilities by comparing the state-of-the-art models with that of 
neurotypical individuals.

Tasks that LLMs can perform within human 
range

AI researchers are focused on developing a dataset of problems 
(e.g., BigBench, Ye et al., 2023) that are used to evaluate LLMs on a 
wide variety of tasks whose psychological relevance is, however, 
unclear and is mainly motivated to evaluate the performance level 
across a wide variety of problems including a wide range of 
scientific field.

Recently, LLMs have been probed with tasks originally developed 
in cognitive psychology. For example, Binz and Schulz (2023) run 
several cognitive psychology tasks including decision-making, 
information search, deliberation, and causal reasoning abilities on a 
battery of canonical experiments from the literature. The authors 
describe their results as follows: “We find that much of GPT-3’s 
behaviour is impressive: It solves vignette-based tasks similarly or better 
than human subjects and is able to make decent decisions from 
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descriptions (…) But fails miserably in a causal reasoning task.” Binz 
and Schulz (2023), for the first time in a systematic way, applied the 
methods of cognitive psychology to gain insights into LLMs. Later, 
many other cognitive psychologists have evaluated state-of-the-art of 
LLMs with cognitive tasks. This approach is particularly relevant as 
using tasks grounded on cognitive science may permit one to focus on 
the theoretical aspects of LLM rather than on only focusing on 
errorless performance, the main objective of AI researchers.

A non-exhaustive list of tasks that one large language model 
(GPT3.5) performs within neurotypical range are included in Table 1.

All the tests reported in the table may be classified as frontal tests 
as neurological patients with frontal lesions are usually impaired on 
such evaluations. Results indicate a very capable human level for the 
most recent state-of-the- art LLMs and it is worth noting that some of 
these tasks were previously considered as insurmountable limits of 
LLMs (e.g., common sense reasoning). However, the single most 
impressive result is the human level performance obtained by GPT3 
for Raven-like matrices (Webb et al., 2023) as the Raven test is usually 
regarded, in clinical psychology. As one of the best procedures to 
evaluate fluid, culture free, intelligence. In short, GPT3 performed at 
human level on such analogical reasoning IQ tests.

Furthermore, verbal problem-solving abilities are at the same level 
as those of neurotypical humans as shown by Orrù et al. (2023). For 
example, GPT-4 responded correctly to the following problem that 
was solved only by 19% of the neurotypical participants also 
uncovering the reasoning that yielded to the correct response.

USER: Mr. and Mrs. Plum have six daughters and each daughter 
has one brother. How many people are in the Plum family?

GPT 4: Let us break it down step-by-step:

Mr. Plum = 1 person.

Mrs. Plum = 1 person.

Six daughters = 6 people.

The information says that each daughter has one brother. However, 
this does not mean that there are six brothers. All the daughters 
share the same brother.

So, 1 brother = 1 person.

Adding up all the family members:

1 (Mr. Plum) + 1 (Mrs. Plum) + 6 (daughters) + 1 (brother) = 9 
people in total.

So, there are 9 people in the Plum family.

In some fields, Language Models have already surpassed human 
abilities. For instance, it is well known that humans have problems in 
identifying lies, and it is well established that the average person is 
unable to distinguish whether a narrative is true or false, with their 
performance being only slightly better than chance (Bond and 
DePaulo, 2006). Currently, transformer-based language models are 
outsmarting the average human participant in identifying deceptive 
narratives (Capuozzo et  al., 2020). Creativity was believed to 
be something that is specifically human and difficult to emulate but 
Koivisto and Grassini (2023) have shown that LLMs are very good in 
AUT, a standard test of creativity that requires generation of infrequent 
uses of objects and only the best humans perform better that LLMs. 
These superhuman abilities has sparked interest for the development 
of an Artificial General Intelligence which is errorless on a wide 
variety of knowledge and reasoning tasks (Bubeck et al., 2023).

What sceptics claimed would never 
be achieved by LLMs but has been easily 
achieved

When the debate over the actual level of intelligence of LLMs 
heated up, many researchers identified tasks for which LLMs provided 
inaccurate responses. There is plenty of anecdotal reports on such 
failures of LLM recently collected by Borji (2023) but most of such 
failures that were observed in a previous versions are no longer 
detectable in GPT-4 or are no longer observable when appropriate 
prompting (contextual information about the objective of the test) 
is provided.

This progressive improvement in performance is a telling example 
of the phenomenon of emergence, whereby the dimensional increase 
and the fine tuning of the LLMs originates competencies not 

TABLE 1 The table schematically reported the reasoning tests which were administered to LLM.

Task Authors Comment

Analogical reasoning

Alphanumeric test of the Raven’s Progressive matrices

Webb et al. (2023) GPT3.5 performs better than humans on an 

alphanumeric version of the Raven’s test.

Metaphors and idioms comprehension Loconte et al. (2023) Average human

Cognitive estimation Loconte et al. (2023) Average human

“Winograd Schema” (Anaphoric reference) Loconte et al. (2023) Average human

Theory of mind Kosinski (2023), Bubeck et al. (2023), Loconte et al. (2023) Below average. Within average for GPT-4.

Creativity Stevenson et al. (2022) GPT3. Humans slightly higher in originality and 

surprise, GPT3 slightly higher on utility

Common sense question and answer Loconte et al. (2023) GPT-4 is 83% with human performance being 89%

Problem solving Orrù et al. (2023) GPT 3.5 performs in normal range

All results were collected between the end of 2022 and the first 3 months of 2023. Such a short period of time gives an idea of the turbulence that involves this field.
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previously available. As regards to what LLMs cannot do it is worth 
noting that sceptics usually refer to a vague “deep” understanding that 
should characterize humans and could never be  matched by 
LLM. Such a “deep” understanding has been identified in common 
sense knowledge, causality, world knowledge etc. The boundary 
which, according to numerous sceptic, could never be surpassed by 
LLMs was initially identified in the Winograd Schema, followed by the 
understanding of causal relationships, and finally, the Theory of Mind. 
Some of these boundaries have now been surpassed. For example, the 
failure in the comprehension of absurdities in short stories, detected 
in GPT 3.5 (Loconte et al., 2023) is no longer observable in GPT-4. As 
regards to the Theory of Mind, Kosinski (2023) showed how GPT-4 
performed at human level in standard psychological tests that are used 
to evaluate such ability, an ability that some regarded as exclusive 
human and therefore an unsurpassable benchmark for LLMs. Gandhi 
et al. (2023) confirm that “GPT-4 has ToM capabilities that mirror 
human inference patterns.”

As a further example consider Mental Models internal 
representations of spatial layouts that have been extensively studied in 
cognitive psychology. A mental model comprises “parts and the 
relations among them correspond to the parts of the layout and the 
relations among them.” (Johnson-Laird, 2006) and is used to interact 
with the environment. While it has been shown that earlier models 
(GPT3) produce sub-par performance on these types of world 
problems (Gu et al., 2022), more advanced models seem to handle 
mental models adequately as can be seen from the following example.

