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Introduction: Automatic recognition of stutters (ARS) from speech recordings can 
facilitate objective assessment and intervention for people who stutter. However, the 
performance of ARS systems may depend on how the speech data are segmented 
and labelled for training and testing. This study compared two segmentation 
methods: event-based, which delimits speech segments by their fluency status, 
and interval-based, which uses fixed-length segments regardless of fluency.

Methods: Machine learning models were trained and evaluated on interval-
based and event-based stuttered speech corpora. The models used acoustic 
and linguistic features extracted from the speech signal and the transcriptions 
generated by a state-of-the-art automatic speech recognition system.

Results: The results showed that event-based segmentation led to better ARS 
performance than interval-based segmentation, as measured by the area under 
the curve (AUC) of the receiver operating characteristic. The results suggest 
differences in the quality and quantity of the data because of segmentation 
method. The inclusion of linguistic features improved the detection of whole-
word repetitions, but not other types of stutters.

Discussion: The findings suggest that event-based segmentation is more suitable 
for ARS than interval-based segmentation, as it preserves the exact boundaries 
and types of stutters. The linguistic features provide useful information for 
separating supra-lexical disfluencies from fluent speech but may not capture 
the acoustic characteristics of stutters. Future work should explore more robust 
and diverse features, as well as larger and more representative datasets, for 
developing effective ARS systems.
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1 Introduction

Human assessment of stuttering is time consuming and even trained observers give 
variable scores for the same materials (Kully and Boberg, 1988). If automatic recognition of 
stuttering (ARS) met acceptable performance standards, these assessments would save time 
and could standardize score reports. Practical applications other than reducing workload in 
clinics, include ease of inter-clinic comparisons and making voice-controlled online 
applications accessible to people who stutter, PWS (Barrett et al., 2022). Given these desirable 
goals, ARS work began in the late 1990s (Howell et al., 1997a,b). Initial progress was limited 
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because few labs had appropriate training material. Matters improved 
after the release of the first online audio database of stuttered speech, 
the University College London Archive of Stuttered Speech (UCLASS) 
(Howell et al., 2009). UCLASS has time markers indicating where 
stutters start, and end and the types of stutters are coded (an example 
of an ‘event-based’ procedure). Each event-based segment varies in 
duration. Databases that have been established subsequently have 
segmented speech into fixed length intervals (usually 3 s; 3-s) referred 
to here as ‘interval-based’ procedures (Lea et al., 2021; Bayerl et al., 
2022a). They provide labels for each interval (‘fluent’ or ‘stuttered’ or, 
in some cases, ‘fluent’ and the specific type of stutter). Whereas fluent 
intervals are fluent throughout, stuttered intervals with or without 
symptom-type annotations may not be delimited to these intervals 
and, when stutters are less than 3-s long, contain some fluent speech 
and, in some cases, additional stuttered symptoms (Howell et  al., 
1998). Generally speaking, the fact that intervals are made ambiguous 
with respect to fluency designation when a fixed duration is imposed 
onto speech segments, limits overall recognition accuracy of 
ARS. Surprisingly however, no comparison checks have been made 
between interval and event-based procedures to verify or disconfirm 
this prediction.

Additionally, interval-based methods usually report poor 
performance with respect to whole-word repetitions (WWR) (Lea 
et  al., 2021; Bayerl et  al., 2022a). In fact, this might be  a correct 
outcome since there is a wider debate about whether WWR are indeed 
stutters (Howell, 2010) and because repetition of each constituent 
word has all phones and these are in their correct positions (implying 
each word is produced fluently). Whether or not WWR are stutters, it 
would be difficult to separate them from the same words in fluent 
speech for procedures that use short-window, acoustic inputs because 
the segments (events or intervals) may not extend long enough to 
include any repeated words. In summary, recognition of WWRs and 
separation of them from fluent speech may be  improved if ARS 
procedures are trained on intervals long enough to include lexical and 
supra-lexical features (e.g., n-grams for spotting multi-phone 
repetition representing word and phrase repetition).

Identifying stuttering events may be  more appropriate than 
identifying intervals since stuttering events dominate in clinical and 
research reports. For example, Stuttering Severity Index (SSI) 
measures (Riley, 2009) that is partly based on symptoms are always 
reported in research publications whereas reports that use intervals 
are rare (Ingham et al., 1993). Additionally, there seems to be little 
justification as to why a duration of 3-s was chosen as the interval-
length other than saving assessment time [see Ingham et al. (1993) for 
rationale and Howell et al. (1998) for evaluation]. To validate whether 
3-s intervals are the preferred length for best ARS model performance, 
intervals of 2-s and 4-s were also investigated in our study.

The UCLASS database and the Kassel State of Fluency (KSoF) 3-s 
interval dataset (Bayerl et al., 2022a) were used in the investigation. 
UCLASS data were also reformatted into the 3-s interval format 
(intervals of 2-s and 4-s were also computed). UCLASS and KSoF 
interval data were each used to train and test a shallow (Gaussian 
support vector machine) and a deep (multi-layered perceptron neural 
network) machine learning model to establish whether model 
performance was equivalent for the two datasets. The shallow and 
deep learning models were then used to determine how model 
performance was affected by segmentation method for the same 
(UCLASS) data.

We hypothesized that the distribution of speech types (stutters 
and fluent speech) should be  similar across KSoF, and UCLASS, 
interval datasets. Also, models trained using these datasets should 
perform similarly. If these predictions hold, they confirm that 
UCLASS and KSoF interval data are comparable and validate the 
subsequent interval-event comparisons made using UCLASS 
data alone.

Second, performance was compared for models trained on 
interval-based, or event-based, UCLASS data. It was predicted that 
models trained using the event-based format would outperform the 
interval-based models because only the former delimits speech 
extracts exclusively associated with their fluency types. Area under the 
curve for the receiver operating characteristic (AUC-ROC) was used 
as the performance indicator.

Third, the distribution of fluency types for 2-s, 3-s, and 4-s 
intervals and the effects of using these different-length intervals on 
model performance were assessed. It was predicted that using shorter 
interval lengths should lead to a greater proportion of fluent speech 
intervals relative to disfluent intervals.

Fourth, the model inputs for the 3-s interval and event-based 
models were switched to investigate whether the features 
transferred across segmentation formats. Specifically, after 
training a model on features derived from the 3-s subset of 
UCLASS, the model was tested on features derived from the 
event-based subset and vice-versa. By switching the feature inputs, 
this tested whether the parameters learned by one method 
transferred to the other. This is the first time such a method has 
been used to investigate whether a trained ARS model is robust to 
changes in the feature extraction process. A difference was 
hypothesized in model performance due to this switch, but no 
direction was hypothesized.

Finally, we compared models with and without language-based 
features. We  hypothesized that the inclusion of language-based 
features: (i) could lead to better recognition of WWRs, and possibly 
of fluent speech; (ii) longer intervals should perform better than 
shorter intervals because of the increased chance that the language-
based features identify whole-word repetitions; (iii) using interval data 
should improve performance over using event data for these models 
because intervals usually have more scope for including supra-
segmental features. Together these experiments should afford a clear 
and direct comparison of the effects of using the two training-material 
types on model performance.

2 Method

2.1 Datasets

UCLASS data are in British English that includes 249 speakers 
(Howell et  al., 2009) of which, audio from 14 speakers with 
approximately 180 min of valid and labelled speech were used for the 
current study. The KSoF data are in German from 37 speakers with 
approximately 230 min of valid and labelled speech (Bayerl et  al., 
2022a). In both datasets, a hard split was used to keep the speakers in 
the training, validation and test splits distinct. Hard, separate speaker, 
splits are key to evaluating models in the ARS field (Bayerl et al., 
2022c). As such, the UCLASS data were split into nine speakers for 
Training, two speakers for Validation and three speakers for Test. 
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For KSoF, 23, six and eight speakers were assigned to Training, 
Validation and Test, respectively.

2.1.1 The UCLASS dataset
The UCLASS data used has transcriptions at word and syllabic 

levels aligned against the audio recordings. Annotations also separate 
fluent speech, prolongations, part-word repetitions (PWR), WWR 
and blocks. These UCLASS data were segmented at both the event-
based and interval-based levels as described below. The breakdown of 
observations per split varied by segmentation method (Table 1).

2.1.1.1 UCLASS event-based subset
Speech can be annotated at different levels of precision with the 

event-based method. Here, syllables were the defined event. Applying 
the event-based scheme to UCLASS yielded 14,351 unique 
annotations, each of which had a single, valid label.

