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Monte Carlo simulation is a common method of providing empirical 
evidence to verify statistics used in psychological studies. A representative 
set of conditions should be included in simulation studies. However, several 
recently published Monte Carlo simulation studies have not included the 
conditions of the null distribution of the statistic in their evaluations or 
comparisons of statistics and, therefore, have drawn incorrect conclusions. 
This present study proposes a design based on a common statistic evaluation 
procedure in psychology and machine learning, using a confusion matrix 
with four cells: true positive, true negative, false negative modified, and 
false positive modified. To illustrate this design, we  employ an influential 
Monte Carlo simulation study by Trizano-Hermosilla and Alvarado (2016), 
which concluded that the Omega-indexed internal consistency should 
be  preferred over other alternatives. Our results show that Omega can 
report an acceptable level of internal consistency (i.e., > 0.7) in a population 
with no relationship between every two items in some conditions, providing 
novel empirical evidence for comparing internal consistency indices.
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Introduction

Simulation studies use computer-generated data to investigate research questions 
(Beaujean, 2018). Monte Carlo simulation is a commonly used procedure that uses 
repeated random number selections to solve modeling problems (Gelfand and Smith, 
1990). It is especially useful when a statistical assumption (e.g., normality) is violated or 
in situations without theoretical distribution (Fan, 2012). The Monte Carlo simulation 
was introduced to psychometrics by Patz and Junker (1999a,b).

Psychological researchers are often interested in determining the sampling 
distributions of test statistics, comparing parameter estimators (e.g., Cohen’s d), and 
comparing multiple statistics that perform the same function. In a Monte Carlo simulation 
context, a key factor is the design of the specific conditions to evaluate.

Different simulation studies use different designs with a variety of conditions. This is 
because the study’s aims usually dictate the selection of the conditions. Suppose a Monte 
Carlo study has been designed to test the violation of a certain assumption (e.g., 
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normality). Both the condition that the assumption has been met (e.g., 
normal distributed population) and the condition that the assumption 
has been violated (e.g., skewed distributed population) should 
be  included in the study. Now, assume a different study has been 
designed to test the performance of a statistic (or several statistics) 
across different population distributions. In this case, multiple 
population distributions should be included in the study design. In 
general, “the major factors that may potentially affect the outcome of 
interest should be included” (Fan, 2012, p. 437).

However, some recent studies overlooked the inclusion of the 
null distribution of statistics in the simulations. A null distribution 
of statistics represents a scenario with no estimated relationship 
between variables within a given sample (Hunter and May, 2003; 
Spurrier, 2003).

In this study, we  advocate for including a null distribution of 
statistic conditions in the Monte Carlo simulation when evaluating 
and comparing statistical measures. Furthermore, we suggest that the 
performance of a statistic should be assessed in light of commonly 
used cut-offs. Psychologists often employ informal tests in their 
research to compare the statistics values to a pre-determined cut-off 
to reach a binary decision. For example, an area under the curve 
(AUC) greater than 0.7 in ROC analysis is considered the minimum 
acceptable threshold (Streiner and Cairney, 2007); A Root Mean 
Square Error of Approximation (RMSEA) of 0.08 is regarded as the 
upper limit for Structural Equation Model fitting (SEM, Fabrigar, 
1999). An internal consistency (e.g., Cronbach Alpha) greater than 0.7 
is considered an acceptable level of reliability, according to Taber 
(2018). Trizano-Hermosilla and Alvarado (2016) have conducted a 
Monte Carlo simulation study with a focus on internal consistency 
performance evaluation. In this paper, we will utilize the influential 
study by Trizano-Hermosilla and Alvarado (2016) as a practical 
example to demonstrate the inclusion of a null distribution and the 
assessment of the statistic using commonly used cut-offs.

This paper is organized into several sections. We  review 
current practices regarding including null distribution in 
psychological Monte Carlo simulation studies and their associated 
limitations. Subsequently, we  introduce a simulation design 
rooted in the confusion matrix as a proposed solution. The study 
conducted by Trizano-Hermosilla and Alvarado (2016) will 
be  used as a practical example of this design. In conclusion, 
we  engage in a comprehensive discussion about the design, 
supplemented by another illustrative sample.

The null distributions conditions 
included in the Monte Carlo 
simulation psychological studies

We observed that the null distribution of statistics is generally 
included in existing Monte Carlo simulation studies in two ways: First, 
the null distribution of statistics is included to represent the condition 
that there is no true mean difference between two groups of scores and 
are usually referred to as conditions of null effect (e.g., Derrick et al., 
2016; Carter et  al., 2019; Fernández-Castilla et  al., 2021). This is 
consistent with the suggestion of the American Psychological 
Association (APA) guidelines. That is, researchers should include the 
null distribution of statistics (i.e., no mean difference between two 

groups; Fan, 2012) in any simulation of effect to test and evaluate the 
potential threat of Type I error.

Second, the researchers include the condition of a null distribution 
in factors in the simulation (e.g., Heggestad et al., 2015). In Greene 
et al.’s (2019) study evaluating the bias of different kinds of fit indices, 
the authors manipulated (a) the strength of the cross-loadings between 
factors as 0, 0.1, 0.3, and 0.5, (b) the strength of the between-factor 
correlated residuals as 0, 0.1, 0.3, and 0.5, and (c) the strength of the 
within-factor correlated residuals as 0, 0.1, 0.3, and 0.5 in a model. In 
this sample, 0 represents the condition in which the relationship of 
cross-loadings or correlated residuals does not exist in the population 
of variables.

