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Robust oblique Target-rotation for 
small samples
André Beauducel * and Norbert Hilger 

Department of Psychology, University of Bonn, Bonn, Germany

Introduction: Oblique Target-rotation in the context of exploratory factor analysis 
is a relevant method for the investigation of the oblique simple structure. It was 
argued that minimizing single cross-loadings by means of target rotation may 
lead to large effects of sampling error on the target rotated factor solutions.

Method: In order to minimize effects of sampling error on results of Target-
rotation we  propose to compute the mean cross-loadings for each block of 
salient loadings of the independent clusters model and to perform Target-rotation 
for the block-wise mean cross-loadings. The resulting transformation-matrix is 
than applied to the complete unrotated loading matrix in order to produce mean 
Target-rotated factors.

Results: A simulation study based on correlated independent clusters model and 
zero-mean cross-loading models revealed that mean oblique Target-rotation 
resulted in smaller bias of factor inter-correlations than conventional Target-
rotation based on single loadings, especially when sample size was small and 
when the number of factors was large. An empirical example revealed that the 
similarity of Target-rotated factors computed for small subsamples with Target-
rotated factors of the total sample was more pronounced for mean Target-
rotation than for conventional Target-rotation.

Discussion: Mean Target-rotation can be  recommended in the context of 
oblique factor models based on simple structure, especially for small samples. 
An R-script and an SPSS-script for this form of Target-rotation are provided in the 
Supplementary Material.
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1 Introduction

Exploratory factor analysis (EFA) is a widely used multivariate method (Harris, 2013), 
especially in the context of the development of instruments for psychological assessment. 
Although confirmatory factor analysis may be used for similar purposes, there is still room for 
EFA because the expectation of perfect simple structure with one large salient loading of each 
observed variable on one factor and zero cross-loadings, i.e., an independent clusters model 
(ICM), may lead to unrealistic simplifications in the context of confirmatory factor analysis. The 
specification of the ICM for data sets with substantial cross-loadings may cause model misfit in 
confirmatory factor analysis resulting in model modifications and capitalization on chance 
(MacCallum et al., 1992). Hsu et al. (2014) demonstrated that even small cross-loadings not 
specified in the confirmatory factor model may result in substantial overestimation of factor 
covariances. Ximénez et  al. (2022) have shown that unspecified cross-loadings in bifactor 
models may impair parameter recovery and that common fit indices may not be useful for the 
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detection of misfit due to unspecified cross-loadings. Moreover, Hayes 
and Usami (2020) provide algebraic demonstrations of the bias of 
factor inter-correlations resulting from unspecified cross-loadings. 
Overall, these studies indicate that unspecified cross-loadings may 
cause problems for confirmatory factor analysis and structural 
equation modeling. Problems with unspecified cross-loadings do not 
occur with the ICM in the context of EFA because Target-rotation 
toward an ICM in the context of EFA or exploratory structural 
equation modeling (ESEM; Asparouhov and Muthén, 2009) will only 
provide an orientation of the factor axes so that cross-loadings might 
be minimized without any consequence for model fit. When the cross-
loadings are large, Bayesian structural equation modeling (BSEM) 
may also be superior to confirmatory factor analysis based on the 
ICM. If the priors are known BSEM might be preferred to ESEM and 
ESEM might be  preferred when the priors are unknown (Wei 
et al., 2022).

The advantage of using Target-rotation in the context of EFA 
instead of an ICM in the context of confirmatory factor analysis has 
been demonstrated for the five-factor model of personality (McCrae 
et al., 1996). Empirical research has also shown that the use of Target-
rotation in the context of ESEM allows to avoid an over-estimation of 
factor inter-correlations that may occur when the ICM is specified in 
the context of confirmatory factor analysis (Joshanloo, 2016). The 
relationship between cross-loadings, factor inter-correlations, and 
different criteria of factor rotation has also been investigated in the 
context of simulation studies (Sass and Schmitt, 2010; Schmitt and 
Sass, 2011). Sass and Schmitt (2010) found that the criteria of factor 
rotation differ in allowing for larger cross-loadings and in the size of 
the resulting factor inter-correlations.

The relationship between the loading pattern and the factor 
inter-correlations has also been addressed by Zhang et al. (2019), 
who extended partial Target-rotation in order to allow for the 
specification of a Target-matrix for the factor inter-correlations in 
addition to the Target-matrix for the loadings. With their extension 
Target-rotation allows for the investigation of hypotheses on the 
size of factor inter-correlations. Their approach is based on oblique 
partial Target-rotation (Browne, 1972) and the gradient projection 
algorithm (Jennrich, 2002; Bernaards and Jennrich, 2005). 
Moreover, Hurley and Cattell (1962) initially introduced complete 
oblique Target-rotation providing rotated loadings and estimates 
for factor inter-correlations when all values of the Target-matrix of 
loadings are specified.

While Target-rotation allows for a specification of the ICM in the 
Target-loadings, Target-rotation will typically be performed in order 
to minimize cross-loadings. Unless specific Target-values are specified 
for the correlations by means of extended Target-rotation, Target-
rotation will modify the factor inter-correlations in order to reduce 
cross-loadings. If the ICM holds in the population, sampling error will 
nevertheless lead to some cross-loadings. When the distribution of 
cross-loadings resulting from sampling error is not perfectly 
symmetric, minimizing these cross-loadings may affect the factor 
inter-correlations. Thereby, sampling error may affect factor inter-
correlations resulting from Target-rotation. Moreover, when an ICM 
holds and when single cross-loadings are minimized by Target-
rotation, random differences between single cross-loadings may also 
affect the rotated loading pattern.

It is therefore proposed to minimize the effect of sampling error 
on the loading pattern and factor inter-correlations resulting from 

oblique Target-rotation by means of minimizing mean cross-loadings 
instead of the single cross-loadings. It is expected that using the mean 
cross-loadings instead of the single cross-loadings for rotation will 
reduce the effect of sampling error on the results of Target-rotation. 
The method is termed oblique Mean-Target-rotation (OMT) and may 
also be of interest when a few substantial cross-loadings occur in the 
population because it avoids minimizing the single cross-loadings. 
Thereby, OMT could be helpful for the investigation of departures 
from the ICM.