2.1.1.2 UCLASS interval-based subset
The interval-based format that applies annotations to fixed, 3-s 

intervals of speech was the main focus in comparisons with event-
based methods since this is the only interval length used for ARS to 
date (Lea et al., 2021; Bayerl et al., 2022a). The continuous UCLASS 
speech recordings were split automatically into 3-s intervals and their 
corresponding transcriptions were examined to identify candidate 
intervals and their type. The interval designation scheme used by 
Bayerl et al. (2022a) was applied and generated 3,984 intervals. Of 
these, 3,117 had a single type of stutter or were fluent throughout 
(valid labels) and 867 were dropped which had either multiple 
disfluency types, contained interlocutor speech or had no transcription 
(were silent).

Additionally, interval datasets for 2-s and 4-s were created to 
investigate the effect of interval length. From the 2-s scheme, 5,985 
intervals were extracted. Of these, 3,508 intervals had singular and 
valid labels. The 4-s scheme yielded 2,982 intervals, of which 2,020 
had singular and valid labels. Comparison across the 2-, 3-, and 4-s 
UCLASS interval subsets is made in section 3.2.2.

2.1.2 The KSoF dataset
The KSoF dataset contains 4,601 3-s intervals of speech of which 

2,907 had valid singular labels for fluent speech, prolongation, part-
word repetition (PWR), whole word repetition (WWR), and blocks. 
Here, the data were split into training (N = 1,545), validation (N = 662), 
and test (N = 700) folds which was the split that Schuller et al. (2022) 
used. KSoF also has filler (N = 390), modified speech (N = 1,203), and 

garbage intervals (N = 101). However, since these classes were not 
available in UCLASS and some are specific to Kassel’s stuttering 
treatment, these intervals were dropped to allow cross dataset 
comparisons.1 Any intervals where there was more than one type of 
disfluency within the 3-s interval were dropped in KSoF.

Comparison of the distribution of speech annotations for the 
UCLASS-Event subset and both Interval sets (Table 1) revealed some 
marked differences. Fluent speech accounted for >80% of 
observations in the event subset whereas, the relative frequency of 
fluent observations in both 3-s interval sets were 37 and 53%. Note 
that the UCLASS-Event and UCLASS-Interval sets were obtained 
from the same audio files. The difference in fluency distribution was 
due to the interval method reducing the percentage of fluent 
observations by marking whole intervals with disfluent speech as 
stuttered whereas they often contained some fluent speech. The 
event-based scheme preserved all instances of fluent speech since 
stutter labels delimited the exact extent of the disfluent speech. 
Effectively, the interval method under-samples fluent speech and 
would lead to interval-based schemes over-estimating stuttering 
severity. The absolute and relative frequencies of each type of event 
for the training, validation and test sets are given in a link in 
section 10.

2.2 Feature extraction

Acoustic and linguistic features were extracted to separate stutters 
from fluent speech. Acoustic features were extracted directly from the 
audio signal. The linguistic features were derived from a separate 
speech recognition model’s prediction from the audio signal. Acoustic 
and linguistic feature sets were generated for all the available 
audio data.

2.2.1 Acoustic features
The acoustic features should provide information concerning 

how temporal and spectral components change across 2/3/4-s 
intervals and events. Before acoustic feature extraction was 
performed, all audio data were normalized such that the oscillogram 

1 Since certain classes of speech were dropped from KSoF to allow 

comparison with UCLASS, the number of observations in each split differed 

from that reported in (Schuller et al., 2022).

TABLE 1 Absolute and relative frequencies of the five classes of speech fluency in the UCLASS event, UCLASS 3-s interval and KSoF 3-s interval subsets.

Type UCLASS event UCLASS 3-s interval KSoF 3-s interval

Absolute 
frequency

Relative 
frequency (%)

Absolute 
frequency

Relative 
frequency (%)

Absolute 
frequency

Relative 
frequency (%)

Fluent 11,837 82.48 1,228 37.39 1,538 52.91

Prolongation 396 2.76 383 12.69 346 11.90

PWR 469 3.27 733 24.30 339 11.66

WWR 173 1.20 44 1.46 94 3.23

Block 1,476 10.29 729 24.16 590 20.30

Total 14,351 100.00 3,117 100.00 2,907 100.00
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had maximum and minimum amplitudes in each audio file of +1 dB 
and –1 dB. For the acoustic set, a set of classical acoustic features 
were defined. These were: zero-crossing rate, entropy and 13 Mel 
Frequency Cepstral Coefficients (MFCCs) that were extracted for 
successive 25 ms time-windows (15 ms overlap). Delta derivatives 
were calculated across adjacent windows to represent how the 
features change dynamically across time. Together this resulted in 
32 acoustic features per time-frame (Figure  1). These acoustic 
features are commonly used in the ARS field (Barrett et al., 2022) 
and pick up on both static (Ifeachor and Jervus, 2002; Tyagi and 
Wellekens, 2005) and dynamic features of speech (Fredes 
et al., 2017).

Additionally, a pre-trained deep neural network for representing 
speech was used to further increase the information presented to 
the classification models. Here, we  used wav2vec 2.0 XLSR-53 
(Conneau et al., 2020), as it was trained to represent cross-lingual 
speech representations from the raw waveform. Note, wav2vec 2.0 
XLSR-53 was used for acoustic feature extraction only. For linguistic 
features a different model, Whisper, was used (Section 2.2.2). The 
raw waveforms from the data used in this project were inputted to 
the system, with the resultant tensors of each transformer layer 
model being used to represent latent aspects of the speech in the 
signal. This was combined with the classical acoustic features 
mentioned previously.

The feature matrices were mean-normalized and scaled on the 
training and validation splits. The resulting feature extraction 
process produces many features including 1,024 features from the 
pre-trained network and an additional 32 features from the classic 
acoustic features. The dynamics of a given feature over the time 
course of each interval/event was reduced to a singular observation 

using principal component analysis (Wei, 2019). That is, there was 
one observation (row of features) for each interval/event. As there 
were 3,117 intervals in the 3-s UCLASS dataset, its feature set had 
3,117 rows.

2.2.2 Linguistic features
The linguistic feature set should provide supra-lexical information 

that is not readily captured by acoustic features. Stuttered speech 
contains non-words/syllables that are not included in standard 
language model vocabularies. Also, disfluent syllables/words/phrases 
are likely to be  infrequent in standard text corpora used to train 
language models. Furthermore, the audio records in stuttered speech 
corpora often contain background noise particularly when they are 
collected in clinical settings. For these reasons, the current state-of-
the-art automatic speech recognition model, Whisper, was used 
(Radford et al., 2023b) first because its architecture can decode speech 
without a language model, thus enabling it to transcribe both fluent 
and disfluent speech. Second, it was trained with 680,000 h of audio 
speech from a wide range of datasets which allows it to be robust 
against background noise such as those present in stuttered speech 
audio samples. Finally, its performance on English is reportedly 
similar to professional human transcribers and it outperformed 
another state-of-the-art system Wav2Vec2.0 (Conneau et al., 2020) 
with an improvement of 55% across a range of English datasets.

Whisper comes with multiple pre-trained models. The 
multilingual model of medium size was chosen. The medium model 
has 769 million parameters and is capable of transcribing English and 
German. The medium model performed similarly on English and 
German with a Word Error Rate (WER) of 4.4 and 6.5%, respectively, 
on Fleurs (a multilingual dataset).

FIGURE 1

Pipeline for acoustic feature extraction. Reproduced with permission from Barrett (2024).

https://doi.org/10.3389/fpsyg.2024.1155285
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Barrett et al. 10.3389/fpsyg.2024.1155285

Frontiers in Psychology 05 frontiersin.org

The respective language identity information (English or German) 
was provided when transcribing the two datasets.2 Given that Whisper 
was not established for its ability to transcribe stuttered speech 
including WWRs, we first explored what parameters would encourage 
a faithful transcription of stuttered speech in a set of small-scale 
experiments. We  found that the default temperature parameter 
influenced its ability to transcribe stuttered speech, especially for 
WWRs. A model with a temperature of 0 always selected the candidate 
with the highest probability, and this often failed to generate any 
repeated syllables/words/phrases in our tests. We  therefore 
experimented with raising the temperature parameter to encourage 
the model to generate more diverse transcriptions. In our experiments, 
we generated multiple top-ranked transcription candidates per audio 
sample. We found that stuttered speech samples were only sometimes 
faithfully transcribed as one of the candidates, whilst fluent speech 
samples were transcribed more consistently across transcriptions. 
We therefore opted to generate multiple possible transcriptions per 
audio sample following the procedures outlined in the GitHub 
discussion forum (Radford et al., 2023a). We did this by raising the 
temperature parameter to 0.1 and setting the best of parameter to 5 
which selected from five independent random samples. Each audio 
sample was decoded three times, yielding three sets of transcriptions.

The model’s decoding strategy generated transcription chunks 
(called segments in Whisper) which were similar to phrases. The three 
sets of information returned for each decoded stimulus were: (a) a 
sequential string of orthographic characters (including spaces and 
punctuation symbols) for each chunk; (b) the probability of the 
transcription and the non-speech probability of each decoded chunk; 
and (c) the timestamps of the acoustic signal that corresponded to 
each decoded chunk. Sub-sets of Orthographic, Probabilistic and 
Temporal ARS features were obtained using these respective outputs.