In summary, researchers commonly include the null distribution 
of the statistic condition when estimating a statistic’s performance 
closely related to the mean difference. For example, when examining 
Cohen’s d in a Monte Carlo simulation study, researchers typically 
include a condition of no mean difference between two populations. 
Researchers also include the conditions of null distribution in factors 
in simulation studies for statistical comparison. However, 
psychological researchers may sometimes neglect to include the null 
distribution of the statistic in some other circumstances, such as in 
cases where the examined statistic does not have a close relationship 
with the mean difference.

Returning to the fit indices study (Greene et  al., 2019) one 
paragraph above, the authors should include conditions that a null 
distribution in factors, such as no between-factor correlated residual, 
and the conditions with the null distribution of the statistic, such that 
some simulated samples should have no relationship with the 
proposed model (i.e., no model fitting). In our view, the failure to 
include conditions of null distribution weakens the conclusion of the 
simulation in the study. This may occur because some researchers 
have not considered the performance of the statistic in the condition 
that the dataset follows a null distribution of this statistic. (i.e., how 
will the fitting index perform on random data?), although other 
researchers recognize its importance. For instance, Stone (2000, p. 64) 
points out: “In order to test statistically the fit of an item, it is then 
necessary to compare the statistic that is calculated with a null 
distribution.” Stone conducted a Monte Carlo simulation based on 
null distribution to compare goodness-of-fit test statistics in item 
response theory (IRT) models, and the results showed the superiority 
of the statistic he proposed. Fan and Sivo (2007) and Fisk et al. (2023) 
examined the performance of fit indices in structural equation 
modeling (SEM) under conditions of model misspecification. This 
misspecification refers to discrepancies between the theoretical 
structure of the model and the simulated dataset.

In summary, the null distribution of the statistic is widely included 
in NHST-related statistics. Yet, when evaluating a statistic that does 
not have a close relationship in NHST (e.g., fit indices), psychological 
researchers sometimes neglect the null distribution condition. This 
study demonstrates the importance of this issue using the example of 
an influential simulation study about the several common statistics of 
internal consistencies and will propose a new design based on a 
confusion matrix that always includes a test with null distribution in 
statistics and evaluates the statistics from these conditions. As our 
example, we have selected a study conducted by Trizano-Hermosilla 
and Alvarado (2016), which we will henceforth refer to as the “original 
study” for convenience.
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How will the missing null distribution 
of statistic conditions influence the 
result of a simulation study?

In the following section, we will offer a general overview of the 
original study. We will specifically address the shortcomings of not 
including null distribution of the statistics conditions in their 
simulation design and propose enhancements through the 
methodology developed in this study.

In the original study, Trizano-Hermosilla and Alvarado (2016) 
compared the performances of four internal consistency statistics: 
Cronbach’s Alpha, Omega (McDonald, 1999), GLB (Greatest Lower 
Bound, Sijtsma, 2009), and GLBa (Greatest Lower Bound algebraic, 
Moltner and Revelle, 2015). They made a comparison of these statistics 
with various normal and nonnormal distributions and two kinds of 
inter-correlation between items: tau-equivalent and congeneric.

The original study used Root mean square error (RMSE) and 
%bias as their criteria.
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where p̂ refers to the observed statistics for each replication, p 
refers to the true value of statistics in the simulation population, and 
Nr refers to the number of replications. Larger absolute values in the 
RMSE and the %bias statistics indicate worse performance.

Based on the RMSE and the %bias, the authors reported that 
Omega showed the best performance across most conditions included 
in their study. In other words, when comparing the difference between 
observed sample statistics and the associated true population 
parameter values, Omega showed the smallest discrepancies across 
most of the conditions. This led the authors to conclude that Omega 
should be recommended as the preferred index of internal consistency 
in psychological research. Specifically, the original study suggests that 
Omega should be preferred over Cronbach’s Alpha, which is the most 
widely used measure of internal consistency. Various studies across 
multiple disciplines shared the opinion with the original study that 
Omega rather than Alpha should be used as an internal consistency 
measurement method (Watkins, 2017; McNeish, 2018; Cortina 
et al., 2020).

Importantly, for our purposes, Trizano-Hermosilla and Alvarado 
(2016) original study included only simulation conditions in which 
there was an effect measured by the statistic (i.e., populations with 
internal consistency). Specifically, it only included conditions with an 
acceptable level of internal consistency between items in the 
questionnaires (i.e., a true internal consistency of 0.731 and 0.845) for 
the condition of 6 and 12 questionnaire lengths, respectively. As 
mentioned above, Alpha and Omega values of 0.7 or above are 
indicated as acceptable internal consistency in psychological research 
(Taber, 2018). Therefore, it included the null effect of some factors 

(e.g., no distribution error). However, it did not include a null 
distribution statistic condition, as we suggest here. According to Tang 
et al. (2014), internal consistency refers to the degree of inter-item 
correlations among items with factor saturation. Thus, to simulate a 
null distribution for these internal consistency statistics, one can 
independently assign random numbers to each item.