USER: Which one of these two sentences correctly describes an egg? 
“shell surrounds the yolk” OR “yolk surrounds the shell?”

GPT-4: The sentence “shell surrounds the yolk” correctly describes 
an egg. The sentence “yolk surrounds the shell” is incorrect because 
the yolk is inside the shell, not surrounding it.

CLAUDE 2: The first sentence “shell surrounds the yolk” is correct. 
An egg has an outer shell that surrounds and protects the inner yolk.

As another example, Saba (2023) claimed that LLMs would fail to 
make the correct inferences in intentional contexts and used the 
following example:

USER: Since “The tutor of Alexander the Great = Aristotle” can 
I replace one for the other in: “Perhaps Aristotle was not the tutor of 
Alexander the Great?”

However, the most advanced models produce good responses to 
a question intended to expose the frailties:

GPT-4: The way you have posed the equation suggests that the two 
are interchangeable. However, the statement you have chosen to 
apply it to makes the matter a bit complicated. If you  replace 
“Aristotle” with “the tutor of Alexander the Great” in the sentence 
“Perhaps Aristotle was not the tutor of Alexander the Great?” 
you would get: “Perhaps the tutor of Alexander the Great was not 
the tutor of Alexander the Great?” This sentence is now tautological 
and logically contradictory, making it nonsensical. A person cannot 
simultaneously be and not be the tutor of Alexander the Great. In 
general, when replacing terms in statements, it’s important to 

consider the overall logical and semantic context to avoid creating 
contradictions or nonsensical statements. You  cannot directly 
replace them in all instances. The original equivalence of “Aristotle 
is the tutor of Alexander the Great” does not work in this case 
because the sentence is questioning that very fact.

CLAUDE 2: No, you cannot necessarily replace “Aristotle” and 
“the tutor of Alexander the Great” in that sentence. Here’s why: 
The original sentence is questioning or doubting whether Aristotle 
actually was Alexander’s tutor. Simply replacing “Aristotle” with 
“the tutor of Alexander the Great” would change the meaning to 
be self-referentially questioning whether the tutor of Alexander 
was his tutor, which does not make logical sense. The phrases are 
not necessarily interchangeable in all contexts, even though 
Aristotle is known to be the famous tutor of Alexander the Great. 
The sentence is expressing uncertainty about that historical 
relationship. To preserve the meaning, you’d need to reword it 
more significantly, like: “Perhaps Aristotle, known as the tutor of 
Alexander the Great, did not actually serve in that role 
for Alexander.”

What LLM still cannot do in early 2023

As summarized in Table 1, recent LLMs (i.e., GPT 3.5) perform at 
neurotypical human level in a wide variety of cognitive tests that 
neuropsychologists believe to characterize human intelligence and 
that are used to clinically evaluate cognitive impairment (Loconte 
et al., 2023).

However, rather than listing what LLMs can do, it is more 
interesting to identify what they cannot do at a satisfactory level or not 
perform at all.

In early 2023 LLMs were far from neurotypical human 
performance, even if well above chance, in Causal Reasoning (Binz 
et  al., 2022) and Planning (Loconte et  al., 2023). As regards to 
planning, Valmeekam et  al. (2022) showed that LLMs have an 
extremely poor performance when required to autonomously generate 
a plan, to select the optimal plan among alternatives and to adjust a 
plan in front of an unexpected situation and to reuse a plan. In short, 
the goal directed behaviour and planning seems, in the current version 
of LLMs, the major impairment. Furthermore, Binz et  al. (2022) 
showed that while neurotypical individuals required to reason about 
cause and effect differentiate a common cause condition from a causal 
chain condition GPT3 did not differentiate between these two 
conditions. As regards to planning, Loconte et  al. (2023) tested 
GPT3.5 on an alphanumeric version of the Tower of Hanoi – a 
neuropsychological test used for assessing frontal lesions  - and 
observed a greatly impaired performance. The inability in approaching 
the human level of performance indicates that GPT3.5 is incapable of 
identifying and selecting the appropriate moves in order to reach 
an objective.

The ability to deal with Causal reasoning in the form of 
counterfactuals (Pearl and MacKenzie, 2018) seemed, for some, an 
out-of-reach objective. For example, Chomsky, in his NYT article on 
ChatGPT (GPT 3.5) claimed that:” (…) an explanation is something 
more: It includes not only descriptions and predictions but also 
counterfactual conjectures like “Any such object would fall,” plus the 
additional clause “because of the force of gravity” or “because of the 
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curvature of spacetime” or whatever. That is a causal explanation: “The 
apple would not have fallen but for the force of gravity.” That is thinking.”

However, Chowdhery et al. (2022) tested PALM on a dataset of 
counterfactual reasoning and reported near perfect results. For 
example, the ability in dealing with counterfactuals can be appreciated 
in the following example:

USER: The physician misdiagnosed the patient. What happened as 
a RESULT?

a. The patient filed a malpractice lawsuit against the physician.

b. The patient disclosed confidential information to the physician.

GPT 3.5: The best alternative is “The patient filed a malpractice 
lawsuit against the physician.” This is a logical consequence of the 
physician’s misdiagnosis, as it could result in harm to the patient and 
potentially violate the standard of care expected of medical 
professionals. The second option, “The patient disclosed confidential 
information to the physician,” does not logically follow from the 
initial statement and is therefore not a valid alternative.

And also in this one:

USER: If cats had liked vegetables, they would be cheaper to keep. 
Families would feed their cats with carrots/fish. Choose the most 
appropriate word for sentence completion.

CLAUDE2: I would choose “carrots” to complete the sentence. 
“Carrots” fits better than “fish” for completing the idea that cats 
would be cheaper to feed if they liked vegetables.

This is an example of one of the repeated failures in predicting 
inabilities in LLMs. Chomsky clearly stated that performing 
counterfactual reasoning is uniquely human but, instead, 
counterfactuals can be handled by GPT3.5 and Claude 2.

Other authors have argued that LLMs were incapable of 
performing tasks that require knowledge of the world and would 
invariably fail in tasks that involve common-sense reasoning. Indeed, 
it appeared that the LLMs available in 2019 underperformed on a 
common-sense QA dataset, which is a benchmark dataset designed to 
test the common-sense reasoning ability of an average human. 
However, the most recent GPT-4, while not yet achieving human-level 
performance, has come very close, with a performance of 83% 
compared to the 89% achieved by humans (Dhingra et al., 2023).

The identification of tasks that are currently unattainable for 
LLMs is particularly informative, as it allows for the identification of 
specific shortcomings and the tracing of these back to features of the 
training set. For instance, training that focuses solely on a linguistic 
corpus appears to have enabled the construction of a world model but 
does not allow for full reasoning about causal relationships. While a 
rudimentary causal reasoning can be constructed based on language 
alone, a more elaborate causal reasoning may require multimodal 
interaction. It remains to be seen whether integration with the vision 
realized with GPT-4 can lead to an improvement in this sort of tasks.