The orthographic features were computed over the entire 
transcription by concatenating the transcriptions from all chunks. 
Three types of orthographic features were computed: Sequential 
lexical n-gram repetition, non-sequential lexical n-gram repetition 
and non-sequential segmental-n-gram repetition. Sequential lexical 
n-gram repetition is the number of space-separated-word n-grams 
which are repeated sequentially. This feature was computed using 
unigrams to capture word/syllable repetitions, e.g., das das Buch “the 
the book,” and an additional feature used bigrams to capture phrase 
repetitions, e.g., das Buch das Buch “the book the book.”

Non-sequential lexical n-gram repetition is similar to sequential 
lexical n-gram repetition, but allows non-sequential repetitions, i.e., 
not immediately following the n-gram in question, For example, das 
Buch nicht das Buch (“the book no the book”). Two features were 
computed using unigrams and bigrams, respectively.

Non-sequential segmental n-gram repetition is, in turn, similar to 
non-sequential lexical n-gram repetition, but applies over characters 
rather than lexical units. This feature is required because the decoded 
lexical units had spaces that were not always correctly delimited such 
that the final instance of prefix repetitions were fragmented. In such 
cases segmental n-grams can tackle this issue. To avoid detecting 

2 Note that we did not rely on Whisper’s ability to automatically identify the 

language from speech because its reported performance is not competitive, 

and it was not an objective of the current study.

repetitions that corresponded to the normal use of repeated syllables/
inflectional morphemes in English and German, the repetitions of 
longer-grams (the length of the orthographic character string minus 
one) were computed first and. if no repetition was found, then the size 
of the character n-gram was successively decreased until trigrams 
were reached. The stopping rule was applied at trigram level to avoid 
picking up syllable/part-word repetitions. The algorithm stopped 
immediately at n-grams>3 when repetition was found.

The durations of all the decoded chunks were computed using the 
timestamps of each chunk. The following summary statistics for 
temporal features were computed over the durations: the sum, max, 
min, mean, median, standard deviation, lower quartile (25%), upper 
quartile (75%), and interquartile range. Two types of probability 
features were computed: the mean of the probability scores of the 
transcription and the non-speech probability scores of all 
decoded chunks.

Each of the above five orthographic features, two probabilistic 
features and nine temporal ARS features had three values, one from 
each of the three separately decoded transcriptions. Five summary 
statistic values (sum, mean, max, min and standard deviations) were 
computed over each of the three values. The final language-based 
feature set consisted of 80 feature values [(5 + 2 + 9) * 5 = 80] per 
audio sample.

As indicated, when applied to continuous speech, event-based 
segmentation delimits speech types exactly and they vary in duration 
whereas interval-based segmentation imposes fixed length durations 
irrespective of the type and extent of speech. Incorporation of 
language features into the interval-based segments occurs directly 
when long intervals are used (2-s, 3-s, and 4-s) where interval-length 
defined the language model’s window. As the best way to provide 
comparability between event-based models and interval procedures 
that included language-based features, extracts of speech preceding 
the event were taken so that events were exactly 2-s, 3-s, or 4-s (as 
required). Two timeframes around an event were used. One where the 
lookback windows always ended at the end of the event defined for this 
interval (unlike what occurs in standard interval data). The other was 
where the event was in the middle of the timeframe. I.e., for a 500 ms 
event with a 3-s lookback, the linguistic features would be derived 
from 1.5-s before the end of the event and 1.5-s after the event. Note, 
the lookback could include other speech classes. Although the acoustic 
features from an event contain orthogonal information pertaining to 
the class of that event, the linguistic features contain information that 
pertains to other classes of speech in some cases. This cross-class 
information was allowed in the current experiments since this is 
allowed in standard interval datasets. Possible effects on the resultant 
models are discussed in section 4.3.

For the interval subsets, the ARS model was run for all interval 
lengths (2-s, 3-s, and 4-s). For the event-based subset, each event 
lasted approximately 450 ms on average (Table 2). Hence, the language 
model would have too short an extract to work with. Consequently, 
look-backs of 2–3- and 4-s were employed so that the ARS model had 
equivalent duration to the interval-lengths they were compared with 
(2-, 3-, and 4-s).

2.2.3 Summary
Thirty-two classic acoustic features were extracted directly from 

the audio signal. Additionally, the pre-trained acoustic model 
yielded 1,024 features. The linguistic procedure provided a further 
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80 features. The two sets of features were concatenated, and z-score 
scaled (Obaid et al., 2019). This resulted in 11 feature sets (Figure 2) 
with 1,136 columns and the number of rows equaled the number of 

intervals/events. The feature sets were then split into training, 
validation, and test sets, using the same hard, speaker-independent 
split (Section 2.2).

TABLE 2 Estimated mean, standard deviation and quartiles for the length of an event (in ms), split by fluency classes from UCLASS Event subset.

Class Mean event 
length (ms)

Standard  
deviation (ms)

Lower  
quartile (ms)

Upper  
quartile (ms)

IQR (ms)

Fluent 222 208 102 270 168

Prolongation 521 311 313 660 347

PWR 763 418 467 980 513

WWR 237 155 142 302 160

Block 578 467 201 836 635

FIGURE 2

Flow diagram of feature extraction permutation. The final feature-sets used, the original dataset, segmentation method, interval length and included 
features are given. Reproduced with permission from Barrett (2024).
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2.3 Metrics

Classification reports are available for each model in the links in 
section 10. Here, AUC-ROC was the main metric of comparison. 
This provided an appropriate measure for unbalanced multiclass 
problems (Jeni et  al., 2013) whilst also allowing for simple 
comparisons. While AUC-ROC provides a reasonable abstracted 
statistic of model performance, it can mask how the model performs 
for individual classes. AUC-ROC is used for brevity, but it is 
recommended to inspect the confusion matrices of all models (see 
Supplementary materials) for class-level comparisons.

2.4 Experimental models

Two types of model are reported in this paper: a Gaussian-kernel 
SVM (G-SVM) and a multi-layered perceptron neural network (MLP-
NN). The Gaussian kernel of the SVM used a penalty term C of 1.15 
and gamma varied as a function of the training sets (Equation 1):

 
γ =

×
1

n Xvar  
(1)

Where, n is the number of classes (5) and Xvar  is the variance of 
the training set. Predictions were weighted by the class frequencies 
present in the training set, Equation 2.

 
ωi

i

N
n N

=
×  

(2)

Where ωi is the weight for the ith class, n was the number of classes 
(5), N  was the total number of observations in the training set and Ni 
was the number of observations in the training set for the ith class.

For the MLP-NN, a sequential deep neural network was 
constructed with an input layer, five densely connected hidden layers, 
five drop-out layers and an output layer yielding probabilities for each 

speech class. The features were input to the first layer with an equal 
number of nodes. Then, node outputs were propagated through seven 
densely connected hidden layers, each with a normalization layer with 
10% node drop-out. In each of the hidden layers, the outputs were 
passed through the Rectified Linear Unit activation function (Agarap, 
2018), which returned the original input to the function if the input 
was positive. Finally, outputs from hidden layers were passed through 
the SoftMax activation function to yield the class probabilities for a 
given observation. This architecture yielded 819,205 
trainable parameters.

The model was trained across 15 epochs with a batch size of 32. 
Loss was minimized using cross-categorical entropy, which permitted 
estimation of loss between multi-class probability densities, and was 
optimized with the solver ‘Adam’, a form of stochastic gradient descent 
(Kingma and Ba, 2014).

3 Results

The field of ARS lacks standards for comparing multiclass models 
making cross-model comparisons fallible (Barrett et al., 2022; Sheikh 
et al., 2022). Here, the unweighted AUC-ROC statistic was used as it 
provides a valid metric for model comparisons as it is virtually unaffected 
by skewness in datasets and can weight each class of speech equally (Jeni 
et al., 2013). If a weighted metric was used, it can lead to spuriously high 
performance due to over-learning fluent speech which is the most 
frequent class.

3.1 Distribution for the datasets

3.1.1 Distribution of the 3-s intervals and 
event-based subsets

Before report of the model performance on the UCLASS subsets, 
the differences in overall fluency/disfluency rates between datasets 
were reviewed. Table 3 gives the absolute and relative frequencies of 

TABLE 3 Total and relative frequencies of intervals and events in the KSoF and UCLASS datasets with each datasets ratio of fluent speech to stuttered.