As a result, we would argue that the conditions included in the 
original study are insufficient to support their conclusions. To 
elaborate, we propose a new hypothetical index, C, which is used to 
measure internal consistency, with 0.7 being set as an acceptable 
cut-off. C is a constant number that can be computed and observed 
across all the 1,000 simulated datasets. Suppose C is found to be 0.78 
from each replicated sample, i.e., (3)

 C = 0 78. . (3)

In other words, C is a dummy index without validity according to 
internal consistency estimation. However, based on the criteria 
employed in previous studies (i.e., RMSE and %bias), C has a similar 
level of error as the Omega index. Across conditions in the original 
study for length = 6 items, the population parameter of internal 
consistency is 0.731. This is based on Equations (1) and (2), in which p 
is always 0.731, and p̂ is always 0.78. As a result, the RMSE is 0.049 (4)
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and the %bias is −4.9% (5)
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in all conditions. Across conditions included in the original study 
length of 12 items, with similar calculations, RMSE is 0.065, and the 
%bias is 6.5%. These two results will remain consistent regardless of 
other factors, like the type of distribution. Therefore, it appears that in 
a number of conditions, this dummy index can provide similar or even 
superior performance to the genuine indices included in the original 
study. Importantly, this indicates that based only on the empirical 
evidence provided in the original study, we cannot distinguish Omega 
from this dummy index C. C is an extreme theoretical case, and a 
statistic with a consistent number cannot be applied. However, A 
dummy index similar to C with variations can be simulated easily. For 
example, C can be simulated from a continuous uniform distribution 
[0.711, 0.751] and C also cannot be distinguished from Omega with 
the simulation conditions and criteria used in the original study.

To sum up, simulation studies often evaluate the performance of 
a statistic based on RMSE and %bias in Monte Carlo simulations, with 
a view to quantifying the distance between the sample estimates of an 
observed statistic and the true parameter values (i.e., TP) in the 
population. We agree that this approach can offer insights regarding 
the degree to which observed sample estimates are different from true 
population values. However, without the introduction of the null 
distribution of statistic conditions in simulation, researchers may 
reach incorrect or incomplete conclusions, as in the above example 
with the dummy C index.
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To address this problem, we introduce in this study a Monte Carlo 
design based on criteria commonly used in psychology and machine 
learning to evaluate models with categorical or binary results: the 
“confusion matrix” (Marom et al., 2010). In psychology, researchers 
typically use a confusion matrix to evaluate the performance of a 
categorization model in real psychological practice (i.e., Ruuska et al., 
2018). A confusion matrix comprises four quadrants: True Positive 
(TP), False Positive (FP), True Negative (TN), and False Negative 
(FN). Their relationships are shown in Table 1.

We use the original study as an example to illustrate how to apply 
confusion matrix methodology to simulation studies in psychology, 
aiming at statistical comparison. The null distribution of the statistic 
in the original study is the condition where there is zero internal 
consistency between items in the population.

We also include the interpretation of results that come from the 
design. Internal consistency is both continuous and binary (i.e., 
cut-off), exemplifying the problem adequately. The present study will 
keep the original study’s design unless alternative designs better target 
the research problem, or the original design is not applicable.

Simulation Study 1: estimating the true 
negative

As noted above, the original study does not include the null 
distribution of the internal consistency statistics. The original study 
only provides empirical evidence of TP. The following simulation aims 
to distinguish Omega from a dummy index like C. As suggested by 
several studies (Moriasi et  al., 2007; Wang and Lu, 2018), for the 
continuous variable, RMSE and %bias can provide more information 
than a percentage. Therefore, we propose TN can also use these two 
criteria. In the case that Omega is an efficacy statistic or index and that 
TN conditions should have an RMSE close to 0 and a %bias close to 
0%, upon which a dummy statistic or index like C should have an 
RMSE close to 0.70 and a %bias close to 70% in the TN condition. 
Therefore, using TN to test whether a statistic or index is merely a 
“dummy” one is crucial, and its inclusion in the simulation represents 
an important step toward obtaining truly conclusive results.

Design

In the original study, the researchers simulated several factors, 
including sample size (250, 500, and 1,000) and item length (6 or 12). 

This study will also use the same design for these two factors. The 
original study also included the distribution of errors following 
Headrick’s (2002) that were introduced to 2, 4, or all 6 items of the 
6-item condition and to 2, 4, 6, 8, 10, or all 12 items of the 12-item 
condition. However, Headrick’s method (2002) was not introduced to 
our current study to ensure there is no internal consistency created 
from this method between items and results and also for simplicity.

The original study included the tau-equivalent and congeneric 
models as simulation conditions. This aspect of the study does not 
apply to the condition of null distribution to internal consistency 
statistics. This is because there is no correlation between any two items 
in the null distribution population, regardless of its type. Therefore, 
this design is not included in our study. In summary, 2*3 = 6 conditions 
are included in the first simulation.

The original study simulated all datasets in R (R Core Team, 2021) 
with R Studio (Racine, 2012). The present study will also use these 
platforms (for details, please see Appendix). For each condition, the 
design of the original study was replicated 10,000 times. The current 
study will use the same replication time with 10,000 across 
six conditions.

Four kinds of internal consistency measurement indices were 
included in the original study: Alpha, Omega, GLB, and GLBa. As 
provided by the sample code in the original study, these functions 
were used in the original study to obtain the following results: 
omega$alpha for Alpha, omega$omega.tot for Omega, glb.fa$glb for 
GLB, and glb.algebraic$glb for GLBa. In addition, two packages were 
used in calculations in the original studies: Psych (Revelle, 2015) and 
GPArotation (Bernaards and Jennrich, 2015), which are also used in 
this study. Further, the Omega.total was used as the chosen index from 
Omega in the original study because Trizano-Hermosilla and 
Alvarado also reported and evaluated the performance of ωt , and 
consequently, the present study will also make use of the same 
reliability index.