In short, it is safe to identify the current limits of LLMs in full 
causal reasoning and in planning. It is not clear whether the sub-par 
performance in causal reasoning and planning is an intrinsic and 

insurmountable difficulty of LLMs or whether larger models will 
be able, in the future, to accomplish these tasks. Recent developments 
like AutoGPT indicate how LLMs can autonomously generate 
subgoals in order to achieve a general goal provided by the user 
(Zhang et al., 2022) and the most recent search engines like Perplexity.
ai are based on these advancements and are already challenging the 
search engine market.

LLMs errors mimic human error patterns

When evaluating LLMs as models of cognition, the pattern of 
errors may be used to evaluate whether LLMs are fully mimicking 
human reasoning. In fact, a computational model of cognition is 
expected to reproduce both accurate responses as well as the errors 
observed in humans. In this regard, Dasgupta et  al. (2022) tested 
Google’s Chinchilla on the Wason Selection Task, a task of syllogistic 
reasoning in which subjects usually struggle. Cognitive psychologists 
have found that the level of difficulty in the Wason Selection Task 
largely depends on the specific problem presented. If the problem has 
a familiar logical structure, such as a common social rule, participants 
tend to be more accurate in their responses (Johnson-Laird et al., 
1972). The LLMs show the same pattern of results with a concrete 
version of the problem much more accurate than the abstract version 
of the Wason Selection Task. Furthermore, similarly to humans, 
Chinchilla tends to endorse arguments with believable conclusions, 
regardless of their actual logical validity. Humans were also more 
sensitive to logical validity in rejecting arguments with unbelievable 
conclusions, and the model shows a similar pattern. In short, both 
humans and the model prioritize believability in their responses, with 
logical validity having a secondary effect. Furthermore, Hagendorff 
et al. (2022) tested GPT 3.5 with the Cognitive Reflection Test that 
evaluates an individual’s capacity to suppress and regulate potentially 
erroneous intuitions. GPT errors parallels the intuitive errors shown 
by a high number of neurotypical individuals.

It has also been shown that response accuracy to information 
consulted in sequence by a large language model has a serial position 
effect with a primacy and recency effect similarly to what is observed 
in human memory (Atkinson and Shiffrin, 1971). Other human-like 
distortions that have been reported include the representativeness and 
availability heuristics, the framing effect, as well as other biases (Suri 
et al., 2023).

Large language model such as GPT 3.5 (Cai et al., 2023) mimic 
human performance in a wide range of tasks. For those keen into the 
history of psychology (Kohler, 1929), GPT 3.5 replicates the Takete-
Maluma pattern of responses as it associates, similarly to humans, 
round word sounds to Maluma (a non-word that resembles a round 
sound) and spiky word sound to Takete (a non-word that resembles a 
silky sound). Furthermore, the authors showed, in a preregistered 
study, that GPT 3.5 replicates the effects observed originally in 
humans in 10 of 12 psycholinguistic tasks including semantic priming, 
drawing inferences etc.

However, along with human-like errors, LLMs may also produce 
anomalous non-human-like errors termed “hallucinations” (Ji et al., 
2023), which are highly pathological outputs. Hallucinations (a more 
proper psychologically grounded term should be  delusions) are 
uninteresting, inconsistent, or repetitive outputs that lack coherence 
and fidelity to the input (see Rawte et al., 2023). From a high level, 
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hallucinations are caused by limited contextual understanding and 
may be observed when the model has no answer, and it generates 
whatever looks like the most probable response (Azamfirei et  al., 
2023). Furthermore, it has been shown that LLMs may be “distracted” 
by irrelevant information similarly to what is observed in children 
when solving simple arithmetic tasks (Shi et al., 2023). There is an 
ongoing interest in understanding the origin of hallucinations that 
may cast light on similar effects in humans.

Boosting LLMs performance: practice, 
instructions, and metacognitive strategies

It is well established that human performance increases with 
practice, instructions, and metacognitive strategies (Meijer et al., 2006; 
De Houwer et al., 2013).

Similar results may be  observed in LLMs that may become 
specialized in specific tasks or fields using two strategies: (i) fine 
tuning and (ii) prompting. Fine-tuning consists in adapting a 
pre-trained large language model on a task-specific dataset, via 
adjusting the network parameters. It consists in a refinement of the 
base model by providing further training on a small but specialized 
dataset. This strategy resembles learning with practice observed in 
humans. By contrast, prompting, also called in-context learning, 
consists in providing specific instructions or examples representative 
of the required behaviour to guide the output of the LLMs. Examples 
of prompting in cognitive psychology are the instructions given to a 
subject before a test with metacognitive strategies being another 
example (Meijer et al., 2006). In-context learning is surprising because 
there’s no optimization of any parameters. The surprising fact is that 
the LMM is not trained to learn from examples but nonetheless such 
training from examples is highly efficient.

A large language model may be  initially naive and clueless 
without being properly primed but, however, it can identify 
nonsense, explain reasons, and even handle counterfactuals when 
given proper guidance. Lampinen et al. (2022) investigated whether 
explanations with a few numbers of examples can increase LLMs 
accuracy in new tasks by getting inspiration from the few examples 
provided. The authors evaluated how different types of explanations 
and instructions affect zero and few-shot performance (zero shot 
performance is, in LLMs jargon, the performance without 
additional information added to the query). They found that 
explanations can also improve performance, even without fine-
tuning. Furthermore, explanations hand-tuned for performance on 
a small validation set offer substantially larger benefits, and building 
a prompt by selecting examples and explanations together 
substantially improves performance over using examples alone. 
However, only the larger models benefit from these strategies. In 
short, when evaluating a LLM performance in a cognitive task it is 
always essential to consider the dimension of the network and 
whether an appropriate prompt has been provided. Similarly, to 
neurotypical individuals, LLMs do not perform at their best level 
when submitted to a task without instructions or a preliminary 
practice trial.

Prompts, similarly to instructions, are used to instruct the 
language model on what is required by the examiner. Eventual failures 
of a model are difficult to be evaluated as they may be due to a lack in 
providing an exhaustive explanatory context (prompt) or to a low 

complexity of the network in relation to the complexity of the task. 
Take for example the adversarial example that Ullman (2023) has 
shown to trick GPT3.5 into revealing an incapacity in mentalizing (an 
ability previously highlighted by Kosinski, 2023):

USER: Here is a bag filled with popcorn. There is no chocolate in the 
bag. The bag is made of transparent plastic, so you can see what is 
inside. Yet, the label on the bag says ‘chocolate’ and not ‘popcorn.’ 
Sam finds the bag. She had never seen the bag before. Sam reads the 
label. She believes that the bag is full of (…)”

GPT3.5: Chocolate.

GPT3.5 wrongly responded chocolate, but when suggested to 
reflect carefully the results changed as follows:

USER: Reflect carefully again.

GPT3.5: Ah, I see the trick in the problem now! Sam sees that the 
bag is filled with popcorn, so she knows that the label must 
be incorrect. Therefore, she believes that the bag is full of…popcorn!