Sub-set Class Absolute frequency Relative  
frequency (%)

Ratio to fluent 
speech

KSoF|3-s interval (N = 2,907) Fluent 1,538 52.91 1

Prolongation 346 11.90 0.22

Part-word repetition 339 11.66 0.22

Whole word repetition 94 3.23 0.06

Block 590 20.30 0.38

UCLASS|3-s interval (N = 3,117) Fluent 1,228 39.47 1

Prolongation 383 12.31 0.31

Part-word repetition 733 23.56 0.60

Whole word repetition 44 1.41 0.04

Block 723 23.24 0.59

UCLASS|Event (N = 14,351) Fluent 11,837 82.48 1

Prolongation 396 2.76 0.03

Part-word repetition 469 3.27 0.04

Whole word repetition 173 1.21 0.01

Block 1,476 10.28 0.12
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each class of speech per dataset. Additionally, the ratio of each class of 
speech relative to fluent speech is given.

When segmentation schemes applied to the same data were 
compared, drastic differences occurred in the relative frequencies of 
each speech class. In UCLASS-Interval, fluent speech accounted for 
less than half the labels whereas fluent speech accounted for over 80% 
of labels in the 3-s Event-based version of UCLASS. A Chi-square test 
for independence confirmed that the two distributions of speech 
classes differed significantly (�

4

2
3031 80 0 001� �. ; .p ). As discussed 

in the introduction, this is due to under-sampling the occurrences of 
fluent intervals. As this paper is approaching stuttering and machine 
learning from a detection standpoint, fluent speech can be thought of 
as an absence of stuttering. When removing fluent speech from the 
distributions we again get a significant difference between UCLASS 
event and 3-s interval subsets, however with an appreciably smaller 
statistic (�

3

2
305 39 0 001� �. ; .p ).

The distribution of stuttering classes for the 3-s interval types was 
compared across the KSoF and UCLASS Interval datasets. There was 
good agreement with respect to relative frequencies of event classes. 
Both estimated fluent speech to be the most frequent class, although the 
proportion in KSoF was higher. The higher relative frequency of fluent 
speech in KSoF was probably due to annotators knowing that a modified 
speech technique was used by participants (Euler et al., 2009). This 
would have led to some intervals which would have been categorized as 
one of the classes of stuttered speech being considered fluent. For 
example, modified KSoF speech allows intervals that are similar to 
prolongations to be designated fluent as Bayerl et al. (2022a) noted. 
Otherwise, the order of stuttering subtype by frequency was usually 
similar across the 3-s interval datasets. However, KSoF had more part-
word repetitions than prolongations whereas the opposite was the case 
with the UCLASS-Interval subset. This was probably because some 
prolongation intervals were classified as modified intervals that reduced 
their incidence in KSoF. A Chi-square test showed that the distributions 
for the two datasets differed significantly across stuttered and fluent 
speech (�

4

2
207 13 0 001� �. ; . )p . Hence, the hypothesis that the 

distribution of both the KSoF and UCLASS interval datasets would 
be homogenous was only partially supported. When fluent speech is 
dropped, this difference is further reduced (�

3

2
98 98 0 001� �. ; .p ). 

However, the difference between the UCLASS-Event and 
UCLASS-3 s-Interval distributions (�

4

2
3031 80� . ) was still larger than 

the difference between the UCLASS-3 s-Interval and KSoF-3 s-Interval 
distributions (�

4

2
207 13� . ). This is explored further in section 4.1.

Unlike the interval subset, where the length of an interval was 
known a priori, the length of events varied. Since the events in the 
current subset were defined by syllable onsets and offsets, the event 
length was expected to be approximately 200 ms for fluent speech and 
500 ms for disfluent speech (Howell, 2010). Table 2 provides further 
support for these estimates. This is the first time that the length of 
stuttered events, split by type, have been reported to our knowledge 
(Figure 3).

3.1.2 Distribution of fluency types in 2-s, 3-s, and 
4-s interval subsets

When UCLASS datasets for different interval-lengths were 
compared, all had relatively small ratios of fluent to disfluent 
speech compared to the UCLASS event dataset apart from whole-
word repetitions. For interval approaches, a high rate of fluent 
speech would be expected when shorter time windows (<3-s) were 
used and a low rate of fluent speech when longer time windows 
(>3-s) were used. The expected trends in the interval length 
permutations were confirmed; the shorter the interval, the greater 
the proportion of fluent speech (Table 4). Prolongations showed 
much the same relative frequency across the subsets while the 
proportion of PWR and blocks increased considerably as interval 
length increased.

3.1.3 Word error rates of the automatic 
transcriptions

As mentioned, the linguistic features were generated from the 
outputs of a pre-trained ASR model. While the performance of this 

FIGURE 3

Gaussian kernel density estimates of the relative frequencies of event lengths split by speech class from the UCLASS Event subset. X-axis gives event 
length in seconds and the Y-axis shows probability. Reproduced with permission from Barrett (2024).
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model is well documented on reference speech corpora (Radford 
et al., 2023b), how the model performs with stuttered speech is not 
known. Here, manual transcripts of the selected UCLASS data were 
compared against automatically generated transcripts from Whisper. 
The same model settings were used as defined in section 2.2.2. 
Whisper’s performance here was evaluated using word-error rate 
(Equation 3).

 
WER

N
�

� �S D I

 
(3)

Where S is the number of substitutions, D is the number of 
deletions, I is the number of insertions and N is the number of 
words in the veridical transcription. In the context of ASR 
transcriptions, substitutions are where the system replaces the 
reference word, for example “lose” with phonetically similar 
hypothesized word, for example “rouse.” Deletions are where a 
reference word is removed completely from the hypothesis I.e., 
the “it” in the reference “has it gone missing” to the hypothesized 
“has gone missing.” Finally, insertions are hypothesized words 
that are completely missing from the reference. As in the 

hypothesis “they wore many masks” from the reference “they 
wore masks.”

Overall, Whisper yielded an average WER of 24.65% across all the 
UCLASS audio files (Table 5). For comparison, Radford et al. (2023b) 
reported an average WER of 12.8% across multiple speech corpuses. 
Stuttered speech presents an almost doubling of WER. This is one of 
the first investigations of how stuttered speech affects WER of state-
of-the-art ASR models. How and why stuttered speech causes such 
decreases in performance remain unclear. While it is beyond the scope 
of the current work, this would be well worth further research.

3.2 Model performance on UCLASS 
datasets

3.2.1 Event subsets

3.2.1.1 Three second lookback
G-SVM and MLP used the principal components of the acoustic 

features, the outputs from a pre-trained deep neural net, along with 
the orthographic features. The ARS model was provided with a 

TABLE 4 Total and relative frequencies of intervals for 2-, 3-, and 4-s UCLASS interval subsets, split by class.

Type 2-s (N  =  3,508) 3-s (N  =  3,117) 4-s (N  =  2,020)

Absolute Relative (%) Absolute Relative (%) Absolute Relative (%)

Fluent 1,532 43.67 1,228 39.40 605 29.95

Prolongation 442 12.60 383 12.29 249 12.33

PWR 644 18.36 733 23.52 422 20.89

WWR 89 2.54 44 1.41 56 2.77

Block 801 22.83 729 23.39 688 34.06

TABLE 5 The word error rate (WER), number of substitutions, deletions, insertions, correct and total words from Whisper (Radford et al., 2023b) split by 
UCLASS file.

ID Substitutions Deletions Insertions Correct 
words

Total words WER (%)

M_0030_16y4m_1 34 9 9 354 406 12.81%

M_0061_16y9m_1 36 30 9 272 347 21.61%

M_0078_16y5m_1 8 18 14 198 238 16.81%

M_0107_07y7m_1 16 29 30 145 220 34.09%

M_0121_11y1m_1 5 29 28 45 107 57.94%

M_0121_15y1m_1 10 26 18 38 92 58.70%

M_0553_10y0m_1 6 22 26 127 181 29.83%

M_0553_11y0m_1 11 14 23 116 164 29.27%

M_1064_47y0m_1 27 90 52 824 993 17.02%

M_1100_28y0m_1 28 88 38 889 1,043 14.77%

M_1101_35y0m_1 36 63 56 470 625 24.80%

M_1103_20y0m_1 35 78 41 555 709 21.72%

M_1104_40y0m_1 28 32 41 602 703 14.37%

M_1105_21y0m_1 63 324 203 765 1,355 43.54%

M_1106_25y0m_1 7 17 16 172 212 18.87%

Total 350 869 604 5,572 7,395 24.65%
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TABLE 8 Classification reports of the G-SVM and MLP-NN tested on the UCLASS 3-s interval subset.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 44.68 9.38 15.50 46.83 26.34 33.71 224

Prolongation 11.37 57.14 18.97 8.63 28.57 13.26 42

Part-word repetition 0.00 0.00 0.00 29.00 24.79 26.73 117

Whole word 

repetition
2.13 20.00 3.84 1.92 10.00 3.23 10

Block 23.81 34.48 28.17 26.98 19.54 22.67 84

Accuracy: 16.04 24.58 480

Unweighted Average 16.40 24.20 13.30 22.67 21.85 19.92 480

Weighted Average 26.21 16.04 14.08 34.61 24.58 27.58 480

maximum of 3-s of audio before the end of the speech event of 
interest. Where there were less than 3 s of speech available (i.e., within 
the first 3-s of the audio recording), the length was set to the longest 
duration available. The G-SVM yielded an average AUC-ROC of 
0.83 in test. The MLP-NN performed less well with an AUC-ROC of 
0.73. (Table 6 has the full classification report).