To create a null distribution of internal consistency, we simulated 
the dataset from a standard normal distribution N(0,1) for each item 
across participants during the replications. Accordingly, each item and 
each participant’s response are totally independent, which ensures that 
the true covariances and factor loadings in the population are always 
zero. To check the validity of this design, we  followed Fan (2012, 
p. 436), who suggests, “We may do a quick data generation verification 
by generating a large sample.” We  simulated a large dataset from 
N(0,1) and calculated four internal consistency indices, as they yielded 
results close to zero, which supported the simulated null distribution 
of statistics as accurate. This part of the code is provided separately. 
This study will also use RMSE and %bias as criteria, similar to the 
original study, to evaluate the performance of the statistics.

Results

Our results indicated that none of these indices performed as a 
dummy index. However, according to the criteria used in the original 
study, Omega (i.e., Omega.total) performed the worst in some TN 
conditions and never the best. In contrast, Alpha showed the best 
performance across all conditions. This is possibly because Omega, by 
definition, cannot be smaller than zero, implying that errors can only 
inflate its results. The full results of our simulation are displayed in 
Table 2.

TABLE 1 The elements of a confusion matrix.

Predicted true 
result

Predicted false 
result

Actual true result TP FN

Actual false result FP TN

True Positive (TP) is the proportion of results that correctly indicates the presence of a 
condition or characteristic in the population; True Negative (TN) is the proportion of results 
that correctly indicates the absence of a condition or characteristic in the population; False 
Positive (FP) is the proportion of results that erroneously indicates that a particular 
condition or attribute is present in the population, while False Negative (FN) is the 
proportion of results which erroneously indicates that a particular condition or attribute is 
absent in the population. In an ideal perfect model, TP and TN should be at 100%, and FN 
and FP should be at 0%.
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It should be noted that this design is subject to a limitation. The 
performances of statistics, which are RMSE and %bias used in the 
original study, have different meanings when the true effects are 
different. For example, a 10%bias in a condition where the true effect 
is 0.731 can lead to a considerable number of studies establishing 
wrong predictions that view the internal consistency of a study as not 
acceptable because it could create a 95% distribution like [0.5, 0.9] and 
consequently yield wrong decisions based on these outputs. For 
instance, a researcher could consider a 0.6 measurement error of 
Alpha level in a study not acceptable. A 20%bias in the condition that 
the true effect is zero will not usually influence the decision-making 
process since it could create a 95% distribution like [0, 0.3]. In the 
scenario of a null distribution of internal consistency in the 
population, it does not matter whether the internal consistency is 0.1 
or 0.2, as neither internal consistency score is acceptable in 
psychological studies.

We propose adding two new designs to the Monte Carlo 
simulation in psychological statistic testing to overcome this 
limitation: FNm and FPm.

Simulation Study 2: estimating the 
modified false positive and modified false 
negative

First, it is essential to review the definition of FP and FN in the 
confusion matrix. As shown in Table 1, an accurate definition of FP is 
the percentage of results that erroneously indicate that a particular 
condition or attribute (e.g., correlation between variables in the same 
test) is present, whereas FN is the percentage of results that erroneously 
indicate that a particular condition or attribute is absent.

These two percentages can be used as criteria in binary outcomes. 
However, their usage with continuous results is problematic. FP and 
FN are originally designed for binary results (e.g., yes or no, 
acceptable or unacceptable). In computer science, the results tend to 
be clear and objective (i.e., an object is a dog or not a dog). However, 
this is not always the case in psychological science. The 
pre-determined cut-off used in psychology for binary conclusions is 
arbitrary. For instance, it is hard to justify why 0.69 is an unacceptable 
level of internal consistency while 0.70 is acceptable. This kind of 
binary thinking is often inappropriate in psychological research. It 
further implies that designing and measuring P (Internal consistency 
in simulation <0.70| Population internal consistency = 0.71) or P 
(Internal consistency in simulation >0.70| Population internal 
consistency = 0.69) becomes questionable since there is no substantive 

difference between an internal consistency of 0.69 and 0.70, in which 
P (X|Y) is a conditional probability, means the possibility of X in the 
condition of Y.

In addition, as discussed above, it is also meaningless to measure 
the percentage of internal consistency and report a weak relationship 
among variables when the internal consistency in the population 
follows a null distribution (i.e., P (Internal consistency in simulation 
> = 0.05| Population internal consistency = 0) and (Internal consistency 
in simulation <= 0.05| Population internal consistency = 0)). Thus, 
internal consistency close to 0.1 is not acceptable in 
psychological research.

Therefore, these FP and FN percentages have little practical 
meaning. However, there is a clear difference between the null 
distribution condition (e.g., Internal consistency = 0.0) and an 
acceptable level of relationship (e.g., Internal consistency = 0.7). 
Therefore, we propose two new metrics based on FP and FN, named 
FPm and FNm, and suggest a study similar to the original that 
additionally measures these metrics, in which FPm is the percentage 
that a statistic returns an acceptable level of statistics result when the 
statistic follows a null distribution in the population (6), and FNm is 
the percentage that a statistic returns a null result statistic when, in 
fact, the parameter is at an acceptable level in the population (7).
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The letter M in FPm and FNm stands for modification.
According to the percentage that should be measured, the FPm in 

this study is (8).
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The FNm in this study is (9).
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TABLE 2 Estimation of true negative in Study 1.