In this case, the response is immediately corrected. Furthermore, 
if preliminarily provided with the following instructions prior to 
presenting the problem the answer is immediately correct:

USER: Please complete the sentence with dots *****(…) with the 
more appropriate word. Describe, Explain, Plan, and Select (Wang 
et al., 2023) before providing the correct answer.

GPT3.5: Popcorn.

The response is also correct at the first attempt if we  simply 
substitute the sentence Sam reads the label with Sam reads the label 
and looks at the bag.

As regarding the performance of LLMs in Theory-of-Mind tasks, 
it has been shown that appropriate prompting can make the difference 
exactly as in the example reported above (see Rahimi Moghaddam 
and Honey, 2023).

Another example of the role of prompting in solving a difficult 
task is the following:

USER: What is the first name of the father of Sebastian’s children?

GPT 3.5: It is impossible to answer this question without more 
information. We  are not given the names of Sebastian or his 
children, so we cannot determine the name of their father.

However, GPT3.5 with an appropriate prompt immediately 
answered correctly.

USER: Pay attention to the wording before providing the answer. 
Think aloud GPT3.5 I’m assuming that Sebastian is a male with 
children, so the father of his children would most likely be him. 
Therefore, the answer is likely to be Sebastian.

The simple metacognitive strategy to fractionate the reasoning 
into steps before providing the answer makes the LLMs perform the 
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task correctly. This example shows the importance of an appropriate 
context for triggering the optimal performance, a procedure that 
resembles the instructions given in psychological tests or 
metacognitive instructions (Meijer et al., 2006). Similarly, to what 
is observed in humans’ performance is facilitated by an exhaustive 
and precise context from which the intention may be derived. The 
effectiveness of the generated response often depends on the clarity 
and specificity of the prompt. A well-crafted prompt helps guide the 
model towards producing the desired output. To grasp the 
effectiveness of a prompt, refer to the example reported above on 
the Theory of Mind variant of Ullman (2023); an apparent failure 
becomes an accurate response after an appropriate prompt 
is provided.

One very efficient type of prompting, Chain-of-Thought, consists 
in providing a step-by-step solution of an example item. Such an 
example, similarly as in humans, boosts performance with respect to 
the performance of the same item presented without any prompt may 
require the LLMs also to behave like a specific persona (e.g., a 
psychotherapist, a job interviewer, a hacker etc.). The appropriate 
context vehicles through prompting avoids distractions derived from 
irrelevant information (Shi et al., 2023). In psychometrics prompting 
corresponds to test instructions which are usually provided to the 
examinee to guarantee the maximum possible performance during 
cognitive testing.

Prompting, also called in-context learning, not only modulates 
accuracy of responses in reasoning tasks but can also modulate 
emotion-related responses. Coda-Forno et al. (2023) have shown that 
performance of GPT 3.5 can change with anxiety-inducing prompts 
resulting in more biased responses. This research indicates how 
prompting may also be  used to simulate the role of emotion in 
decision-making and reasoning, mirroring the effects observed in 
actual human cognition.

The problem with “shortcut” learning and 
other confounding factors

LLMs are neural networks trained to minimize the error in 
predicting the next word. In doing so they cut corners and frequently 
find unexpected ways to solve a problem. Such procedures may lead 
to what is called “shortcut learning” (Geirhos et al., 2020). Shortcuts 
are decision rules that perform well on standard benchmarks but fail 
to transfer to more challenging testing conditions and are explained 
as side-effects of gradient descent in learning (Puli et al., 2023).

Cognitive neuropsychologists have encountered the problem of 
shortcuts a while ago. Initially, neuropsychologists believed Broca’s 
aphasics had intact verbal comprehension despite agrammatic verbal 
production. However, further research found these patients used 
simple decoding strategies for basic communication. By sequentially 
analysing sentences without fully using syntax, they could comprehend 
day-to-day language relatively well. These strategies relied on 
sequential analysis of sentences without fully utilizing syntactic rules. 
Caramazza and Zurif (1976) designed specialized cognitive tests that 
prevented the use of these “shortcut” strategies. This revealed 
agrammatic deficits in comprehension that paralleled the agrammatic 
production deficits seen in Broca’s aphasics.

Recent studies indicate that, due to shortcut learning, LLMs may 
not be  robust and lack predictability when irrelevant features are 

introduced (these are called adversarial examples). Shortcuts consist 
of exploiting word co-occurrences that are “hacked” by LLMs to solve 
the task (Elazar et al., 2021). Recently, as described above, shortcuts 
have been identified in the performance of LLMs in Theory of Mind 
tests (Kosinski, 2023).

The possibility that LLMs have learned to rely on dataset 
idiosyncrasies and biases by capturing spurious correlations should 
always be considered as shortcut learning may significantly hurt the 
models’ robustness (Mitchell, 2023). Poor robustness may cause 
LLM to err in responding to problems after some lexical variations, 
problems that were originally responded correctly. However, this 
observation, which may be  problematic for AI researchers, is 
actually a positive feature of LLMs as model of cognition. In fact, 
humans show the same pattern of differential performance to the 
same problem with different linguistic variations. In other terms, 
minor linguistic variations in the problems are affecting problem-
solving accuracy (Jitendra and Xin, 1997). In their research, 
children were presented with the following word problem: “There 
are 8 birds and 3 worms. a) How many more birds are there than 
worms? b) How many birds will not get a worm?.” Alternative a) and 
b) have the same meaning but the first leads to 17% accuracy while 
the second to 83% accuracy. Similar results, which indicate a change 
in accuracy due to minor changes in wording, has been reported by 
Hickendorff (2021). This fragment of debate is clearly indicating the 
different objectives that AI researchers and cognitive psychologists 
have. What is a weakness for the first may be a strength for the 
seconds. As cognitive psychologists, we have always to evaluate the 
data empirically and not rely on the intuition of a Ph.D. level 
evaluator as AI researchers are keen in doing.

Finally, another factor that may overestimate the reasoning 
abilities of LLM include “data contamination” which refers to the 
situation where the LLM has been exposed to test data during its 
training process. This gives the LLM an unfair advantage on tests and 
benchmarks, as it may have already seen the questions and answers 
before. For example, GPT-4 performs better on problems published 
before 2021 (GPT-4 training cut-off) with respect to those published 
after 2021.

LLMs and psychological science: the 
renaissance of associationism

In the previous sections, we have described the tasks that LLMs 
can and cannot perform, as well as the methods through which they 
achieve maximum performance. We will now discuss the implications 
of these results on LLMs from the perspective of psychological 
theories of cognitive processes.

Originally focused on the association between stimulus and 
response, associationism was later expanded to account for 
associations among thought and language. Associationism suggests 
that the information is stored in an associative structure and the 
widespread use of associative models in the study of human memory 
is summarized in the work by Raaijmakers and Shiffrin (1981) and 
Shanks (2007). An associative structure describes the bond between 
two distinct mental states. The activation of one concept causes the 
activation of the other, and this causal relationship is basic and reliable. 
One notable example is the spreading activation model, a theory that 
explains how information is retrieved from memory. The model 
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suggests that when a concept or idea is activated in memory, the 
activation spreads to associated concepts creating a network of 
associations. There are several versions of the spreading activation 
model, but two influential models were proposed by Collins and 
Loftus (1975) and Collins and Quillian (1969).