The ICM is a relevant model for the investigation of oblique 
factor rotation because most researchers will consider a model 
with minimal cross-loadings as an advantage for factor 
interpretation. Nevertheless, it might be of interest to compare 
OMT- and OT-rotation for other population factor models. 
However, more complex factor models will typically not allow to 
draw clear conclusions on optimal factor rotation and optimal 
factor inter-correlations. The reason is that for several more 
complex models some researchers might prefer larger cross-
loadings combined with smaller factor loadings and others might 
prefer smaller cross-loadings combined with larger factor inter-
correlations (Schmitt and Sass, 2011). There is typically no 
objective way to decide between these preferences.

Effects of sampling error on cross-loadings can be positive and 
negative. Therefore, the absolute size of a single population cross-
loading can be  over- or underestimated when sampling error 
occurs. It is, however, rather unlikely that sampling error affects all 
cross-loadings on one factor in the same direction. An 
approximately symmetric distribution of positive and negative 
effects of sampling error on the cross-loadings on one factor is 
most likely. One might therefore expect that the positive and 
negative effects of sampling error on cross-loadings cancel out 
across cross-loadings so that the mean of the cross-loadings on one 
factor could be  an estimate of the average population cross-
loadings on this factor. However, different population factor inter-
correlations may result in different population cross-loadings in 
the corresponding orthogonal loading pattern.

An example for the effect of the correlation between two factors 
on the cross-loadings of the corresponding orthogonal factors is 
shown in Table 1. In order to show the effect of sampling error on 
cross-loadings, the orthogonal population loading pattern is given 
together with a corresponding orthogonal sample loading pattern for 
n = 1,000 cases. There are two blocks of non-zero cross-loadings in the 
population loading pattern and, in the sample, the cross-loadings are 
slightly smaller or larger than the corresponding population cross-
loading. The average of cross-loadings for each block of salient 
loadings will be close to the population cross-loadings. Therefore, the 
block-wise average of cross-loadings might minimize the effect of 
sampling error on cross-loadings while it maintains the population 
mean cross-loading that might be important for factor rotation. The 
example also illustrates that the larger cross-loadings are eliminated 
in the oblique loading pattern.

When the effect of sampling error on cross-loadings is 
minimized by block-wise averaging and the effect of population 
cross-loadings is minimized by oblique rotation, the resulting 
loading patterns with approximately zero-mean cross-loadings 
might allow for a rather simple interpretation of the factors. For 
these models, there is no, or when the sum of positive loadings is 
not perfectly equal to the size of negative loadings, a rather small 
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trade-off between minimizing the absolute size of the cross-
loadings and allowing for larger factor inter-correlations. Thus, 
like the ICM, zero-mean cross-loading models (ZCLM) refer to 
rather clearly defined oblique rotations of the factors. Therefore, 
both models are appropriate starting points for the investigation 
of the effect of sampling error on OMT- and OT-rotation. From 
a more general perspective, the ICM and the ZCLM can both 
be  regarded as different ways to achieve simple structure. 
However, loading patterns with other structures may also be of 
interest (Browne, 2001; Ertel, 2011). The principle of using block-
wise mean loadings for target-rotation might also be  an 
interesting option for rotations that are not based on simple 
structure. But this more general issue is beyond the scope of the 
present study.

It was expected that the effect of sampling error on the weighted 
mean cross-loadings computed in OMT-rotation is smaller than on 
the single cross-loadings used in OT-rotation. Since smaller sample 
sizes result in larger standard errors of factor loadings, OMT-rotation 
should be more appropriate for the investigation of small sample 
sizes than OT-rotation. The standard errors of factor loadings 
depend on the model estimation method, on the method of factor 
rotation, and on the complexity of the loading pattern (Zhang, 2014; 
Zhang and Preacher, 2015). Therefore, several numerical methods 
like, for example, the nonparametric bootstrap have been proposed 
for this issue (Zhang, 2014). The exploration of different methods for 
the computation of standard errors of loadings is beyond the scope 
of the present study. However, the comparison of the standard 
deviations of OT- and OMT-rotated loadings in a simulation study 
should reveal whether averaging cross-loadings minimizes the effect 
of sampling error on factor loadings. If averaging cross-loadings 
reduces the effect of sampling error, the standard deviations of 
OMT-rotated loadings should be  smaller than the standard 
deviations of OT-rotated loadings.

After some definitions, the OMT-rotation and a population 
example will be presented. A simulation study was performed for the 

oblique ICM to compare OMT-rotation with conventional oblique 
Target-rotation (OT). Moreover, OMT- and OT-rotation were compared 
by means of an empirical example. Finally, recommendations for 
analyses of oblique ICM and ZCLM by means of Target-rotations 
are discussed.

2 Definitions

According to the population common factor model a random 
vector x of p observed variables is explained by a random vector ξ of 
q common factors and a random vector δ of p unique factors. This can 
be written as

 ,x ξ δ= Λ +  (1)

where Λ is the p × q matrix of factor loadings and 
E diag E diag�� ��' , ( ) , ' ,� � � � � �� � � �� � � �I

2 2  and E ��� � � 0 . 
This implies

 
E xx u u' ' ' ,� � � � � � �� ��� � � � �2 2

 
(2)

where Λu is the matrix of common factor loadings for uncorrelated 
factors, i.e., for Φ = I. Oblique target-rotations (Hurley and Cattell, 1962; 
Browne, 1972) start from an orthogonal loading matrix Λu, which is 
mostly the unrotated loading matrix resulting from factor extraction.

3 Oblique mean-target-rotation

OMT-rotation starts with an orthogonal Target-rotation 
(Schönemann, 1966) of the unrotated loadings Λu toward a loading 
Target-matrix ΛT corresponding to a perfect ICM, with

TABLE 1 Example for the effect of sampling error on cross-loadings.