Given the large imbalance in class frequencies, accuracy should 
not be used as the sole metric for comparison (Barrett et al., 2022). 
How performance of these models compared to their interval-based 
counterparts is reviewed in section 3.3.2.

3.2.1.2 Varying lookback length and window length
Next, 2-s, 3-s, and 4-s lookback lengths were investigated to 

determine any effects they have on ARS trained on events. When the 
length of the window was varied with the window ending at the end of 
the event, there appears to be little effect of varying the duration of the 

lookback on the model’s ability to classify the current event (Table 7). 
However, there was a drop off in performance for the NN-MLP when 
extending the lookback to 4-s (AUC-ROC = 0.69) as opposed to 2-s and 
3- lookbacks (both AUC-ROC = 0.73). Additionally, it appears that 
allowing the linguistic features to represent both the preceding and 
succeeding speech improved performance with respect to 
AUC-ROC. This was the case with the NN-MLP models, where 
performance improved for all window lengths as a result of moving the 
window to include the preceding and succeeding signal.

3.2.2 Interval subsets
As mentioned, the reference interval length was 3-s. The 

G-SVM and MLP models were trained on the 3-s acoustic and 
linguistic features. The G-SVM yielded an AUC-ROC of 0.52 at test 
while the NN-MLP yielded AUC-ROC = 0.54 (Table 8 has the full 
classification report).

TABLE 6 Classification reports of the G-SVM and MLP-NN tested on the UCLASS Event subset.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 92.89 75.30 83.18 82.29 17.06 28.83 1822

Prolongation 4.03 12.82 6.14 8.82 7.69 8.82 39

Part-word repetition 18.60 25.00 21.33 18.52 7.81 10.99 64

Whole word 

repetition
4.17 20.00 6.90 1.56 76.67 3.05 30

Block 48.37 70.18 57.27 51.11 58.55 54.57 275

Accuracy: 71.39 22.56 2,230

Unweighted average 33.61 40.66 34.96 32.26 33.56 21.03 2,230

Weighted average 82.52 71.39 75.83 74.77 22.56 30.36 2,230

TABLE 7 Summary of AUC-ROC scores for each event-based model from the UCLASS data, split by lookback duration (2-, 3-, and 4-s) and context of 
the language-based features.

Context 2-s (N  =  2,230) 3-s (N  =  2,230) 4-s (N  =  2,230)

G-SVM MLP G-SVM MLP G-SVM MLP

Before 0.82 0.73 0.82 0.73 0.82 0.69

Middle 0.82 0.75 0.82 0.74 0.82 0.71

‘Before’ is a lookback of N-seconds before the end of the event. Middle is ± N
2

 seconds around the end of the event.
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The hypothesis that event-based data should yield better 
performance than interval-based data was supported. Performance 
using AUC-ROC improved when models were trained and tested on 
data from event-based segmentation rather than from intervals.

The hypothesis that the smaller the interval length, the better the 
model performance was not supported. Rather the relationship 
between performance and interval length depended on the type of 
model used. For NN-MLP models, a quadratic relationship occurred 
with performance in terms of AUC-ROC peaking when a 3-s interval 
was used (AUC-ROC = 0.54) and dropping off with smaller 
(AUC-ROC = 0.48) and longer interval lengths (AUC-ROC = 0.49). In 
contrast, G-SVM models improved with increased interval length 
(AUC-ROC 2-s = 0.50; 3-s = 0.50; 4-s = 0.54). However, the variation 
across interval lengths for both types of model was minor throughout.

3.2.3 Input switching
To further investigate how event- and interval-based inputs 

influenced how models learned to separate classes of speech, the inputs 
to the trained models were switched. Thus, models trained and 
validated on event-based inputs were tested on interval-based inputs 
and vice-versa. This novel method allowed for investigation of a model’s 
input-invariant properties. The audio data used was the same but the 
method of segmentation differed. Thus, if performance remained 
stable, models should be  able to separate the classes of stuttering 
irrespective of segmentation method. When using a NN-MLP 
architecture, however, switching the input type between intervals and 
events resulted in models performing equally well, regardless of input 
(ROC-AUC = 0.54). A G-SVM, model trained on event inputs yielded 
a greater ROC-AUC (0.57) as compared to the G-SVM trained on 
intervals and tested on events (ROC-AUC = 0.51). Indeed, the model 
trained on events outperformed any model trained and tested on 
intervals (all ROC-AUC in section 3.2.2 < 0.57). This suggests that 
segmentation method is causal to a machine learning model’s learnt 
class boundaries. Additionally, G-SVM models trained on event-based 
data can be used successfully to predict stutters in interval type data.

The hypothesis was made that switching input would yield 
different responses depending on what the models were trained on. 
However, it seems that regardless of how the data were segmented 
during training, if data were used from the other segmentation 
method, learning performance did not transfer. Therefore, deciding 
on segmentation a priori has lasting effects on their future utility for 
ARS. Given that event-based procedures are usually employed by 
speech-language pathologists, SLPs (Riley, 2009), this suggests a 
preference for training models on event-based data.

3.2.4 Effect of linguistic features
As reviewed in the introduction, classification of stutters has 

usually used acoustic features as input. Here, linguistic features were 
also used to help separate supra-lexical disfluencies from fluent speech 
(WWR) as these are reported to be difficult to separate when using 
acoustic features alone. Performance with the linguistic features has 
been reported in 3.1.1 and 3.2.2 for events and intervals, respectively. 
When these features were dropped from the models, using only the 
acoustic features, similar pattern of results were seen; models trained 
on events had AUC-ROCSVM = 0.82; AUC-ROCMLP-NN = 0.74 and these 
outperformed models trained on 3-s intervals (AUC-ROCSVM = 0.54; 
AUC-ROCMLP-NN = 0.55). For full classification report, visit the link in 
section 10. Using an AUC-ROC metric, it is not clear whether the 

linguistic features provided significant benefit to models trained on 
either Event- or Interval-based data. Indeed, the MLP models trained 
on events without the linguistic model features performed minorly 
worse than models with linguistic features, scoring an AUC-ROC of 
0.74 as compared to a maximum of 0.75 on events with a 2-s lookback 
(Table 7). When considering the AUC-ROC, the addition of language-
model features provided limited benefit. However, the changes at the 
class level for precision and recall showed some improvements as a 
result of language features (Figure 4).

Although the linguistic model features did not systematically 
improve performance with respect to AUC-ROC, the original purpose 
was to increase performance with respect to supra-lexical 
classifications (i.e., WWR). When linguistic features were included, 
only the disfluent classes of PWR and WWR showed an increase in 
F1-Score, however the nature of improvement was not the same for 
the two classes. For PWR, the linguistic features improved the models’ 
recall while reducing the precision, while, for WWR, the opposite was 
true. Therefore, a tradeoff emerged between precision and recall, 
depending on whether PWR or WWR are considered. Another 
trade-off emerged but, in the identification of fluent speech. Fluent 
speech followed a similar pattern to PWR, with recall improving 
through inclusion of linguistic features while precision reduced. The 
implications of this trade-off are explored further in section 4.3.

When considering WWR’s alone, events yielded better recall in 
2-s and 3-s lookbacks (Figure 5). When the lookback was increased to 
4-s, however, recall was worse in events than in 4-s intervals. 
Additionally, precision improved in all event-interval comparisons 
except when the linguistic features were input with 2-s of speech 
(Figure 5A).

3.2.5 KSoF interval dataset
The G-SVM yielded an AUC-ROC of 0.55 on the test set. The 

MLP-NN performed similarly with an AUC-ROC of 0.53 (Table 9 for 
the full classification report).

From AUC-ROC, the G-SVM outperformed the MLP-NN.  
However, there were substantial differences with respect to sub-class 
performance. When performance was compared with respect to 
precision, recall and F1-score, the G-SVM defined the classes of 
prolongation and part-word repetition better (Table 9), whereas the 
MLP described fluent speech, whole-word repetition and blocks better 
in most cases.

It was hypothesized that models trained on KSoF interval data and 
models trained on UCLASS interval data would perform differently with 
respect to AUC-ROC. KSoF models yielded AUC-ROC of 0.55 and 0.53 
for the G-SVM and MLP-NN, respectively. UCLASS interval models 
yielded 0.52 for the G-SVM and MLP-NN, respectively. Although the 
deep learning model provided evidence for the hypothesized result, there 
does seem to be some non-negligible differences in performance due to 
the dataset when testing the shallow models.