%bias RMSE

Length SS Alpha Omega GLB GLBa Alpha Omega GLB GLBa

6 250 12.41% 38.39% 15.89% 30.67% 14.17% 39.35% 17.58% 32.53%

6 500 9.00% 33.42% 11.52% 27.67% 10.35% 34.70% 12.87% 29.73%

6 1,000 6.42% 28.99% 8.23% 24.77% 7.42% 30.63% 9.22% 27.11%

12 250 17.67% 29.27% 26.59% 34.45% 18.62% 29.71% 27.47% 35.52%

12 500 12.76% 23.38% 19.13% 30.34% 13.58% 23.87% 19.87% 31.45%

12 1,000 9.28% 19.15% 13.78% 27.04% 9.90% 19.74% 14.35% 28.26%

Length is the length of items; SS is the sample size, and RMSE is Root Mean Square Error without the degree of freedom adjustment.
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RMSE is not applicable for this design. Yet, criteria are needed for 
the purpose of this new design. Hence, we propose two criteria:

Ideally, FPm and FNm should be close to 0% across all conditions. 
Therefore, for comparison between statistics, the fewer the number of 
conditions having a number larger than zero, the better the statistic.

In addition, suppose that FPm or FNm is larger than 5% in a 
certain condition. We suggest that the statistic should be deemed 
questionable in this condition and not used. This suggestion is based 
on the standard tolerable level of binary decision error. For instance, 
if a statistic shows an FPm of 0.3 when the sample size is 200, we would 
propose that this statistic is unreliable in this sample size condition 
because an acceptable level of relationship can be reported by this 
statistic even if the statistic in the population follows a null 
distribution. However, this statistic could be reliable with a sample size 
of 1,000, depending on TP, TN, FPm, and FNm values following this 
rationale. As a result, we  suggest that extreme conditions in 
psychological research should be included in the simulation study to 
provide comprehensive results.

Design

At first, for both FPm and FNm, the following conditions were 
included in our study as the original study did: the four internal 
consistency indices and questionnaire lengths of 6 and 12 items. 
We included 250, 500, and 1,000 for sample size. In addition, small 
sample sizes of 20, 25, 30, 35, 40, 45, and 50 are included in this study 
to test whether there is any condition in psychological studies that 
these biases will influence TN results.

In the evaluation of FPm, the datasets were simulated with the 
same population [i.e., N (0.1)] as in Study 1 to create the null 
distribution of statistics. In the evaluation of FNm, the datasets were 
simulated with the same method implemented in the original study. 
This makes the overall conditions 7*2 = 14. Both tau-equivalent and 
congeneric models are included. The population covariance matrixes 
are displayed in the code. All four statistics in the original study are 
included with questionnaire lengths of 6 and 12. Consequently, this 
makes the overall conditions 14 in FPm and 28 in FNm.

Results

The simulation results of FPm are displayed in Table 3, while the 
results of FNm are displayed in Table 4. As can be seen in Table 3, 
based on the criteria we proposed, (1) Alpha performs best when there 
is a null distribution in the internal consistency, and (2) the acceptable 
level of results of Omega, GLB, and GLBa is questionable when the 
sample size is less than 30 to 40, depending on the questionnaire 
length. As can be seen in Table 4, based on the criteria we proposed, 
all internal consistency indices showed good FNm. This suggests that, 
under the conditions of our study using the four indices, a result close 
to zero is highly unlikely to originate from a population with an 
acceptable level of internal consistency.

Discussion

Our study, alongside the original study by Trizano-Hermosilla 
and Alvarado (2016), presents a new Monte Carlo simulation design 

within the confusion matrix paradigm. We  have proposed new 
conditions, guided by the perspective of the confusion matrix, that 
should be included in the evaluation of statistical simulation studies. 
Firstly, we will discuss the findings of internal consistency indices. 
Secondly, we  will provide a summary of how to apply this novel 
confusion matrix design to simulation studies in statistics comparison. 
Thirdly, we will engage in a general discussion.

Issues of internal consistency indices

This study is not primarily focused on which kind of internal 
consistency indices should be  used in psychological research. 
Therefore, the study has replicated the design of the original study (i.e., 
sample size and questionnaire length) when applicable to provide an 
example of how to apply this confusion matrix design. This does not 
imply that we see no space for improvement in the conditions included 
in the study. For instance, Likert scale variables should be included in 
the simulation as internal consistency indexes are usually applied to 
the Likert scale variables in psychological research (Croasmun and 
Ostrom, 2011). However, we have found additional empirical evidence 
that should be  used as a reference for the performance of these 
statistics. Through this additional evidence, we  have found that 
Omega and GLB indices do not perform well enough for small sample 
sizes under some conditions. Yet, our results do not imply that Alpha 
should necessarily be preferred over Omega. We admit that Alpha has 
shortcomings as an index for measuring internal consistency, which 
is boosted by the length of the questionnaire or prerequisites that are 
violated, as described in previous studies (McNeish, 2018; Hayes and 
Counts, 2020).

However, we have found that under some conditions (e.g., sample 
size = 20, 30, or 40), Omega.total and GLB are boosted and thus 
become unreliable. Specifically, it is difficult to distinguish a 
population with random numbers from a population that has high 
internal consistency. Therefore, in these conditions (i.e., sample size 

TABLE 3 Estimation of false positive modified in Study 2.