Population orthogonal 
loadings

Sample orthogonal loadings 
(n  =  1,000)

Sample oblique loadings 
(n  =  1,000)

variables F1 F2 F3 F1 F2 F3 F1 F2 F3

x1 0.48 0.13 0.00 0.45 0.13 0.02 0.46 0.03 0.03

x2 0.48 0.13 0.00 0.55 0.08 0.00 0.58 −0.05 0.01

x3 0.48 0.13 0.00 0.43 0.12 −0.04 0.44 0.03 −0.04

x4 0.13 0.48 0.00 0.15 0.51 0.07 0.03 0.52 0.04

x5 0.13 0.48 0.00 0.12 0.44 −0.01 0.02 0.44 −0.03

x6 0.13 0.48 0.00 0.09 0.54 0.01 −0.04 0.56 −0.01

x7 0.00 0.00 0.50 −0.04 0.04 0.51 −0.04 0.03 0.51

x8 0.00 0.00 0.50 −0.01 0.03 0.52 0.00 0.00 0.52

x9 0.00 0.00 0.50 0.02 −0.01 0.52 0.04 −0.04 0.52

Factor inter-correlations

F1 1.00 1.00 1.00

F2 0.00 1.00 0.00 1.00 0.43 1.00

F3 0.00 0.00 1.00 0.00 0.00 1.00 −0.02 0.09 1.00

Salient loadings are given in bold face. Large cross-loadings are given in italics.
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�T I� �� �q p q1 / ,

 (3)

Where Iq is a q × q identity matrix, 1p/q is a p/q × 1 unit-vector 
representing the Target-loadings and “⊗” denotes the Kronecker-
product. The resulting Λ1 represents an orthogonal loading matrix where 
the salient loadings are a least square approximation of ΛT. Weighted 
mean loadings are computed for each block of salient loadings

 
� � � � � � �1 1 1 1

1

m T T T� �� � �� �� ��' '
,

 
(4)

where “⋅” is the Hadamard-product. Therefore, Λ1 ⋅ ΛT yields 
the weights of the salient loadings so that the cross-loadings are 
weighted by the salient-loadings of the respective variable on the 
respective factor. The resulting weighted mean loading matrix Λ1m 
is a q × q matrix so that a q × q identity matrix Iq can be used as 
Target-matrix for oblique Target-rotation according to Hurley and 
Cattell (1962), where the transformation matrix

 
T Im m m� � ��� � �1 1

1

1
' ,q

 
(5)

is normalized in order to get

 
T T T Tn diag� � ��'

.
.

0 5

 (6)

This transformation matrix is then used for rotation of the 
complete loadings, with the reference structure

 � �2 1� Tn ,  (7)

and the OMT-rotated loading pattern

 
� �O T T� � ��

�
�

�

�
�

�
2

1
0 5

diag n n
'

.

,

 
(8)

and the OMT-rotated factor inter-correlations

 
� � � � � � � � �O O O O O O O� � � � � � �� �

' ' ' ' .
1 1

u u
 

(9)

In order to evaluate whether Λ Λ1 1m m
'  is ill-conditioned, the 

condition-number κ is computed (Moler, 2008). If κ is large, the 
inversion of the matrix may lead to numerical imprecision. As in ridge 
regression, there is the option to add small ridge constants when κ is 
large and to retain the solution with the largest mean congruence 
(Tucker, 1951) of ΛO with ΛT. For large sample sizes and large salient 
loadings, this option might be irrelevant, but in general, this option 
could not be harmful as the solution with the best congruence with ΛT 
is retained. The loop for the ridge constant can be found in the R- and 
SPSS-script in the Supplementary Material.

4 Population example

An R-script as well as an SPSS-script based on the example 
presented here, allowing for OMT and OT-rotation is given in the 
Supplementary Material. Users of the R-script may install R-4.3.1 
and replace the initial orthogonal loadings by orthogonal loadings 
of interest. The following orthogonal loading matrix shows the 
difference between OMT- and OT-rotation (see Table 2, left). As 
the mean of the cross-loadings that balance out within each block 
of salient loadings is zero within each block of salient loadings, 
the ideal OMT-rotated loading pattern is already reached so that 
the initial orthogonal solution is not modified by OMT-rotation. 
In contrast, OT-rotation minimized the negative loadings and 
thereby introduces a negative factor inter-correlation (Table 2, 
bottom). In consequence, the block-wise mean cross-loadings of 
the OT-rotated solution is not zero. It is, of course, a matter of 
theoretical preference, which model should be used. However, it 
is clear that the OMT-rotated solution could also be  of 
interest when the mean non-salient loadings are expected to 
be zero.

5 Simulation study

5.1 Specification

5.1.1 Independent variables
A simulation study based on the population ICM and population 

ZCLM with q ∈ {3, 6, 9, 12} factors and p/q ∈ {5, 8} salient loadings 
per factor was performed. For p/q = 5 two levels of salient loadings 
were introduced with
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(10)

for each salient loading block with p/q = 5. For p/q = 8 the two 
levels of salient loadings were
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(11)

The standard deviation of the salient loadings was about 0.08 for 
both levels of p/q. The ICM was based on zero population cross-
loadings (CL = 0) and the ZCLM was based on a condition with a 
balanced set of non-zero population cross-loadings (CL ≠ 0). In the 
condition with non-zero cross-loadings the largest absolute population 
cross-loadings were one third of the average population salient 
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loading. As an example, the non-zero population cross-loadings for 
p/q = 5 were
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The loadings in CL.50 have M = −0.03 and SD = 0.10 and for the 
loadings in CL.70 have M = −0.04 and SD = 0.14. Small deviations from 
zero-mean were defined in order to provide a realistic approximation 
to the ZCLM. The columns denoted as CL.50 and CL.70 can be inserted 
into the loading pattern as presented here, or the columns may 
be multiplied by −1. This results in different patterns of zero-mean 
non-zero cross-loadings. In order to cover a large number of 
combinations of cross-loadings, the patterns of cross-loading columns 
were slightly different for p/q = 5 and p/q = 8. As OMT-rotation is 
based on mean cross-loadings, which are zero for the columns, 
OMT-rotation should be less affected by the different loading patterns 
than OT-rotation. Three levels of population factor inter-correlations 
ϕ ∈ {0.00, 0.25, 0.50} and five sample sizes n ∈ {100, 150, 200, 300, 500} 
were investigated. The combinations of independent variables result 
in 4 (q) × 2 (p/q) × 2 (λ.50, λ.70) × 2 (CL = 0, CL ≠ 0) × 3 (ϕ) × 5 (n) = 480 