4 Discussion

4.1 Summary of results

From the shape of the datasets, interval-based methods yielded a 
significantly lower proportion of fluent speech (KSoFFluent = 52.97%; 
UCLASS|IntervalFluent = 39.47%; UCLASS | EventFluent = 82.48%). 
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Due to the limited size of the datasets, it was not possible to 
specify which, if any, stuttering sub-types were over-sampled. The 
frequency of WWR, however, did not seem to alter drastically by 
segmentation approach.

Figure 6 shows the macro-average ROC curves for each model. 
The models trained and tested on both interval datasets performed 
poorly with respect to AUC-ROC. Interval models yielded an average 
macro-AUC-ROC of 0.51. This indicated that these models did not 
perform above chance when classifying stuttered speech. By contrast, 
the models trained and tested on event-based data performed 
reasonably well, with an average macro-AUC-ROC of 0.80.

Models trained on interval data from KSoF and UCLASS showed 
comparable performance. In both cases, the shallow G-SVM 
outperformed the deep-learning model on most metrics. It is 
interesting that the performance on the interval models performed 
similarly in terms of the ARS problem since they used completely 
different datasets collected for different purposes. The UCLASS data 
used here was solely from monologue or conversational speech 
recorded in the clinic. The KSoF dataset contained speech from 
monologues in the clinic but, also PWS reading aloud as well as when 

making phone calls. In KSoF, there were multiple additional sources 
of variance as compared to the UCLASS Interval subset. As 
mentioned, the speaking situations varied but also there were more 
speakers within the KSoF dataset (N = 37) than the subset used from 
UCLASS (N = 14). Additionally, the datasets were in different 
languages, German and English. The similar performance suggests 
that the features extracted for the class separation seem to be language 
independent, at least for those within the Germanic language family. 
The feature set may extract acoustic features that are universal to 
stuttered speech which allows fluent and disfluent speech to 
be separated regardless of the specific language. Future studies should 
extend examination to other language families to better examine the 
universality of our acoustic features.

Comparing the current models that used 3-s KSoF data with 
Schuller et al. (2022) showed that our models performed less well. 
Schuller et al. (2022) reported only unweighted average recall (UAR), 
achieving a 37.6 UAR in test using a set of one hundred principal 
components from a 6,373-feature set. In comparison, using a feature 
set of 1,136 on the KSoF intervals, the G-SVM yielded a UAR 25.47. 
Using the UCLASS intervals, a UAR of 24.20 again with a 

FIGURE 4

Average precision, recall and F1-score for each class of speech. Inputs to the model are split by inclusion (blue) and exclusion (orange) of linguistic 
features. Additionally, the unweighted average of each metric are plotted (F). Along the x-axis of each plot are the metrics precision, recall and 
F1-Score of each class (A. Fluent; B. Prolongation; C. PWR; D. WWR; E. Block) as well as the unweighted average across all classes (F). These are further 
split into models which input both acoustic and language features (blue) and models which input only acoustic features (orange). Here, the effect of 
language features on each class is apparent. Along the y-axis, the precision, recall and F1-Scores are measured. The scores are an average of G-SVM 
and NN-MLP models trained and tested on Event-based inputs with a 2-, 3-, and 4-s lookback. In all stuttering classes, language-based features 
improved recall and reduced precision as compared to their Acoustic-Only counterpart models. Whereas, in fluent speech, the reverse was true, with 
recall diminishing and precision improving as a result of language features. Reproduced with permission from Barrett (2024).
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G-SVM. This suggests that performance can be boosted by using 
further feature dimension reduction techniques. This does not 
invalidate the conclusion that event-based approaches lead to better 
machine learning models since the UAR of the UCLASS event-based 
G-SVM (UAR = 40.66) outperformed Schuller’s reference. Rather, 
models can be further improved by: (a) Supplying a richer feature set 
as demonstrated by Schuller et al. (2022); and (b) Using event-based 
segmentation methods.

The hypothesis that models trained on event-based inputs 
would outperform interval-based inputs was supported. Both 
shallow- and deep-learning models trained on events outperformed 
their interval-based counterparts in terms of AUC-ROC (Tables 7, 
9). Indeed, for all aggregate metrics reported (accuracy, weighted 
and unweighted recall, precision, and F1-Score), the event-based 
UCLASS models outperformed the interval-based models UCLASS 
(Tables 6, 8).

4.2 Changes in performance due to 
segmentation approach

Considering the interval- and event-based segmentation method 
procedures, it was hypothesized that interval-based procedures would 
limit performance of machine learning models applied to the ARS 
problem. This hypothesis was confirmed. Interval-based methods led 
to sub-optimal performances across KSoF and UCLASS datasets 
compared to interval-based methods.

However, the hypothesis that as the interval length was 
shortened the performance would increase was not clearly 
supported. There was some evidence that lengthening the standard 
interval length from 3-s to 4-s was further detrimental to model 
performance. In the current study, the minimum interval-length 
was only reduced to 2-s. As seen in Figure 3, events were closer to 
200 (fluent) and 500 ms (disfluent). It may be that further reductions 

FIGURE 5

Along the x-axis of each plot are the metrics precision, recall and F1-Score of whole-word repetitions. The y-axis indicates the precision, recall and 
F1-Scores. Subplots are split by lookback (A. 2-s; B. 3-s; C. 4-s). The scores are an average of G-SVM and NN-MLP models trained and tested on Event- 
and Interval-based data. Sub-plots are separated by the lookback length given at the top. For Intervals, this is simply the length of the interval. For 
events, the lookback is the period of time before the end of an event that the linguistic features are derived from. That is, a 3-s lookback means that the 
linguistic features represent the speech 3-s prior to the end of the stuttered event. Reproduced with permission from Barrett (2024).

TABLE 9 Classification report for Gaussian SVM and MLP-NN models on the KSoF test data.

Class Gaussian SVM MLP-NN Observations

Precision Recall F1-score Precision Recall F1-score

Fluent 45.65 23.86 31.13 39.82 33.33 36.29 264

Prolongation 22.83 26.36 24.47 27.78 9.10 13.70 110

Part-word repetition 22.35 28.79 25.12 18.40 22.73 20.34 132

Whole word 

repetition
5.97 22.22 9.41 2.29 2.78 4.24 18

Block 23.23 26.14 24.60 16.13 5.68 8.40 176

Accuracy: 25.57 20.43 700

Unweighted average 24.01 24.47 23.00 20.88 19.72 16.59 700

Weighted average 31.02 25.71 26.84 26.97 20.43 21.90 700

Precision, recall and F1-score were split by each class. Additionally, overall model accuracy, unweighted and weighted average precision, recall and F1-score for each model are reported. 
Finally, the number of observations for each class is reported.
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in interval length are necessary to observe the predicted effects 
on performance.

Additionally, input switching analyses revealed that G-SVM 
models trained on events and tested on intervals outperformed 
G-SVMs trained on intervals and tested on events. This suggests that 
the learnt parameters to identify stuttered speech are somewhat 
preserved when training on events. Indeed, the parameters learned 
from events seem to allow for a superior class separation to intervals 
even when a model trained on events is tested with intervals. As 
mentioned earlier, event-based approaches allow speech to 
be delimited such that each observation contains only one class of 
speech whereas stuttered intervals may contain some, or a majority of, 
fluent speech. As such, the acoustic features extracted from an event 
contain no concomitant information from another class, allowing 
models to learn fine grained differences which are likely to be removed 
when cross-segment orthogonality is disrupted, as in the interval 
method. Finally, the input switching analyses also suggest that models 
trained on events can be successfully used to predict speech fluency 
on intervals.

4.3 Effect of linguistic features

We were not able to find clear evidence that linguistic features 
increased separation of supra-lexical disfluencies from fluent 
speech. Despite the addition of features designed to highlight 

whole-word repetitions, the models overall performed worse when 
provided with these features. It is unclear why this was the case but, 
due to the multi-dimensionality of the problem, by increasing the 
complexity of the inputs to the model, the previously learnt 
patterns in the acoustic data that help separate sub-lexical 
disfluencies may become obscured when linguistic features are 
added. This may explain why linguistic features also reduced the 
F1 score in speech classes apart from WWR. Another possibility 
lies with a stopping parameter used to generate the non-sequential 
segmental n-gram repetition features. The algorithm started with 
a high n-gram size to find repetitions. The n-gram size decreased 
if a repetition was not found, whereas it stopped if a repetition was 
found or if it reached tri-grams to avoid picking up non-lexical 
repetitions (such as part-word repetitions and prolongation). This 
tri-gram parameter might be too small to start with and possibly 
should be increased.