Length SS Alpha Omega GLB GLBa

6 20 0.19% 49.93% 11.07% 8.48%

6 30 0.00% 16.55% 1.73% 1.85%

6 40 0.00% 5.43% 0.22% 0.36%

6 50 0.00% 1.63% 0.07% 0.16%

6 250 0.00% 0.00% 0.00% 0.00%

6 500 0.00% 0.00% 0.00% 0.00%

6 1,000 0.00% 0.00% 0.00% 0.00%

12 20 0.89% 40.98% 85.25% 35.37%

12 30 0.00% 5.03% 42.15% 11.59%

12 40 0.00% 0.32% 14.03% 3.36%

12 50 0.00% 0.02% 3.70% 0.98%

12 250 0.00% 0.00% 0.00% 0.00%

12 500 0.00% 0.00% 0.00% 0.00%

12 1,000 0.00% 0.00% 0.00% 0.00%

Length is the length of items; SS is the sample size. The percentage values are acceptable (i.e., 
adequate reliability) when the dataset follows a null distribution (i.e., zero reliability) in the 
population. Percentages in bold are the Percentages above 5%, which suggests the result of a 
specific statistic is questionable in this condition.
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<40), we  recommend that Omega.total and GLB be  avoided in 
estimating the internal consistency, no matter what kind of 
performance Omega.total has when there is an acceptable level of the 
parameters in a given population. These suggestions are based on the 
results of this simulation study, which are limited by the study’s design.

We simulated a null distribution for internal consistency, 
specifically using a normal distribution generated randomly for each 
item. This implies that all effects in the dataset are essentially noise. To 
our understanding, the reason why the Omega statistic tends to 
be  inflated in small sample sizes is due to its value range being 
restricted to [0,1]. Consequently, any noise in the dataset 
disproportionately affects Omega positively. As suggested by Okada 
(2017), the zero-winsorized method can create positive biases. 
Especially in conditions of small sample sizes, such biases can lead to 
inflated results, sometimes even exceeding the established cut-off 
(i.e., 0.7).

Moreover, related Omega indices, such as Hierarchical Omega, 
should also be tested when researchers aim to measure the reliability 
of the general factor only. All these indices with these conditions 
should be tested through the TP and TN conditions, corresponding 
to FPm and FNm. Most importantly, all these conditions should 
be tested simultaneously in a simulation study to provide empirical 
evidence for applied researchers. Suppose the proposed design had 
been applied in the original study. A more conservative 
recommendation of Omega with a discussion of Omega’s limitations 
will be provided in the original study and studies influenced by the 
original study (Watkins, 2017; McNeish, 2018; Cortina et al., 2020).

Practical recommendations and steps 
when implementing a confusion matrix 
design through Monte Carlo simulation

Step 1: Both conditions in which there is a certain relationship 
between variables and the condition in which the expected association 
is deemed as absent should be included in the simulation design (i.e., 
the null distribution of statistics), together with other relevant criteria 
such as sample size, distribution, and alike. These two kinds of 
conditions ought to be included as TP and TN, respectively.

In simulating the null distribution of statistics, we advocate for 
consistently employing the method outlined in the APA guidelines 
(Fan, 2012). This approach ensures that the simulation design 
accurately represents a population with a null statistic distribution and 
assesses its impact on the observed sample statistics. Our findings 
confirm that it is possible to reconstruct an estimation by a normally 
distributed dataset in the absence of internal consistency across four 
reliability statistics, which have theoretical and practical implications 
that are related to the definition and calculation of what is considered 
to be  a large sample. For instance, as described in Study 1, 
we calculated all four statistics (i.e., Omega, Alpha, GLB, and GLBa) 
with a large sample of 100,000 and a standard normal distribution, 
ensuring the inclusion of a null distribution of statistics since all the 
statistics are close to zero in such an extensive sample.

Meanwhile, it’s important to acknowledge that there are various 
types of null distributions for a statistic. Although our simulation 
study only includes normal distributions, we encourage researchers to 
explore a broader range of nonnormal distributions. This expansion 
is crucial to estimating the robustness of statistics under a variety of 
True Negative (TN) conditions. When doing so, researchers should 
employ the checking method we mentioned earlier to ensure that the 
design excludes any relationship specific to the statistic being tested.

Step 2: Suppose there is a commonly used cut-off or an acceptable 
level of a statistic with a continuous result. FPm (5) and FNm (6) 
should be measured in various conditions, such as those conditions 
commonly occurring in practice.

We have already described the difficulty of practicing FN and FP 
directly in statistics used in psychology. Yet, we also admit that FNm 
is necessary but not sufficient to estimate FN. Analogically speaking, 
using FNm to replace FN and using FPm to replace FP would be like 
trying to measure whether an unknown number X is bigger than 1 to 
solve the question of whether X > 2. If X ≤ 1, then X is definitely less 
than 2. However, if X > 1, it does not necessarily mean X is 
greater than 2.

TABLE 4 Estimation of false negative modified in Study 2.