conditions of the simulation study. An example for the q = 3 and 
CL = 0, for ϕ = 0.00 and ϕ > 0.00 is presented in Figure 1. The first panel 
(A) of Figure 1 shows the condition based on the ICM (CL = 0) with 
q = 3 factors, zero factor inter-correlations (ϕ = 0.00) and five variables 
with salient loadings on each factor (p/q = 5). The second panel (B) 
shows the same ICM with non-zero factor inter-correlations 
(ϕ > 0.00). This refers to the two levels of factor inter-correlations that 
were included into the study (ϕ = 0.25 and ϕ = 0.50). The third panel 
(C) shows the uncorrelated ICM with q = 3 based on eight loadings 
with salient loadings on each factor (p/q = 8), and the fourth panel (D) 
shows the correlated ICM with q = 3 based on p/q = 8. That is, the last 
panel refers to the conditions based on ϕ = 0.25 and ϕ = 0.50.

The independent variables of the simulation study are summarized 
in Table 3.

5.1.2 Dependent variables
The dependent variables were the OT- and OMT-factor inter-

correlations and their bias which was computed as the difference 
between the OT/OMT-factor inter-correlations and the corresponding 
population factor inter-correlations (ϕ). Moreover, the root mean 
square (RMS) difference of the OT- and OMT-rotated factor pattern 
with the population loading pattern as well as the recovery of factor 
scores, i.e., factor score indeterminacy (Grice, 2001), the correlation 
of the regression factor scores calculated from the OT/OMT-rotated 
factors with the true factors, was computed.

TABLE 2 Population example with initial orthogonal loadings.

Initial orthogonal loadings OT-rotated loadings OMT-rotated loadings

Variables F1 F2 F3 F1 F2 F3 F1 F2 F3

x1 0.50 0.20 −0.20 0.52 0.25 −0.11 0.50 0.20 −0.20

x2 0.50 −0.20 0.20 0.52 −0.11 0.25 0.50 −0.20 0.20

x3 0.50 0.20 −0.20 0.52 0.25 −0.11 0.50 0.20 −0.20

x4 0.50 −0.20 0.20 0.52 −0.11 0.25 0.50 −0.20 0.20

x5 0.50 0.20 −0.20 0.52 0.25 −0.11 0.50 0.20 −0.20

x6 0.50 −0.20 0.20 0.52 −0.11 0.25 0.50 −0.20 0.20

x7 0.20 0.50 −0.20 0.25 0.52 −0.11 0.20 0.50 −0.20

x8 −0.20 0.50 0.20 −0.11 0.52 0.25 −0.20 0.50 0.20

x9 0.20 0.50 −0.20 0.25 0.52 −0.11 0.20 0.50 −0.20

x10 −0.20 0.50 0.20 −0.11 0.52 0.25 −0.20 0.50 0.20

x11 0.20 0.50 −0.20 0.25 0.52 −0.11 0.20 0.50 −0.20

x12 −0.20 0.50 0.20 −0.11 0.52 0.25 −0.20 0.50 0.20

x13 0.20 −0.20 0.50 0.25 −0.11 0.52 0.20 −0.20 0.50

x14 −0.20 0.20 0.50 −0.11 0.25 0.52 −0.20 0.20 0.50

x15 0.20 −0.20 0.50 0.25 −0.11 0.52 0.20 −0.20 0.50

x16 −0.20 0.20 0.50 −0.11 0.25 0.52 −0.20 0.20 0.50

x17 0.20 −0.20 0.50 0.25 −0.11 0.52 0.20 −0.20 0.50

x18 −0.20 0.20 0.50 −0.11 0.25 0.52 −0.20 0.20 0.50

Factor inter-correlations

F1 1.00 1.00 1.00

F2 0.00 1.00 −0.22 1.00 0.00 1.00

F3 0.00 0.00 1.00 −0.22 −0.22 1.00 0.00 0.00 1.00

Salient loadings are given in bold face.
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5.1.3 Data generation
Data generation was performed with the R-package ‘fungible’ 

provided by Waller et  al. (2023) based on Waller (2016), where 
population loadings and factor inter-correlations were entered in order 
to generate sample correlation matrices. The population factor models 
were entered into the ‘MonteCarlo’ option of the ‘simFA’ package and 
correlation matrices were generated for continuous variables under 
multivariate normality. For each of the 480 conditions 1,000 sample 
correlation matrices were generated. Least squares factor analysis with 
the correct number of factors was performed with the ‘simFA’ package 
and unrotated factor loadings were computed. The unrotated factor 
loadings were entered into the script as it can be found in the Supplement 
(p.  7) to compute the OT- and OMT-rotated loadings and the 
corresponding factor inter-correlations. To compare the correlation of 

the factor score predictor with the original factor for OT- and 
OMT-rotated factors (factor score indeterminacy), we  used the 
‘FactorScores’ option. As the computation of individual scores needs a 
considerable amount of computation time, we restricted this analysis to 
a few conditions based on n = 100 where large differences between 
rotation methods can be  expected. Therefore, factor scores were 
investigated for the condition with n = 100, q = 6 and q = 9, p/q = 5, 
ϕ = 0.25, λ = 0.50, CL = 0 and CL ≠ 0.