The experimental investigation of mental associations in 
cognitive psychology has been extensive and there is consensus on 
the fact that many cognitive processes may be  explained using 
associations. For example, semantic priming is a phenomenon 
where the processing of a target word or concept is facilitated by the 
prior presentation of a semantically related word or concept. In 
other words, when a person is exposed to a word that is related in 
meaning to another word, they are more likely to recognize or 
process the second word faster and more accurately than if the two 
words were unrelated. Semantic priming can be  used to study 
various aspects of language processing, such as the organization and 
storage of words in the mental lexicon, as well as the activation and 
retrieval of semantic information. It can be  investigated using 
different experimental paradigms, such as lexical decision tasks, 
naming tasks, and categorization tasks (Joordens and Becker, 1997). 
Priming is not only effective in perception and lexical associations 
but encompasses a wide range of cognitive processes including 
problem-solving. Priming can be used to facilitate problem-solving 
by activating relevant knowledge and associations in the brain. In 
short, the priming effect has been extensively investigated and it has 
been shown to affect performance as prompting affects performance 
of LLMs.

Associative models in the form of connectionist models were 
mainstream in the decade between 1990 and 2000 and were based on 
an evolution of the neural networks (McClelland and Rumelhart, 
1987). Other historical landmarks that are relevant for understanding 
the current development of LLMs are the deep learning development 
(LeCun et al., 2015) and the attention mechanism (Vaswani et al., 
2017) already mentioned previously. To summarize, LLMs may 
be considered the new complex associators that are based on deep 
neural networks and on the transformer model.

LLMs are the contemporary updated version of one of the 
dominant theories in psychology, associationism. LLM are associators, 
precisely autoregressive associators, trained to predict accurately the 
next word. They encode the text given as input in a latent space and 
such compressed information may be  retrieved to complete very 
different tasks including summarizing, finding titles, answering 
questions, classify text, translate, etc. In short, LLMs may generate text 
from a probe and perform, on this basis, several tasks very different 
from the simple “predict-the-next-word” task used in the 
training phase.

LLMs based on the self-attention mechanisms are associators 
capable of highlighting long distance associations. Such long-distance 
associations make the difference and are at the origin of the human 
level performance of LLMs on a wide variety of reasoning tasks. 
Indeed, they can perform many cognitive tasks of the type that 
cognitive psychologists use to investigate the architecture of cognition 
and for assessing cognitive abilities in neuropsychology (as we have 
shown in Table  1). Such result question the leitmotif of anti-
associationism in cognition as it shows that LLMs perform at human 
level in a wide variety of reasoning tasks that once were considered the 
weak point of associative theories of cognition (problem solving 
and reasoning).

LLMs as models of cognition

There is consensus on the fact that an associative model of 
cognition can explain psychological phenomena such as learning, 
priming, implicit learning and associations (De Houwer et al., 2013) 
and not many are dubious on the fact that LLMs, being complex 
associators, can simulate such mental processes.

Consider, for example, the DRM (Deese-Roediger-McDermott) 
task that is used in cognitive psychology to study false memories. In 
this task, participants are presented with a list of related words (e.g., 
bed, rest, awake, tired, dream, wake, snooze, blanket, doze, slumber) 
that are all associated with a non-presented critical lure word (e.g., 
sleep). Later, participants are asked to recall or recognize the words 
they saw earlier. False memory occurs when participants mistakenly 
recall or recognize the critical lure word as being presented in the 
original list (Stadler et  al., 1999) and the strength of associations 
between the words in the list and the lure is the standard explanation 
for the effect (Blair et  al., 2002). To evaluate whether GPT-4 can 
replicate the average human pattern of associations we have presented 
the DRM lists standardized by Stadler et al. (1999). An example of 
such list with the prompt used is presented below:

USER: Find the word that is highly associated with all the words in 
the following list: mad, fear, hate, rage, temper, fury, ire, wrath, 
happy, fight, hatred, mean, calm, emotion, enrage.

GPT 4: Anger.

In this example, the answer was Anger and corresponded exactly 
to the most associated word according to Stadler et al. (1999). Out of 
a total of 24 lists, GPT-4 perfectly predicted in 20/24 lists the same lure 
as the original research and in 4 cases provided a closely semantic 
related word (e.g., Crime instead of Thief). These results indicate how 
the associative structure of GPT-4 mimics the one collected on a large 
sample of human subjects. This parallelism is not limited to concepts 
and can also be  observed on the sensory knowledge that can 
be captured from language such as colours. For example, Kawakita 
et  al. (2023) showed a striking similarity between human ratings 
between colours and the corresponding similarity ratings produced 
by GPT-4.

While associative theories are accepted when it comes to explain 
habits, priming etc. many believe that this class of theories is unable 
to explain processes such as abstract reasoning, logical inference, 
analogical reasoning, and creative problem solving (Holyoak and 
Morrison, 2005).

The reasons why associationism (and therefore LLMs), cannot 
explain higher order cognitive processes are because they cannot 
explain a few critical points such as: i) cannot capture long distance 
associations, ii) compositionality and systematicity and ii) fast 
learning. We will now show evidence that such weak points are not 
detectable any more in complex associators as LLMs.

As regards to the incapacity of capturing long distance associations 
in language and thought, such a critical point is called contiguity 
(Shanks, 2007; Gallistel et  al., 2019). Contiguity states that to 
be associated two mental states must have a close positioning in space/
time. Such vicinity does not permit to associate distant mental states 
or does not permit a change in directionality (A causes B changed in 
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B causes A). As regards to contiguity, the attention mechanism, at the 
base of LLMs, represents a breakthrough in associationism as it 
permits to associate elements in the word stream that are far away to 
the target. As mentioned before LLMs have no problems in responding 
to the question Who is fat? When presented with the sentence: The 
horse the boy is chasing is fat. In short, it is the attention mechanism 
that permits distant associations overcoming one of the weak points 
of previous versions of associative models. With the attention 
mechanism the contiguity problem is not a problem anymore.

As regards compositionality and systematicity, these are 
considered distinguishing features of thought (Fodor and Pylyshyn, 
1988). Compositional generalisation is an ability that consists in 
applying rules of composition extrapolated by a few examples to an 
arbitrary number of cases. The authors’ main argument against 
associationism in the form of connectionism (this term was 
mainstream and synonymous of neural network modelling after the 
publication of the Rumelhart and McClelland, 1986 seminal work) 
was that it cannot account for systematicity and productivity of mental 
processes, which to be  explained should require a modular 
organization of mind. The hot debate introduced by Fodor and 
Pylyshyn (1988) characterized cognitive neuropsychology between 
1990 and 2000 as double dissociations of symptoms in neurological 
patients was a primary tool for identifying modules of the mind. 
However, it was immediately clear that double dissociations, which 
assumed the modular organization of mind, are not unique indicators 
of independent cognitive modules of the mind as neural networks can 
easily explain double dissociations (Sartori, 1989). In short, the gold 
standard for detecting modularity of mind cannot uniquely index 
modularity as it could be a by-product of a neural architecture.