QL SS Condition Alpha Omega GLB GLBa

6 20 TE 0.28% 0.00% 0.00% 0.00%

6 20 CG 0.34% 0.00% 0.00% 0.00%

12 20 TE 0.01% 0.00% 0.00% 0.00%

12 20 CG 0.01% 0.00% 0.00% 0.00%

6 30 TE 0.09% 0.00% 0.00% 0.00%

6 30 CG 0.15% 0.00% 0.00% 0.00%

12 30 TE 0.03% 0.00% 0.00% 0.00%

12 30 CG 0.01% 0.00% 0.00% 0.00%

6 40 TE 0.03% 0.00% 0.00% 0.00%

6 40 CG 0.03% 0.00% 0.00% 0.00%

12 40 TE 0.01% 0.00% 0.00% 0.00%

12 40 CG 0.00% 0.00% 0.00% 0.00%

6 50 TE 0.00% 0.00% 0.00% 0.00%

6 50 CG 0.03% 0.00% 0.00% 0.00%

12 50 TE 0.02% 0.00% 0.00% 0.00%

12 50 CG 0.02% 0.00% 0.00% 0.00%

6 250 TE 0.00% 0.00% 0.00% 0.00%

6 250 CG 0.01% 0.00% 0.00% 0.00%

12 250 TE 0.00% 0.00% 0.00% 0.00%

12 250 CG 0.00% 0.00% 0.00% 0.00%

6 500 TE 0.00% 0.00% 0.00% 0.00%

6 500 CG 0.01% 0.00% 0.00% 0.00%

12 500 TE 0.00% 0.00% 0.00% 0.00%

12 500 CG 0.00% 0.00% 0.00% 0.00%

6 1,000 TE 0.00% 0.00% 0.00% 0.00%

6 1,000 CG 0.06% 0.00% 0.00% 0.00%

12 1,000 TE 0.00% 0.00% 0.00% 0.00%

12 1,000 CG 0.00% 0.00% 0.00% 0.00%

QL is the length of items; SS is the sample size. TE is tau-equivalent model. CG is Congeneric 
model. Percentage values are failures that suggest statistics report that there is no internal 
consistency when in fact, there is an acceptable internal consistency in the population.

https://doi.org/10.3389/fpsyg.2023.1298534
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Cheng et al. 10.3389/fpsyg.2023.1298534

Frontiers in Psychology 08 frontiersin.org

The confusion matrix design also works in this way. Suppose 
a statistic can report a result above the cut-off or an acceptable 
level of a relationship between variables measured by this statistic 
when there is a null distribution of the statistics in this condition. 
In this case, it is also highly likely that the statistic will report a 
result above this cut-off when the population parameter is lower 
than the acceptable level. As a result, the statistics in this 
condition are not reliable. To estimate the possibility of this 
situation, we  conducted another simulation study that used 
internal consistency levels of 0.3 and 0.5 as the true parameters of 
the population. The result is in Table 5. According to our findings, 
the Omega is also boosted in the conditions tested as questionable 
by FPm. Therefore, FPm scores above 5% are reliable enough to 
ascertain when a statistic should be  considered questionable. 
Some researchers might argue that this part of the simulation may 
also be included in our proposed confusion matrix design. Yet, for 
some statistics, it is not easy to find a present but not acceptable 
level of the statistic.

Furthermore, our research identified two key relationships 
between True Negative (TN) and FPm. If a statistic shows poor 
performance in the TN condition, it is likely to also fare poorly in 
the FPm condition. This observation aligns with the rationale 
we discussed earlier. Additionally, we found that a positive bias in 
TN is correlated with an increased likelihood of simulation study 
results meeting the acceptable cut-off. Using the original study as 
an empirical example of True Positive (TP), we can reasonably 
infer that all four indices demonstrate robust performance in 

FNm. Thus, for statistics without a pre-established cut-off, 
we recommend using TN and TP as predictive references. A large 
absolute value in percentage bias and RMSE suggests that the 
statistical output is likely derived from population samples.

Several research scenarios

We have demonstrated a comprehensive example of applying 
this enhanced confusion matrix design in evaluating internal 
consistency indices. To further clarify, we propose that this design 
is versatile and can be applied to a broader range of tasks. Before 
delving into a general discussion, we will present three concise 
examples illustrating how the confusion matrix design can 
be implemented in other published simulation studies. In the first 
two studies, only TN conditions can be applied, as these studies 
do not have a common cut-off for their respective statistics (i.e., 
correlation coefficients and mediation correlation coefficients). 
However, for the third study, we  will apply the full confusion 
matrix design, as it involves a cut-off for Root Mean Square Error 
of Approximation (RMSEA) in Structural Equation 
Modeling (SEM).

Ventura-León et al. (2023) executed a Monte Carlo simulation 
study focusing on correlation coefficients commonly used in 
psychology research. They examined various population 
correlation conditions, such as 0.12, 0.20, 0.31, and 0.50, under 
nonnormal distributions and distributions with outliers. Their 

TABLE 5 Estimation of false positive method with unacceptable internal consistency level.