5.2 Results

Repeated measures ANOVA was performed for bias of factor inter-
correlations as dependent variable and OT- versus OMT-rotation as 

FIGURE 1

Example for models with three factors (q  =  3) and CL  =  0, (A) for ϕ  =  0.00 and p/q  =  5, (B) for ϕ  >  0.00 and p/q  =  5, (C) for ϕ  =  0.00 and p/q  =  8, (D) for 
ϕ  >  0.00 and p/q  =  8; q indicates the number of factors; p/q indicates the number of salient loadings per factor.

https://doi.org/10.3389/fpsyg.2023.1285212
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Beauducel and Hilger 10.3389/fpsyg.2023.1285212

Frontiers in Psychology 07 frontiersin.org

within-factor (Rot) and number of factors (q), number of salient 
loadings (p/q), loading size (λ), cross-loadings (CL), factor inter-
correlations (ϕ), and sample size (n) as between-factors. All effects were 
significant at p < 0.001 and the corresponding effect sizes η p

2 are reported 
in Table 4. We followed Skrondal’s (2000) recommendation of reporting 
only main effects and two-way interaction effects on each dependent 
variable of Monte Carlo experiments to facilitate interpretation.

The largest effect occurred for the interaction of rotation method 
with cross-loadings. Whereas the negative bias of OT-rotation for 

factor inter-correlations was larger (M = −0.07; SE < 0.001) than the 
negative bias of OMT-rotation (M = −0.02; SE < 0.001) for CL = 0 
(ICM), the positive bias of OT-rotation was larger (M = 0.04; 
SE < 0.001) than the positive bias of OMT-rotation (M < 0.001; 
SE < 0.001) for CL ≠ 0 (ZCLM). The extremely small standard errors 
indicate that the mean differences are significant. The second largest 
effect occurred for the interaction of rotation method with factor 
inter-correlations. Whereas the bias of OT-rotation on factor inter-
correlations was more positive (M = 0.04; SE < 0.001) than the bias of 
OMT-rotation (M = 0.002; SE < 0.001) for ϕ = 0.00, the bias for ϕ = 0.25 
was close to zero for OT-rotation (M = 0.004; SE < 0.001) and for 
OMT-rotation (M < 0.001; SE < 0.001), and for ϕ = 0.50, it was more 
negative for OT-rotation (M = −0.09; SE < 0.001) than for 
OMT-rotation (M = −0.03; SE < 0.001). The next largest effect was the 
interaction of rotation method with the number of salient loadings per 
factor (p/q). For p/q = 5 the negative bias of OT-rotation (M = −0.06; 
SE < 0.001) was more substantial than the negative bias of 
OMT-rotation (M = −0.02; SE < 0.001) and for p/q = 8 the positive bias 
was larger for OT-rotation (M = 0.03; SE < 0.001) than for 
OMT-rotation (M = 0.003; SE < 0.001). These largest interaction effects 
indicate that the positive and negative biases that are related to the 
conditions CL, ϕ, and p/q were larger for OT-rotation than for 
OMT-rotation.

The descriptive results for the factor inter-correlations for CL = 0 
(ICM) based on population factor inter-correlations of ϕ = 0.50 are 

TABLE 3 Independent variables of the simulation study.

Independent 
variables

Abbreviation 
(number of levels)

levels

Factor rotation method Rot (2) OT- vs. OMT-

rotation

Number of factors q (4) 3, 6, 9, 12

Number of salient loadings p/q (2) 5, 8

Salient loading size λ (2) 0.50, 0.70

Cross-loadings CL (2) zero vs. non-zero

Factor inter-correlations ϕ (3) 0.00, 0.25, 0.50

Sample size n (5) 100, 150, 200, 

300, 500

TABLE 4 Repeated measures ANOVA main effects and two-way interactions for the conditions of the simulation study (independent variables) and bias 
of factor inter-correlations (dependent variable) based on OT- and OMT-rotation.

Within/between 
effects

F df
ηp2

Between effects F df
ηp2

Rotation 9259.92 1 0.02 q 5329.83 3 0.03

Rotation × q 29703.17 3 0.16 ϕ 141376.72 2 0.37

Rotation × ϕ 209911.87 2 0.47 λ 135796.55 1 0.22

Rotation × λ 191336.81 1 0.29 n 31880.46 4 0.21

Rotation × n 31674.43 4 0.21 CL 245893.48 1 0.34

Rotation × CL 519432.14 1 0.52 pq 200733.39 1 0.30

Rotation × p/q 298812.24 1 0.38 q × ϕ 10588.39 6 0.12

q × λ 8867.27 3 0.05

q × n 2090.47 12 0.05

q × CL 29037.07 3 0.15

q × pq 16967.97 3 0.10

λ × ϕ 60445.83 2 0.20

ϕ × n 11725.43 8 0.16

CL × ϕ 7259.88 2 0.03

pq × ϕ 8401.49 2 0.03

λ × n 14728.05 4 0.11

λ × CL 6979.38 1 0.01

pq × λ 4950.14 1 0.01

CL × n 91.83 4 0.00

pq × n 90.93 4 0.00

pq × CL 133206.31 1 0.22

All effects were significant at p < 0.001; ηp2> 0.30 are given in bold-face.
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presented in Figure 2. For mean salient loadings of 0.50 and samples 
of n = 200 and below, the mean inter-correlations of OT-rotated factors 
are considerably smaller than ϕ = 0.50. In contrast, the mean inter-
correlations of the OMT-rotated factors are much closer to 0.50 and 
show a smaller negative bias. For q = 12 factors and mean salient 
loadings of 0.50, the mean inter-correlations of the OT-rotated factors 
are zero, whereas the mean inter-correlations of the OMT-rotated 
factors are a bit larger than 0.20. Thus, the under-estimation of the 
inter-correlations is present in all target-rotated factors but it is much 
smaller for the OMT-rotated factors than for the OT-rotated factors. 
The under-estimation of the population factor inter-correlations is 
considerably reduced for mean salient loadings of 0.70 (see Figure 2). 
The under-estimation of factor inter-correlations was also smaller for 
OMT-rotated factors than for OT-rotated factor for ϕ = 0.25 (see 
Figure 3). Overall, the size of the effects was reduced and the pattern 

was the same as for ϕ = 0.50. No under-estimation of the population 
factor inter-correlations and no substantial difference between OT- 
and OMT-rotated factors occurred for ϕ = 0.00 (see 
Supplementary Figure S1). However, in this condition, the standard 
deviation of the factor inter-correlations was larger for OT-rotated 
factors than for OMT-rotated factors for mean salient loadings of 0.50, 
n = 100, and q = 12.