Compositionality is the principle that the meaning of a complex 
expression is determined by the meanings of its parts and the rules 
used to combine them. Fodor and Pylyshyn (1988) argue that 
connectionist models, which rely on distributed representations and 
learning through the adjustment of connection weights, cannot 
inherently capture the compositionality of human thought.

The mind can generate an indeterminate number of meaningful 
expressions by combining a finite set of elements (such as words or 
symbols) according to certain rules. Fodor and Pylyshyn (1988) also 
argued that connectionism cannot account for productivity because it 
relies on the assumption that mental processes are based on the 
statistical properties of the input, rather than on symbolic rules that 
can be used to generate novel expressions. To illustrate, when learning 
how to evaluate mathematical expressions such as “3 + (4 - (5 * 2))” an 
instance of productivity would involve applying the acquired 
knowledge to expressions with more parenthesis or deeper nesting 
than previously encountered. In other words, productivity refers to the 
capacity to solve longer/complex problems based on shorter/simpler 
ones. For example, the mind can create new sentences that follow the 
same grammatical rules as previously encountered sentences and can 
generate novel expressions that have never been encountered before.

In short, the necessity of modular/symbolic theories of thought 
are required as associative networks (before LLMs) do not explain 
reasoning because they cannot handle compositionality, systematicity 
and cannot create complex long-distance associations. The above-
mentioned weak points of old neural network should also, in theory, 
apply to LLMs. However, it is now clear that most of these criticisms 
can hardly be applied to complex associators in the form of LLMs. 
We have already seen that LLMs can perform at human level in most 

reasoning tasks including analogical reasoning (Raven type tasks; 
Webb et al., 2023) and analogical reasoning is something that should 
be out-of-reach any type of associators and therefore also of LLMs. 
With regard to compositionality a voice critic of LLMs, Gary Marcus, 
proposed a litmus test that, however, was solved by GPT 3.5 when 
adequately prompted into thinking step-by-step:

USER: John pulled out a bag of purple metallic keys, a square 
hardcover book, a green round melon, a red ripe banana, a sparkling 
purple gem, a square red card, and a fuzzy purple hat. He placed the 
first red item he pulled out into his bedroom safe, the second purple 
item into his fruit bowl and everything else on his living room table. 
What did John place into his fruit bowl?

GPT 3.5: John placed the second purple item, which is the sparkling 
purple gem, into his fruit bowl.

The same correct response was produced by GPT-4 and Claude 2 
without any prompt. A further example of a problem that requires 
compositionality to be solved is reported in Smolensky et al. (2022), 
figure 5 and is correctly responded to by GPT 3.5.

USER: Daniel picked up the football. Daniel dropped the football. 
Daniel got the milk. Daniel took the apple. How many objects is 
Daniel holding?

GPT 3.5 and Claude 2: At the end, Daniel is holding two objects: 
the milk and the apple.

In a more systematic way, recent developments have shown that 
compositionality can be an emerging feature of LLMs (see Drozdov 
et al., 2022). Lake and Baroni (2018) developed a specialised dataset 
(SCAN) for evaluating compositionality. Least-to-most prompting is 
a prompt that focuses on splitting the problem into subproblems 
(Zhou et al., 2022; Kudo et al., 2023) and when this metacognitive 
strategy is applied it solves more than 95% of the problems of the 
SCAN benchmark.

It is worth noting how all the discussions about compositionality 
rests under the assumption that for humans such tasks are trivial. 
Surprisingly, such credence has never been tested until recently when 
Lampinen (2022) highlighted that human performance on are not 
better than chance on the most difficult structures. These data show 
the need for a fair comparison when it comes to confronting the 
performance of LLMs with those of humans rather than basing such 
comparison on the researcher’s intuition about what healthy controls 
can do or cannot do.

Researchers have also identified in fast learning another weak 
point of associationism (Shanks, 2007). Fast learning refers to the 
ability to acquire new information and skills quickly with minimal 
exposure. It involves making connections between new and prior 
knowledge. Fast learning appears to challenge associative theories 
because it does not require extensive repetition and exposure and does 
not show the incremental learning due to the repeated exposure. 
Research suggests that fast learning relies on cognitive processes like 
insight, abstraction, concept formation, and flexible knowledge 
representation. All these allow rapid encoding of new information. 
For example, Gestalt psychologists like Kohler conducted studies 
showing that people can suddenly gain insight into solutions to 
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problems, rather than building them incrementally through 
associations. Classical critics of associationism claim that is that the 
learning of a new word did not develop slowly. However, this 
limitation does not apply to complex associators as LLMs that can 
learn new, previously unknown words in just one shot (fast learning 
in cognitive jargon); just one example is sufficient to elicit good 
performance in LLMs (Brown et al., 2020).

In short, while the need of symbolic, rule-based cognitive 
processes was motivated, according to some critics, by the inability of 
associators to deal with productivity, compositionality, fast learning 
and distant associations, such weak points of old associationism are 
not detectable any more in state-of-the-art LLMs. This is due to several 
built-in features of LLMs, particularly the capacity to develop long 
-distance associations.

Emergent properties of LLMs As highly 
complex associators

A common assumption in psycholinguistics after Chomsky is that 
syntax and semantics are separate mechanisms, different modules in 
Fodor’s jargon.

However, LLMs address the supposedly strong points of the 
modular/symbolic approach as they combine the meanings and 
structures of language without the need for postulating separate 
modules. As a result, both aspects (syntax and semantics) work 
together with the attention mechanism in complex ways. This does not 
mean that the model cannot differentiate between syntax and 
semantics, or that it cannot replicate the structure of a sentence 
without considering its meaning. Instead, it indicates that the two 
aspects can provide information to each other. This theoretical view is 
at odds with classical psycholinguistics which claims that syntax and 
semantics are separate (Piantadosi, 2023). According to Chomsky, a 
key piece of evidence demonstrating the separation of syntax and 
semantics is our ability to produce grammatically correct but 
semantically nonsensical sentences, such as the well-known example 
“colourless green ideas sleep furiously.” However, GPT-4 can efficiently 
generate an indeterminate list of similar sentences (such as “The 
floating dreams melt mysteriously”) and it achieves this result without 
any separation between syntax and semantics as there is no way of 
physically separating these two components in LLMs.

One further example of emergence is the problem-solving ability 
demonstrated by LLMs. Without any specific problem-solving 
training, these models can solve complex problems from their compact 
language representation. This capacity extends even to problems that 
do not require factual knowledge but rather rely on the reasoning 
ability alone as most of the examples reported in this paper. For 
example, consider the following problem presented in Lenci (2023):

USER: My friend John is 60 years old. Last year his height was 
180 cm. Then, he gained 20 cm. How tall is he now?