QL SS Condition IL Alpha Omega GLB GLBa

6 20 TE 0.3 0.75% 56.45% 35.83% 34.83%

6 25 TE 0.3 0.20% 39.08% 23.99% 25.93%

6 30 TE 0.3 0.12% 27.14% 16.02% 19.77%

6 35 TE 0.3 0.02% 18.08% 10.25% 14.81%

6 40 TE 0.3 0.01% 12.68% 6.28% 10.77%

6 45 TE 0.3 0.02% 8.89% 4.12% 8.35%

6 50 TE 0.3 0.00% 6.63% 2.60% 6.68%

6 250 TE 0.3 0.00% 0.00% 0.00% 0.00%

6 500 TE 0.3 0.00% 0.00% 0.00% 0.00%

6 1,000 TE 0.3 0.00% 0.00% 0.00% 0.00%

12 20 CG 0.5 6.82% 60.38% 99.63% 92.11%

12 25 CG 0.5 3.65% 40.39% 98.48% 88.77%

12 30 CG 0.5 2.07% 28.16% 96.93% 85.42%

12 35 CG 0.5 1.21% 21.08% 95.50% 82.38%

12 40 CG 0.5 1.07% 16.04% 93.19% 79.36%

12 45 CG 0.5 0.60% 12.09% 90.52% 76.02%

12 50 CG 0.5 0.47% 9.49% 87.67% 73.44%

12 250 CG 0.5 0.00% 0.00% 2.18% 18.57%

12 500 CG 0.5 0.00% 0.00% 0.00% 7.78%

12 1,000 CG 0.5 0.00% 0.00% 0.00% 3.43%

QL is the length of the questionnaire or the item number in a questionnaire; SS is the sample size. TE is tau-equivalent model. CG is Congeneric model. IL is the population internal 
consistency parameter of Alpha. Percentage values are failures that suggest that a statistic report that internal consistency is above the cut-off when in fact, there is an internal consistency 
parameter that is considerably away from this cut-off.
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findings indicated that the Winzorized Pearson correlation 
coefficient (Wilcox, 2011) performed the best within the 
simulated conditions they included. Based on the design of our 
study, we  suggest that Ventura-León et  al. (2023) should also 
consider including conditions with a null distribution of the 
statistics, specifically where the population correlation is zero that 
can be used as TN. The absence of TN in their study leaves a gap 
in empirical evidence regarding the performance of correlation 
coefficients under this condition. This omission poses a risk, as 
certain correlation coefficients may exhibit poor performance at 
the zero point, like the Eta square effect size (Okada, 2013) and 
the Omega statistics in our simulation.

Sim et al. (2022) conducted a Monte Carlo simulation study 
to estimate the necessary sample size for detecting mediation 
effects in various models. Their study included partial and full 
mediation conditions, providing the minimum sample size 
required to detect these effects. However, their design overlooked 
the inclusion of null distribution of mediation effects conditions, 
which are crucial for assessing the sample size needed to maintain 
a reasonable Type-I error level. This omission can bring 
significant problems. For instance, suppose a sample size 
requirement of 200 is found under some null distribution 
conditions to ensure the correct result is found in most 
replications. Then, the conclusions of Sim et  al. (2022) might 
be called into question. They concluded that a sample size of 90 
is sufficient to detect a mediation effect when the factor loading 
is 0.7 with a large effect size. Yet, this sample size level may not 
avoid the detection of a mediation effect in a population where 
no such effect exists. Including conditions with no mediation 
effect, as TN proposed in our study, is essential to test and validate 
the sample size requirements thoroughly.

In the case of the studies by Ventura-León et al. (2023) and 
Sim et al. (2022), the simulation conditions of FPm and FNm are 
not applicable, as these studies lack defined criteria for 
determining satisfactory levels of mediation effect or correlation 
coefficients. Next, we will examine another study by Gao et al. 
(2020), which focuses on the RMSEA in SEM. Our discussion will 
first detail the design of Gao, Shi, and Maydeu-Olivares’s study, 
followed by its shortcomings. We  will then explore how the 
methodology of our study can be  applied to theirs to address 
these limitations.

Gao et al. (2020) used a Monte Carlo simulation study to examine 
the robustness of several RMSEA measurements. Their studies have 
included several robust RMSEA measurement methods and 
conditions with normal and nonnormal distributions. They found that 
RMSEA with mean and variance corrections is the most robust as it 
performs best across all conditions.

From our perspective, the study conducted by Gao et  al. 
(2020) has shortcomings. One significant limitation is their 
failure to test the statistics under a null distribution condition, 
such as a simulated distribution in which items bear no 
relationship to the model. This omission means that they have not 
provided empirical evidence about the performance of these 
statistics in such a null condition. Therefore, it is essential to 
include TN conditions in their analysis. Additionally, they should 
test whether any RMSEA correction methods can yield results 
considered a good fit under null distribution conditions. This 

FPm design could be assessed using a cut-off of 0.08, as Fabrigar 
(1999) suggested, across various conditions. If certain conditions 
reveal a good fit using an RMSEA correction method, then the 
performance of these statistics under these specific conditions 
becomes questionable. A similar approach could be applied to 
assess FNm.

General discussion

This study introduces a novel simulation design based on a 
confusion matrix framework. As we  propose, this innovative 
design is particularly suited for use in simulation studies that 
focus on comparing the performance of statistical methods under 
various conditions. To demonstrate its applicability, we  have 
presented three potential scenarios and a detailed example 
illustrating the implementation of this design.

It is somewhat surprising that researchers might overlook the 
fact that studies like the original one can only yield empirical 
evidence when the attribute under investigation reaches an 
acceptable level. Consider a hypothetical scenario where all 
populations in psychological research exhibit an acceptable level 
of a particular statistical parameter. In such a case, regardless of 
whether the original study violated any assumptions, there would 
be no necessity to develop statistics to verify the existence of an 
effect. Furthermore, it’s important to reiterate that APA guidelines 
advise researchers to include a null effect in any simulation of 
effect, specifically the absence of a mean difference between two 
groups (Fan, 2012). However, the rationale provided by the APA 
primarily aims to prevent Type-I errors, potentially leading 
researchers to mistakenly believe that the null distribution of 
statistics is only relevant for inferential statistics closely related 
to NHST. Our research findings suggest otherwise; different 
statistics may perform variably under different conditions. 
Identifying the most suitable statistic for these conditions 
requires including these conditions with an evaluation of the 
commonly used criteria.
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Appendix

The R code that generated all the data and simulation results in 
this study is available in a separate file that is attached to the current 
submission to the journal Frontiers in Psychology. It is also available 
through the URL: https://liqas.org/code-under-review/. Researchers 
are encouraged to simulate and replicate the results for future research. 
This study was not preregistered.
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