Whereas the results for the ICM show that the under-estimation 
of factor inter-correlations for OT-rotation is more pronounced than 
for OMT-rotation, the results for the ZCLM are more complex (see 
Figure 4). For p/q = 5, there are small over- and underestimations of 
the inter-correlations of the OT-rotated factors for different numbers 
of factors, whereas the inter-correlations of the OMT-rotated factors 
remain rather similar across different numbers of factors. In contrast, 
for p/q = 8, an over-estimation of factor inter-correlations for 

FIGURE 2

Means and standard deviations of inter-factor correlations resulting from OT- and OMT-rotation for the ICM, population factor inter-correlations of 
ϕ  =  0.50; q indicates the number of factors.
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OT-rotated factors increases with the number of factors. Again, only 
very small variations of the inter-correlations of the OMT-rotated 
factors occurred. Although the different patterns of non-zero 
population cross-loadings induce different factor inter-correlations of 
OT-rotated factors, the inter-correlation of the OMT-rotated factors 
is only slightly affected by the different patterns.

The mean RMS differences of the OT- and OMT-rotated loading 
patterns with the population loadings for the ϕ = 0.50 condition are 
presented in Figure 5. For all loading sizes and sample sizes, the mean 
RMS differences were nearly the same for q = 3. For q > 6, mean salient 
loadings of 0.50, and sample sizes smaller than 300, the mean RMS 
differences were substantially larger for OT-rotated factor patterns 
than for OMT-rotated factor patterns. In these conditions, the mean 
RMS differences increased with q for the OT-rotated factor patterns, 
whereas they did not substantially increase with q for the OMT-rotated 
factor patterns. In these conditions, the standard deviations of the 
RMS differences were much larger for the OT-rotated factor patterns 
than for the OT-rotated factor patterns (see Figure 5). For ϕ = 0.25 the 
effects of q, n, and mean salient loading size on mean RMS differences 
were smaller than for ϕ = 0.50, but the pattern of results was the same 
(see Figure 6). For ϕ = 0.00 the mean RMS differences were very small 
and only a small increase of mean RMS differences occurred for 
OT-rotated factors for n = 100, q > 6, and mean salient loadings of 0.50.

Differences of OT- and OMT-rotation for the standard deviations 
of salient loadings and cross-loadings are presented for n = 100 and 

p/q = 5 in the Supplementary Figures S3A–D. In this condition, the 
largest standard deviations of loadings can be expected. For the ICM, 
the standard deviations of OT-rotated cross-loadings were 
considerably larger than the standard deviations of the OMT-rotated 
loadings for q ≥ 6 at all levels of ϕ (Supplementary Figures S3A,B). For 
the ZCLM, considerably larger standard deviations of OT-rotated 
loadings occurred for q = 6 and ϕ = 0.50 (Supplementary Figure S3C) 
and for q > 6 at all levels of ϕ. For q = 3, the standard deviations of 
OT-rotated and OMT-rotated loadings were similar for all levels of ϕ 
(Supplementary Figure S3D).

Repeated measures ANOVA was performed for factor score 
indeterminacy of OT-rotated and OMT-rotated factors. Rotation 
method was a within-factor (Rot), and number of factors (q), and 
cross-loadings (CL) were between-factors. The main effect of rotation 
method and the interactions of rotation method with q and CL were 
significant at p < 0.001 and the corresponding effect sizes η p

2 are 
reported in Table 5. The largest effect occurred for rotation method 
with M = 0.52 (SE = 0.002) for OT-rotation and M = 0.60 (SE = 0.001) 
for OMT-rotation. The second largest effect was the interaction of 
rotation method with the number of factors, indicating that the 
difference between the rotation methods was smaller for q = 6 
(OT-rotation: M = 0.58, SE = 0.003; OMT-rotation: M = 0.63, 
SE = 0.001) than for q = 9 (OT-rotation: M = 0.46, SE = 0.003; 
OMT-rotation: M = 0.57, SE = 0.001). The remaining effect sizes were 
rather small.

FIGURE 3

Means and standard deviations of inter-factor correlations resulting from OT- and OMT-rotation for the ICM, population factor inter-correlations of 
ϕ  =  0.25; q indicates the number of factors.
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6 Empirical example

As an empirical example a subsample of participants responses to 
25 items from the Open-Source Psychometrics Project1 based on the 
Big-Five Factor Markers (BIG5.zip, last updated 5/18/2014, retrieved 
on 08/22/2023) from the International Personality Item Pool (IPIP, 
Goldberg, 1992) was used. Only the first 19,700 participants (age/
years: M = 26.27, SD = 11.59; gender: 11,973 females, 7,601 males, 102 
others, 24 missing values) from the total file of 19,719 participants 
were used in order to split the total sample into 197 subsamples each 
containing the responses of 100 participants to the first four items 
(E1-E4, N1-N4, A1-A4, C1-C4, O1-O4) of each of the five factors. 
Only a subsample of items was used in order to investigation a data 
set that is less favorable for optimal factor rotation.

The aim was to compare the OT- and OMT-rotated five-factor 
solution of the total sample with the OT- and OMT-rotated five-factor 

1 http://openpsychometrics.org/_rawdata/

solutions of the subsamples. Principal axis factoring of the total 
sample and of the subsamples was performed with IBM SPSS Version 
29.0 and OT- and OMT-rotation was performed with the code 
provided in the Supplementary Material. The rotated solutions for the 
total sample are presented in Table 5. The OT- and OMT-rotated 
loading patterns are very similar which indicates that for the very large 
total sample both rotation methods work well. The inter-correlations 
of the OMT-rotated factors were a bit larger than the inter-correlations 
of the OT-rotated factors (Table 6).