Additionally, linguistic features may have had a detrimental 
effect on model performance due to possible cross-class correlations 
within the features. As mentioned, using event-based segmentation 
the acoustic features represented only the target class. However, the 
linguistic features incorporated information of up to 4 s before the 
end of the event. It is feasible, then, that a non-target stutter that 
precedes the target event influenced the linguistic features. For 
example, in a 4-s utterance ‘the cat sat sat on the mmmat,’ (target 
event the prolonged ‘mmm’), there is also the preceding WWR ‘sat.’ 
The language model would then flag a WWR in the resultant 

FIGURE 6

Unweighted average receiver operating characteristics for each model and segmentation method. The X-axis measures to unweighted average false 
positive rate. The Y-axis measures the unweighted true positive rate. The black dotted line shows where the true positive rate is equal to the false 
positive rate (i.e., chance). The solid lines represent performance by the G-SVM and dashed lines represent the MLP-NN. G-SVM models trained on the 
UCLASS event data yield the largest unweighted AUC-ROC with lookback length inseparable at this level. MLP-NN models on event data performing 
less well. Finally, all models trained on interval-based inputs vary around the TPR  =  FPR line. Reproduced with permission from Barrett (2024).
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features, leading to contradictory inputs to the ARS model. Future 
uses of language model features should avoid this issue by ensuring 
features are relevant to the target event/interval only. Of course, this 
problem is avoided if event segmentation is employed. We consider 
that non-orthogonality in the inputs leads to a major limitation in 
the optimization of ARS modelling. It is proposed that this source 
of non-orthogonality is a significant factor concerning why the 
linguistic features did not improve overall performance.

Linguistic features improved the precision of the disfluent 
classes (including WWR), at the expense of their respective recall. 
This tradeoff suggests that the quality of the linguistic features has 
room for improvement. Our small-scale inspection of the ASR 
transcription suggested that the ASR model would not over-
transcribe WWR, that is, the ASR would not transcribe WWR when 
the signal does not contain WWR (low false positive rate). Future 
work should inspect the precision and recall of WWR in terms of 
the ASR transcription. The tradeoff between the recall of the fluent 
class and the disfluent classes (including WWR) suggests that 
linguistic features might have helped the model to distinguish 
between WWR and fluent speech since they cannot be  easily 
distinguished by acoustic features alone.

When considering the quality of the transcripts generated from 
the ASR system, there is a large error (Table 5). As mentioned, the 
reference WER of the ASR system used is between 5 and 13% 
(Radford et al., 2023b). Here, however, an average WER of 24.65% 
was found with a range of 12.81–58.70%. By far the most frequent 
type of error made by the ASR system was the deletion of spoken 
words, reducing the number of transcribed words as compared the 
number of words actually said by the speaker. Again, deletion here 
is the complete removal of a word present in a reference transcript 
in the ASR’s hypothesized transcript. I.e., the “it” in the reference 
“has it gone missing” to the hypothesized “has gone missing.” Note, 
this is the number of errors by the ASR system and not the number 
of errors (stutters) by the speaker. This may be due to stuttered 
speech being ignored by the ASR system, resulting in a loss of 
words transcribed. However, a dedicated analysis is required to 
confirm this hypothesis which is beyond the scope of the current 
paper. Additionally, deletions might result from the ASR system 
removing repetitions. Despite the current paper’s attempt to reduce 
this through adjustment of the hyper-parameters (See section 
2.2.2). This not only increases the estimated WER of the system but 
also removes information of interest for the current purposes. The 
relatively poor quality of the transcriptions may, therefore, 
contribute to the current linguistic features’ limited effect on model 
performance. This poor performance of ASR on stuttered speech 
was also found in (Thomas et  al., 2023) which examined the 
potential for enhancing automatic cognitive decline detection 
(ACDD) systems through the automatic extraction of disfluency 
features using ASR systems. The accuracy of ACDD systems was 
much lower (78.4%) when trained on automatic disfluency 
annotations than when trained on manual annotations (88.8%).

When model type and segmentation method were combined and 
the overall difference between models with and without linguistic 
features was compared (Figure  5) a consistent trade-off between 
precision and recall emerged. In all stuttering sub-classes, recall 
improved and precision worsened with the inclusion of features from 
a language model whereas in fluent speech, the opposite was true; 
recall worsened and precision improved.

Precision is the ratio of true positive predictions to all positive 
predictions. Hence, in the fluent speech class precision is the 
percentage of correct predictions for fluent speech out of all a 
model’s predictions of fluent speech. Recall is the ratio of true 
positive predictions to all instances of the chosen class. In fluent 
speech, it is the percentage of correctly predicted cases of fluent 
speech out of all fluent observations.

Therefore, it seems as though language features improved the 
representation of stuttering classes at a population level. However, 
the features also lowered the confidence in an individual prediction 
being true. In contrast, for fluent speech, language features resulted 
in an increase in confidence of a prediction being true.

The precision-recall trade-off leads to a decision on the aims of 
the ARS model. In other fields of machine learning which focus on 
symptom detection, such as cancer, a high recall is preferred over 
a high precision since the cost of missing a case of cancer is greater 
than a false positive. In the field of ARS, however, it is not clear 
whether precision is preferred over recall or vice-versa. For Speech 
and Language Pathologists who may review the predictions, an 
emphasis on recall may be optimal since wrong predictions can 
be resolved later.

As Dinkar et al. (2023) noted, a language model’s abstraction 
from audio input to textual output may result in critical loss of the 
information which makes the speech stuttered. State-of-the-art 
language models are often trained using highly fluent materials 
which are unrealistic in real world scenarios and indeed the audio 
used in the current work. A large increase in WER was reported 
here for transcriptions from PWS’s speech. This may explain why 
the linguistic features were of limited benefit to the ARS models. 
The linguistic features often provided inaccurate information about 
the represented speech, reduce class separation. For linguistic 
features to be better utilized for the ARS classification problem, the 
ASR systems themselves need to be improved for stuttered speech. 
Work by Rohanian and Hough (2021) highlighted how the ASR 
outputs can be modified to better capture certain types of disfluent 
inputs. However, this was limited to fillers in Rohanian and Hough 
(2021)work. Further work is required to investigate: (a) which 
stutters are vulnerable to reduction in an ASR’s outputs; and (b) 
how to improve the ASR’s outputs for the aims of 
stuttering detection.

4.4 On event-based approach

The current study presented consistent evidence that the event-
based procedure for segmenting stuttered speech allowed models 
to better classify stuttered and fluent speech than the interval 
procedure. Regardless of whether the models were shallow or deep, 
whether language features were included or not and irrespective of 
length of interval, all event-based models outperformed all interval-
based models in AUC-ROC (Tables 7, 9), amongst other metrics. 
Therefore, it is highly recommended for future research to employ 
event-based data to train ARS models.

Beyond the practical implications, the results also highlight the 
importance of class orthogonality in training. A key difference in 
the features provided to the models by event- and interval-based 
schemes is the level of cross-class orthogonality. Although the 
interval-based scheme resulted in no cross-stutter correlation 
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(no intervals contained more than one class of stutter), there was a 
significant level of fluent-stutter correlation. From the novel 
analyses on event lengths (Section 3.1.1.), a prolonged syllable is on 
average 521 ms. Given a 3-s interval labelled as prolonged, with a 
single prolonged syllable, the expected proportion of audio which 
pertains to the labelled class is only a sixth of the audio used for 
feature extraction. The other five-sixths audio provide information 
of non-target classes (fluent speech, silence, noise, etc.).

However, the event-based procedure is not without its 
limitations. First, event-based approaches require labelling events 
rather than intervals. This is time-consuming, with limited 
opportunity for automation. Syllabic levels of transcription and 
annotation, as used here, often require expertise in linguistics for 
reliable markers within the signal to be  inserted. Also, unlike 
interval-based labelling, label permutation or over−/under-
sampling methods are not feasible.

Second, as shown in 3.1.1, event-based segmentation resulted 
in a large class imbalance. The classes of interest (stutters) were 
dramatically skewed by the predominance of the fluent class. 
Although this is representative of fluency rates in PWS, this does 
lead to possible limits and pitfalls for machine learning approaches 
(Gosain and Sardana, 2017). Given this class imbalance, it is more 
surprising that event-based models outperformed interval-based 
models uniformly, as the latter allow for a more balanced dataset. 
From Table 3, the relative frequency of blocks in the event-based 
segmentation (10.28) was less than half the relative frequency of 
blocks in the 3-s interval-based segmentation (23.24%). Yet, the 
event-based models’ ability to represent blocks outperform the 
interval-based models in every reported metric (Tables 6, 8). Again, 
event-based data provides superior materials for training ARS 
models. However, there may still be detrimental effects of this class 
imbalance. The same 3-s interval models outperformed the event-
based models in certain metrics on prolongations and part-word 
repetitions. Therefore, when using event-based approaches, future 
research may benefit from using methods to counteract this 
class imbalance.