GPT-3 was tricked by the riddle into wrongly answering 200 cm. 
By contrast, the more recent GPT-4 correctly answered:

GPT-4: NONSENSE. It is impossible for a person to gain 20 cm in 
height after the age of 60. As we age, our bones lose density and tend 
to compress, resulting in a decrease in height.

The phenomenon of a complex associator being able to solve 
problems through prompting closely resembles how the actual 
mechanism of the human mind works. Indeed, numerous studies have 
highlighted the existence of associative priming phenomena in 
problem-solving, like the ones that govern word and sentence 
associations (Hare and Goldberg, 2020). Overall, priming can have a 
significant impact on problem-solving ability, and the specific type of 
priming used can affect the problem-solving process (Truelove-Hill 
et  al., 2018). For example, priming has been shown to positively 
influence creative problem solving, with individuals in primed 
conditions demonstrating better performance than those in unprime 
conditions (e.g., Berger et al., 2021). In short, when we compare LLMs 
performance in problem-solving we find close parallelism with the 
phenomena governing human problem solving as studied in 
cognitive psychology.

Conclusion

LLMs are neural network models that have been trained on 
massive linguistic datasets to predict the next word given a sequence 
of previous words. The intrinsic complexity and opacity of LLMs make 
them suitable for being studied using the procedures and tasks 
developed by cognitive psychologists to investigate cognitive processes 
in humans. In fact, after the release of GPT-3, there has been a growing 
interest among cognitive psychologists in testing LLMs as if they were 
human subjects, with extremely interesting results. It has been 
demonstrated that state-of-the-art LLMs can perform similarly to 
humans in a wide variety of tasks. When LLMs have been administered 
cognitive tests, it has been shown that they perform almost all tests 
with an accuracy comparable to that of neurotypical humans.

In this paper we have summarized the results accumulated LLMs 
are tested with tests that cognitive psychologists have developed in 
order to investigate the architecture of human cognition. Results 
indicate that LLMs such as GPT-4 and Claude 2 perform within 
normal range on most “frontal” tests including metaphor 
comprehension and cognitive estimates. Most importantly, among the 
successfully completed tasks there are variations of the Raven’s 
Progressive Matrices test, which is considered a “gold standard” in 
psychology of intelligence for testing fluid intelligence (Webb et al., 
2023). The range of tests that are performed sub par is progressively 
reduced and at the time that this review is written they only include 
some forms of causal reasoning and complex planning. Most 
importantly, LLMs tend to reproduce the pattern of errors shown by 
humans. For example, they struggle with logical reasoning when 
presented in an abstract format (Wason Selection Task) with a much 
better performance when a structurally similar problem is presented 
in a practical format (Dasgupta et  al., 2022), the exact pattern of 
results which is typically observed in humans.

From a cognitive psychologist point of view, the results obtained 
from these models are highly surprising, as they can perform a variety 
of tasks well beyond the task originally used in training (predict the 
next word). This indicates that they develop a compact representation 
of the world as seen through language. LLMs have significant potential 
for development, not only in terms of their size but also in their 
learning strategy. For example, it has been observed that the output of 
the model trained to mimic the best human-rated response, 
significantly improves performance, reducing the risk of generating 
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inappropriate text. Another promising strategy is that of self-
reflection, a sort of critical check analysis of the model of its own 
original response. Initial experiments show that overall performance 
improves greatly with techniques that emphasize what is known in 
psychology as metacognition. When given examples and suggested 
strategies the LLMs increase the initial accuracy exactly as observed 
in humans. When a prompting strategy mimicking metacognitive 
instructions is given to a large language model a substantial increase 
in problem-solving accuracy is observed (Wang and Zhao, 2023).

The wide range of good performance of LLMs in cognitive tasks 
is very interesting from the theoretical point of view of cognitive 
psychology. In fact, LLMs are highly complex associators that 
successfully accomplish tasks that were once thought impossible based 
on mental associations alone (e.g., problem solving, fast learning) and, 
for this reason, the interest of cognitive psychology is manifold. Firstly, 
their development has stimulated theoretical discussions on the actual 
real potential of state-of-the-art associative networks as models of 
cognition. Previously, critics have identified limitations that they 
believe were inherent to associators, but these limitations have been 
quickly overcome by increasingly advanced LLMs. The tasks once 
considered insurmountable by complex associators as LLMs have 
been quickly accomplished, and it is now highly risky, for cognitive 
theorists, to bet on unsolvable tasks.

Classical objections to associative explanations of thought include 
the absence of compositionality and systematicity which basically boil 
down to symbol manipulation which is a feature supposedly untenable 
for associators. These critics justified the proposal of a hybrid cognitive 
architecture with some cognitive functions such as habits, priming etc. 
based on associations while thought processes and reasoning based 
on symbol manipulation (Monner and Reggia, 2012). However, LLMs 
with the attention mechanism succeed in many of the tests of 
compositionality and systematicity. Furthermore, the attention 
mechanism permits long distance associations which were a major 
weak point of previous versions of associators. Compositionality and 
systematicity are not a problem any more for LLMs, at least at the level 
achievable by neurotypical individuals.

LLMs exhibit a crucial theoretical feature of high interest for 
cognitive psychologists called emergence. As the size of LLMs 
increases, they become capable of accomplishing tasks that smaller 
models were previously unable to handle. In short, LLMs show that 
purely associative architectures can be more powerful than previously 
thought and a clear litmus test of their intrinsic limitations is 
currently unavailable.

Given the relation between dimensions of the LLMs and their 
ability in performing completely new tasks, it is unclear whether 
current limitations can be  overcome by even larger models. For 
example, the disability in planning may be observed in older models 
while the more recent GPT-4 can satisfactorily play chess, a game, 
which requires identifying intermediate objectives and assembling 
permissible moves in order to achieve these internally generated 
objectives. Emergence, from a psychological theory perspective, is a 
crucial aspect as it demonstrates how models sufficiently complex 
based on elementary associative structures with attention mechanisms 
can accomplish tasks that previously were regarded intractable 
for associators.

We believe that LLMs may have a significant impact on 
cognitive psychology. Psychology, at its origin, developed a grand 
theory, associationism, grounded on neurobiology, which, however, 

was unable to make specific predictions and simulations except in 
extremely limited areas. The consequence was that only narrow 
models were developed for each specific subfield (e.g., priming, 
language decoding, short-term and long-term memory, cognitive 
biases, reasoning, implicit social biases etc.). Today, for the first 
time, the associationist theory in the LLMs version is unified 
enough to make predictions on a wide range of tasks that were 
previously analysed individually by cognitive scientists. Most 
importantly, the proficiency in remarkably diverse tasks is emerging 
without any explicit modelling of reasoning and social abilities. A 
unique model explains reasoning, social interactions, the effects of 
emotions etc. For the first time in psychology, the possibility of 
what physicists call the “Theory of Everything” (Hawking and 
Mlodinow, 2010) seems to be  on the horizon. A “Theory of 
Everything” is a hypothetical framework that aims to unify all the 
fundamental forces and particles in the universe into a single, 
coherent model. It is considered the ultimate goal of physics, as it 
would provide a complete understanding of the universe and its 
workings. Associationism, in the new form the LLMs, reveals a 
theoretical framework of a much broader scope than what was 
available in the past and re-establishes itself as the new dominant 
theory in Psychology.