Overall, 195 out of the 197 principal factor analyses converged. 
OT- and OMT-rotation was performed for the unrotated factor 
solutions and the RMS difference of each of the rotated factor patterns 
with the corresponding rotated factor pattern of the total sample was 
computed. When for RMS-OT five values greater one were set to one, 
the mean of RMS-OT was 0.18 (SD = 0.19), for RMS-OMT no values 
greater one occurred and the mean RMS-OMT was 0.16 (SD = 0.06). 
For the factor inter-correlations of the OT-rotated factors RMS-OT 
was 0.25 (SD = 0.21, two values greater one were set to one), for the 
factor inter-correlations of the OMT-rotated factors RMS-OMT was 
0.15 (SD = 0.05, no values greater one occurred).

FIGURE 4

Means and standard deviations of inter-factor correlations resulting from OT- and OMT-rotation for the ZCLM, population factor inter-correlations of 
ϕ  =  0.50; q indicates the number of factors.
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7 Discussion

Investigations of simple structure by means of EFA are still 
relevant, also because analyses of simple structure models by means 
of confirmatory factor analyses may lead to series of model-
modifications. It was, however, expected that sampling error 
substantially affects results of conventional Target-rotation because 
single cross-loadings are minimized. In order to reduce the effect of 
sampling error on results, OMT-rotation was proposed which 
minimizes mean cross-loadings instead of single cross-loadings. It was 
shown in a population example that minimizing single cross-loadings 
by means of conventional OT-rotation may lead to ambiguous results, 
when the mean cross-loadings are close to zero while the absolute size 
of the cross-loadings is substantial. In the population model, the 
observed variables with single cross-loadings that were close to zero 

after rotation were arbitrary because the variables all had the same 
absolute cross-loading before rotation. This indicates that 
OMT-rotation may be of special interest when the cross-loadings with 
positive and negative sign balance out.

Accordingly, OT- and OMT-rotation were compared in a 
simulation study based on the oblique ICM, comprising cross-
loadings that are exactly zero in the population, and a model with 
non-zero population cross-loadings resulting in zero-mean cross-
loadings (ZCLM) were investigated in a simulation study. ANOVA 
revealed that the bias of the factor inter-correlations resulting from 
OT- and OMT-rotation varied for the type of model (ICM vs. ZCLM), 
the size of the population factor inter-correlations, and the number of 
variables with salient loadings per factor. For these conditions, the 
positive and negative biases of the factor inter-correlations were more 
pronounced for OT-rotation than for OMT-rotation.

FIGURE 5

Root Mean Square (RMS) difference between the population loading pattern and the OT- and OMT-rotated loading patterns for population factor 
inter-correlations of ϕ  =  0.50; q indicates the number of factors.
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ANOVA and descriptive results revealed that, for the oblique 
ICM, sampling error may induce negative bias to Target-rotated factor 
inter-correlations. The negative bias of the factor inter-correlations in 
the ICM was substantially more pronounced for OT-rotation than for 

OMT-rotation, especially for small sample sizes, moderate mean 
salient loadings, and a large number of factors. For 12 factors, 100 
cases, mean salient loadings of 0.50, and population inter-correlations 
of 0.50, the mean sample inter-correlations of OT-rotated factors was 
zero, whereas it was greater 0.20 for OMT-rotated factors. The mean 
RMS differences of rotated factor patterns and the population factor 
pattern were larger for OT-rotation than for OMT-rotation. Thus, 
when samples size was small and the number of factors large, loading 
patterns and factor inter-correlations were more similar to the 
population loading patterns and factor inter-correlations for 
OMT-rotation than for OT-rotation. However, no relevant differences 
between the rotation methods were found for the uncorrelated 
ICM. For the ZCLM, more than three factors, and 8 variables with 
salient loadings per factor, an overestimation of the inter-correlations 
of the OT-rotated factors occurred that did not occur for the 
OMT-rotated factors. This reveals that the size and direction of bias of 

FIGURE 6

Root Mean Square (RMS) difference between the population loading pattern and the OT- and OMT-rotated loading patterns for population factor 
inter-correlations of ϕ  =  0.25; q indicates the number of factors.

TABLE 5 Repeated measures ANOVA results for the conditions of the 
simulation study (independent variables) and indeterminacy of factors 
based on OT- and OMT-rotation.

Within/between 
effects

F df
ηp2

Rotation 3544.54 1 0.47

Rotation × q 495.86 1 0.11

Rotation × CL 265.69 1 0.06

Rotation × q × CL 61.71 1 0.02

All reported effects were significant at p < 0.001; ηp2> 0.30 are given in bold-face.
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factor inter-correlations does not only depend on sampling error but 
also on the type of model. Therefore, recommendations regarding the 
minimum sample size should be based on general studies concerning 
this issue. A sample size of n = 50 has been recommended as a 
reasonable absolute minimum for exploratory factor analysis (de 
Winter et al., 2009). However, the study of de Winter et al. (2009) 
reveals that even smaller samples might be possible when the salient 
loadings are large, the number of observed variables is large and the 
number of factors low. As the minimum sample size of the present 
study was n = 100, it remains open for further research whether 
OMT-rotation may help to improve results of very small samples. 
Nevertheless, the present simulation study shows that OMT-rotation 
reduced the standard deviations of loadings, especially when the 
number of factors is large, and the combined effect of sampling error 
and model parameters on the bias of factor inter-correlations. Overall, 
the effect of the conditions of the simulation study on positive and 
negative bias of factor inter-correlations was more pronounced for 
OT-rotation than for OMT-rotation. It should be  noted that the 
simulated non-zero population cross-loadings in the ZCLM were not 
extremely large as they were at maximum one third of the average 
salient loadings. As small ZCLM cross-loadings resulted in larger bias 

of factor inter-correlations for OT-rotation than for OMT-rotation, 
researchers expecting that non-zero cross-loadings cancel out may 
consider OMT-rotation.