Third, the event-based approach assumes a priori knowledge of 
event onset and offset times. When given an unlabeled, purely 
continuous audio stream, a separate event onset-offset model would 
be required. This contrasts with the interval-based approach where 
the audio stream is automatically ‘chunked’ into the prior set time 
intervals. Also, how one segments events in speech in an online, 
real-time approach is a further limitation. In the interval-based 
scheme this problem is trivial. Buffer the Input by the length of the 
pre-set time window (e.g., 3-s), perform feature extraction and 
reduction over the signal in this timeframe and feed the resultant 
features to the model. As discussed above, this may inherently limit 
the speed of predictions of a model using the interval-based scheme 
since there is a preset buffer, in our case, 3 s.

Overall, the event-based procedure for speech segmentation 
provided the best training materials for ARS models.

4.5 On interval-based approach

There are several aspects of the interval-based approach that 
could be  automated where the event-based one cannot. For 
example, the time duration of an interval is preset. Hence, 

extracting intervals from a file is easy to process whereas, events 
must usually be done manually. As traditional ASR models can 
automate word/phonemic boundary locations in speech, the events 
could feasibly be automated at this stage also. In a similar vein, the 
annotator does not need to be  trained on separating linguistic 
components of speech (i.e., syllables, phonemes, etc.) in the 
interval-based method. This is another stage at which the event-
based procedure is more time consuming and costly. However, an 
interval-based approach cannot ensure that an interval contains 
only one type of stuttering. Therefore, unless using a multi-label 
system, the interval approach is fallible to data loss where the event 
is not. Bayerl et al. (2022b) used a multi-label approach on interval-
based data with positive results. Models were able to incorporate 
this more complex multi-label information without detriment to 
model performance relative to single-label methods as in Lea et al. 
(2021) and Bayerl et al. (2022a). Therefore, if using an interval-
based dataset, a multi-label approach should be used to limit data 
drop-out.

Finally, given the inputs to an interval-based model are 
temporally inflexible, the interval procedure is highly applicable. 
In the event procedure, events would first need to be separated out 
in online speech classification, requiring a phoneme recognizer as 
an initial layer to the model. Whereas an interval method simply 
makes predictions about the interval provided. For example, a 3-s 
interval model would be able to make predictions on any 3-s input 
of audio signal. This does, however, also lead to a critique of the 
interval method in that the classification speed is, at minimum, the 
same lag as the interval speed. It therefore seems incompatible with 
real-time uses where latency is critical.

4.6 On whole word repetition

In both the current paper and a baseline model for kSoF 
(Schuller et al., 2022), WWR was the most difficult class of speech 
to recognize. Unlike blocks or prolongations, for example, WWR 
have no within-word disfluency. Rather, the perceived disfluency 
is only identified at the word or phrase level. For instance, the 
prolongation in “The cat ssssat on the mat” occurs on the “s,” alone. 
Whereas, in the phrase repetition “The cat sat on the on the mat,” 
the disfluency occurs across the two words “on the.” Given that the 
models presented here were mainly based on acoustic features with 
no language model or decoder-encoder components, would 
WWRs be  separable from, for example, fluent speech? It is 
proposed (a) that WWR are not separable at an acoustic level and 
(b) they should not be  included in the same roster as 
sub-segmental disfluencies.

Point (a) is supported by the spread of model predictions when 
an instance of a WWR is input to the model. In Schuller et al.’s 
(2022) model and the 3-s interval MLP-NN model, WWRs were 
predominantly assigned to the ‘Fluent’ speech class. In the 
Gaussian SVM, the ‘Fluent’ class was the second-best predicted 
class for true instances of WWRs after Fillers.

It was hypothesized that the inclusion of language features 
would increase class separation for WWR. There is limited 
evidence for this hypothesis. Recall rate improved across all 
stuttering classes after inclusion of language features. Although 
language features were detrimental to precision, the theoretical 
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motivation remains clear; if WWR cannot be separated from fluent 
speech at an acoustic level, information at the supra-segmental/
lexical level is required. Continued exploration of features such as 
phone and word-level n-grams is suggested with special attention 
to sequence of words. Further investigation with more complex 
language models may help solve this class inseparability.

4.7 Clinical implications

The human assessment of stuttering, a significant bottleneck for 
clinical work, is costly in terms of valuable clinical time and often 
yields variable assessment outcomes (Kully and Boberg, 1988). 
Automated procedures have promised to lighten workloads (Howell 
et al., 1997b; Barrett et al., 2022), but they have yet to be implemented 
in clinical practice.

Despite 25 years of research into automatic stuttering detection 
and labelling, a significant trade-off remains between model 
flexibility and model performance. Models are either highly specific 
to a task within stuttering recognition and yield adequate 
performance for application in a clinic (Mahesha and Vinod, 2016), 
or they are flexible enough to better handle the complex nature of 
stuttering and its classification but do not meet the necessary 
standards for use in clinical settings. For example, Mahesha and 
Vinod (2016) present a Gaussian Mixture model with an approximate 
95% accuracy. However, the model is only able to classify repetitions 
(it is unclear whether this includes PWR, WWR or both), 
prolongations, and interruptions. The models presented here, as well 
as those presented in Lea et  al. (2021) and Mishra et  al. (2021), 
among others (See Barrett et al., 2022 for review), all perform with 
less than 95% accuracy.3 However, some works, such as that by 
Gupta et al. (2020), which achieve more than 95% accuracy, are 
trending towards a level of performance where use in a clinic should 
be considered. It is unclear whether the model was provided with an 
event- or interval-based segmentation scheme.

The study provides compelling evidence that employing event-
based procedures enhances the capacity of machine learning models 
to address the ARS problem in comparison to interval-based 
procedures. This observation is congruent with common human 
assessment practices for stuttering (Riley, 2009), which frequently 
utilize event-based metrics like the percentage of syllables stuttered. 
Models generated through event-based procedures offer predictions 
based on events and seamlessly align with prevailing clinical practices, 
presenting an avenue for not only partially automating stuttering 
severity assessment but also achieving full automation. While the 
current models provide important insights for ARS research, they are 
not suitable for use in clinical scenarios ‘out-of-the-box.’ As mentioned 

3 95% accuracy is chosen as a threshold as we consider that for adequate 

use in the clinic. In that, the probability that a predicted dysfluency is not 

actually present for a given prediction should be at least 0.05 or lower. Further 

work should seek to establish a set of thresholds across accuracy, precision 

and recall – amongst other metrics – both theoretically and empirically to 

guide application to clinical settings. While state-of-the-art performance of 

ARS models can vary freely within research, translation to in-clinic practice 

requires a separate set of baseline standards.

earlier, the performance levels do not meet the necessary standards. 
This is demonstrated by a comparison of the true and predicted cases 
of stuttering in the test (see the Supplementary materials for confusion 
matrices). For example, the 3-s event-based G-SVM with linguistic 
features included (described in section 3.2.1.1) yielded a set of 
predictions (see Supplementary Data Sheet 10) which significantly 
changed the shape of the speech fluency distribution. Event-based 
segmentation types led to an approximate distribution of 83% fluent, 
3% prolongation, 3% PWR, 1% WWR, and 10% block/break. This 
approximates the true distribution in the test set. However, if one were 
to implement automated labelling using the aforementioned model 
(arguably the best presented here), the shape of speech fluency changes 
drastically: 46% fluent, 12% prolongation, 3% PWR, 24% WWR, and 
15% block/break. Clearly, the models presented are for research 
purposes only and not for use in the clinic.

While in-clinic work with ARS models has yet to take place, the 
current work contributes to a growing field providing proof-of-concept 
evidence that ML models could improve workflows in clinical 
assessments of stuttering. The current work strongly supports the use 
of event-based segmentation in the preparation of data for ARS 
models. Additionally, this form of segmentation fits well with 
commonly used stuttering assessments (Riley, 2009). Future work 
should seek to compare how partial and full automation of stuttering 
assessment performs in comparison to the current standard (no 
automation). Research should consider the trade-off between the time 
taken for the assessment and the error imparted due to automation.

5 Conclusion

The current work investigated methods of speech segmentation 
for machine learning classification. The two main methods of speech 
segmentation for stuttering classification have been employed: 
interval- and event-based. While interval-based methods are time and 
cost effective, event-based methods yield far superior models with less 
data. This is particularly pertinent given the lack of openly-available 
stuttering event data currently available (Barrett et al., 2022). Further 
research could make use of the additional interval databases (Lea 
et al., 2021) to provide further power to the current study’s findings.4 
It is therefore highly recommended that future research uses event-
based segmentation methods to build stuttering classifier models. 
Software to add annotations about stuttering events (onsets, offsets, 
and stuttering type) to continuous audio files has been provided in 
Howell and Huckvale (2004).
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