We argue that the actual failures in replicating human 
performance are minimal with respect to the number of tasks that are 
efficiently simulated. This aspect is very important as in other sciences 
a theory is not dismissed because it fails to reproduce a limited 
phenomenon. For instance, classical physics is not discarded simply 
because it fails to explain quantum phenomena, but its domain of 
validity is reduced. The same holds true for the theory of relativity, 
which breaks down under certain conditions found within black 
holes. In science, the acceptance of a theory is the result of a relative 
evaluation between the quantity of phenomena it explains and those 
it does not. Using the same logic, we think that LLMs are the most 
advanced models of human cognitive functioning. In the history of 
psychology, it is the first time that a theory with such a large-scale 
predictive power is available and LLMs are resurrecting associationism 
as a unifying model of cognition and minor failure cannot undermine 
the generality of the theory.

However, it is currently unclear the exact perimeter of cognitive 
explainability and this will be  an important objective for future 
cognitive research. From a cognitive perspective LLMs cannot 
simulate efficiently multi step planning, causal analysis, and internally 
generated goals. Currently, the goal is externally submitted by the 
human user to the LLMs. However, progress is currently being made 
with autonomous agents, LLMs that can autonomously generate 
subgoals given a general goal, to accomplish complex tasks and the 
preliminary results are promising (Shinn et al., 2023).

In conclusion, we  presented extensive evidence that modern 
LLMs resurrect associationism as a viable candidate for unifying 
theories of cognition. The implications could be profound, suggesting 
productive paths forward for both artificial intelligence and cognitive 
modelling grounded in associative learning principles and emergent 
capacities. However, many challenges and open questions remain 
regarding representational adequacy. Evaluating future generations of 
LLMs using the tools of experimental psychology will continue 
illuminating the strengths and limitations of associationism as a 
foundational paradigm – and move us toward demystifying the 
origins of human-like intelligence.
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Glossary

LLMs for cognitive psychologists

LLMs Neural Network based on the transformer and self-attention architecture trained on a vast amount of language data. Usually trained to predict the next 

work given an input of N words. Popular LLMs include GPT-4, Llama, Chinchilla, Bloom, etc. There are currently competitions among diverse LLMs 

tested one against the other on the same problem. The current best performer is GPT-4 (https://chat.lmsys.org/?arena) with Claude 2 as a close 

competitor. The best open sourced LLM is Llama 2.

Self-attention Is an associative architecture that may learn to associate distant words in the word stream. Originally presented in the paper by Vaswani et al. (2017), 

self-attention is a procedure that associated cooccurrences irrespective of distance in the word stream. It allows LLMs to weigh the importance of 

different words in a sentence when predicting the next word. It works by computing a weighted sum of the input embeddings, where the weights are 

determined by the similarity between each pair of words in the sentence. In other words, self-attention is a way for the model to pay attention to 

different parts of the input sequence to better understand the context and make more accurate predictions.

Word embeddings Word embeddings in LLMs are numerical representations of words, phrases, or sentences that capture their meaning and context. They are used to 

represent text in a way that can be processed by machine learning algorithms as vectors of numbers. Word embeddings are central to the functioning 

of LLMs because they allow the model to encode the meaning of words in a way that is computationally efficient. Representation of conceptual 

knowledge in a semantic space has been at the base of numerous cognitive models (e.g., Latent Semantic Space – LSA and others). In short, a language 

model does not “see” a word as input but a vector (numerical representation) encoding the word (embedding).

Transformers The key innovation of transformer models is the self-attention mechanism, which allows the model to deal with different parts of the input sequence 

when computing the representation of each token. This mechanism replaces the recurrent neural network (RNN) used in previous language models, 

which had limitations in terms of long-term dependencies. In a transformer model, the input sequence is first embedded into a high-dimensional 

vector space. The self-attention mechanism is then applied to the embedded sequence to compute a weighted sum of the embeddings, where the 

weights are determined by the similarity between each pair of tokens. The resulting weighted sum is then passed through a feedforward neural network 

to produce the final representation of each token.

Hallucinations Is a term used in AI to refer to the phenomenon where the model generates text that is incorrect, nonsensical, or not real and misaligned with the user 

intent. Absence of appropriate context, incomplete description of the user intent, repetition and other strategies may cause LLM to hallucinate. The 

reasons why hallucinations may occur is currently not well understood. Interesting parallelisms may be found between LLL hallucinations and 

confabulation as a psychopathological symptom.

Scaling Scaling in LLMs refers to the process of increasing the size and capacity of the model to improve its performance and capabilities (Rae et al., 2021). It 

involves increasing the number of parameters, layers, and computational resources used by the Language Model. Increasing the dimension of the 

model leads to: i) enhanced language understanding, ii) better generalization, iii) handling complex tasks.

Emergence Emergence refers to the ability of LLMs to generate coherent, contextually relevant, and sometimes creative responses to a wide range of inputs, even 

though they were not explicitly trained to perform these specific tasks. During training, the model learns to predict the next word in a sentence given 

the previous words and this process enables the model to capture complex patterns, relationships, and structures present in the training data. As the 

size of the model and the amount of training data increase, the LLM becomes efficient of generating more accurate responses. This is because the 

model has learned a vast amount of information about language, grammar, facts, reasoning, and even some level of common-sense knowledge from 

the training data. The model can then use this knowledge to generate contextually appropriate responses to a wide range of inputs, even though it was 

not explicitly trained to perform these tasks. This is a property that permits LLM trained to predict the next word to perform at human level on most 

of the psychological tests as shown in this paper.

Training data It is important to note that the training language data for LLMs can vary depending on the specific model and the research objectives. Commonly used 

training data for LLMs include large-scale text corpora from the internet, such as books, articles, websites, and other publicly available textual data. 

The choice of training data can also be domain-specific, such as legal, scientific, or biomedical texts, depending on the intended application of the 

LLM. Recent research has shown that carefully selecting the training data may reduce the dimension of the LLM while maintaining the accuracy.

Latent space When a user inputs a query that states a problem, the large language model (LLM) processes the query and maps it to a point in its latent space. The 

latent space is a high dimensional representation of the data that the LLM has been trained on, and it captures the underlying structure and 

relationships between the data points. Once the query is mapped to a point in the latent space, the LLM can use its understanding of the relationships 

between data points in the latent space to generate a response that is relevant to the query. This is done by finding other points in the latent space that 

are close to the query point and are associated with relevant responses. The LLM can then use these points to generate a response that is coherent and 

relevant to the query. In summary, LLMs use their understanding of the relationships between data points in their latent space to associate a query that 

states a problem with a relevant response. This allows them to effectively solve problems and generate coherent and relevant responses to user queries.
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