An empirical example was based on open data for the BIG-five 
model of personality (Goldberg, 1992). A large total sample based on 
four marker variables per factor was divided into several subsamples 
based on 100 participants in order to investigate the similarity of the 
OT- and OMT-rotated subsample solutions with the corresponding 
OT- and OMT-rotated total sample solutions. The similarity of the 
rotated loading patterns and factor inter-correlations for the 
subsamples with the corresponding rotated loading pattern and factor 
inter-correlations for the total sample was more pronounced for 
OMT-rotation than for OT-rotation. This indicates that OMT-rotation 
may help to get more robust results, especially when the number of 
marker variables per factor and the sample size are rather small.

Overall, the results of the simulation study and of the empirical 
example indicate that OMT-rotation is more robust than OT-rotation. 
The robustness refers to effects of sampling error and to the distribution 
of non-zero cross-loadings across factors. Therefore, OMT-rotation can 
be recommended when an oblique ICM or a ZCLM is expected and 
when salient loadings are moderate, factor numbers large, and sample 

TABLE 6 OT- and OMT-rotated five factor loading patterns and factor inter-correlations for 20 BIG-Five Markers of the total sample.

OMT-rotation OT-rotation

E N A C O E N A C O

E1 0.71 0.03 −0.12 −0.06 −0.01 0.66 −0.03 −0.02 −0.01 0.01

E2 0.75 0.15 −0.10 −0.07 0.03 0.69 0.09 0.01 −0.01 0.05

E3 0.65 −0.13 0.14 0.06 −0.06 0.62 −0.19 0.23 0.09 −0.04

E4 0.77 0.04 −0.15 0.03 0.02 0.72 −0.02 −0.05 0.08 0.04

N1 0.02 0.76 −0.01 −0.02 −0.04 0.00 0.75 −0.01 −0.02 −0.06

N2 −0.02 0.60 −0.10 0.08 0.00 −0.03 0.60 −0.11 0.09 −0.01

N3 −0.02 0.72 0.09 0.04 0.00 −0.03 0.72 0.08 0.03 −0.01

N4 −0.09 0.34 −0.01 −0.05 0.12 −0.10 0.34 −0.02 −0.04 0.11

A1 0.03 0.05 0.39 0.00 0.11 0.03 0.04 0.40 0.00 0.12

A2 0.34 0.03 0.43 −0.08 0.05 0.32 0.00 0.48 −0.07 0.06

A3 −0.17 −0.16 0.45 0.22 −0.07 −0.14 −0.15 0.42 0.19 −0.06

A4 −0.02 0.07 0.80 −0.07 −0.04 −0.02 0.05 0.79 −0.10 −0.03

C1 0.06 0.04 −0.01 0.53 0.04 0.09 0.04 0.00 0.54 0.05

C2 −0.05 0.02 −0.06 0.58 −0.11 −0.01 0.04 −0.07 0.57 −0.10

C3 −0.01 0.12 0.05 0.36 0.18 0.01 0.13 0.06 0.37 0.18

C4 0.04 −0.16 0.02 0.66 −0.04 0.08 −0.15 0.03 0.66 −0.02

O1 0.06 0.05 −0.06 0.03 0.47 0.06 0.04 −0.03 0.08 0.46

O2 −0.01 −0.08 −0.05 0.05 0.74 0.00 −0.08 −0.01 0.11 0.74

O3 0.04 0.10 0.01 −0.11 0.38 0.03 0.09 0.03 −0.07 0.38

O4 −0.04 −0.02 0.06 −0.04 0.64 −0.03 −0.02 0.08 0.00 0.63

OMT factor inter-correlations OT factor inter-correlations

E 1.00 1.00

N −0.31 1.00 −0.20 1.00

A 0.35 0.00 1.00 0.20 0.03 1.00

C 0.15 −0.24 0.18 1.00 −0.02 −0.25 0.18 1.00

O 0.11 −0.14 0.16 0.11 1.00 0.04 −0.09 0.08 −0.01 1.00

Salient loadings that are conform to the BIG-Five model are given in bold face.
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sizes small. The relevant orthogonal/unrotated loading matrices for 
OMT-rotation may be entered into the R-script or into the SPSS-script 
provided in the Supplementary Material.

From a broader perspective, it should be noted that less biased 
factor inter-correlations are an important basis for hierarchical factor 
models. Factor prediction, as it can be performed with ESEM, also 
needs optimal estimates of the factor inter-correlations. Further research 
may consider the investigation of OMT-rotation with very small 
samples (n = 50 and below). Moreover, the basic idea of OMT-rotation, 
i.e., averaging loadings in order to provide more suitable initial loadings 
for factor rotation, may be investigated for other methods of factor 
rotation. The main idea from the present study in this respect is that the 
transformation matrix for factor rotation derived from rotation of an 
averaged loading pattern can be used for rotation of the loading pattern 
based on single observed variables. That is, not only Target-rotation may 
be improved by reducing the effect of single loadings on the results. The 
effect of averaging loadings may be beneficial for analytical methods of 
factor rotation, but it may also be relevant for algorithms that are based 
on the permutation of starting values, as, for example, gradient 
projection algorithms (Bernaards and Jennrich, 2005).

From an applied perspective, it should be noted that the correlation 
of the factor score predictors with the original factors (i.e., 
indeterminacy) was improved by means of OMT-rotation. Reducing the 
effects of single cross-loadings on the rotation of the loading pattern 
may therefore also help to improve decisions that are based on 
individual factor score predictors. As the original factors are typically 
unknown in applied settings, it is recommended to compare the OT- 
and the OMT-rotated loading patterns to check whether single observed 
variables have a theoretically unjustified effect on factor rotation. Note 
that cross-loadings with smaller effect on oblique rotation may remain 
substantial after rotation. However, in the OMT-rotated loading pattern, 
some cross-loadings might remain large while the mean cross-loadings 
remain close to zero. This would indicate that a balanced measurement 
of the latent variable is reached without increasing the factor inter-
correlations by reducing the single cross-loading. Moreover, correlation-
preserving factor score predictors (e.g., McDonald, 1981) also require 
optimal estimates of the factor inter-correlations. Of course, also in 
settings where the factor inter-correlations are relevant for further 
research, OMT-rotation might be considered.
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