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Introduction: Despite the numerous potential benefits of health chatbots for 
personal health management, a substantial proportion of people oppose the 
use of such software applications. Building on the innovation resistance theory 
(IRT) and the prototype willingness model (PWM), this study investigated the 
functional barriers, psychological barriers, and negative prototype perception 
antecedents of individuals’ resistance to health chatbots, as well as the rational 
and irrational psychological mechanisms underlying their linkages.

Methods: Data from 398 participants were used to construct a partial least 
squares structural equation model (PLS-SEM).

Results: Resistance intention mediated the relationship between functional 
barriers, psychological barriers, and resistance behavioral tendency, respectively. 
Furthermore, The relationship between negative prototype perceptions and 
resistance behavioral tendency was mediated by resistance intention and 
resistance willingness. Moreover, negative prototype perceptions were a 
more effective predictor of resistance behavioral tendency through resistance 
willingness than functional and psychological barriers.

Discussion: By investigating the role of irrational factors in health chatbot 
resistance, this study expands the scope of the IRT to explain the psychological 
mechanisms underlying individuals’ resistance to health chatbots. Interventions 
to address people’s resistance to health chatbots are discussed.
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1 Introduction

Health chatbots are revolutionizing personal healthcare practices (Pereira and Díaz, 2019). 
Currently, health chatbots are utilized for personal health monitoring and disease consultation, 
diagnosis, and treatment (Tudor Car et al., 2020; Aggarwal et al., 2023). For example, a virtual 
nurse named “Molly,” developed by researchers at the Maastricht University Medical Center+ 
(MUMC+), offers healthcare guidance to patients with heart disease (Zorgenablers, 2019), and 
chatbots such as “Youper” have been designed to track users’ mood and provide them emotional 
management advice (Mehta et al., 2021). Further, “Tess” is a mental health chatbot that provides 
personalized medical suggestions to patients with mental disorders (Gionet, 2018), similar to a 
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therapist. Remarkably, a personal health assistant aimed at preventative 
healthcare, “Your.MD,” has thus far been used to provide diagnostic 
services and solutions to nearly 26 million users worldwide (Billing, 
2020). According to BIS Research, the global market for healthcare 
chatbots is expected to reach $498.1 million by 2029 (Pennic, 2019).

Medical artificial intelligence (AI) services, including health 
chatbots, are expected to be  crucial for promoting the quality of 
healthcare, addressing the inequitable distribution of healthcare 
resources, reducing healthcare costs, and increasing the level and 
efficiency of diagnosis (Guo and Li, 2018; Lake et al., 2019; Schwalbe 
and Wahl, 2020). However, more participants preferred consulting with 
doctors rather than health chatbots for medical inquiries (Branley-Bell 
et al., 2023), even if they operate with the same level of expertise as 
human doctors (Yokoi et al., 2021); a significant number of users drop 
out during consultations with health chatbots (Fan et al., 2021), with 
nearly 40% of the people unwilling to even interact with them (PWC, 
2017). Notably, many specialists are worried about the inherent 
limitations relating to potential discriminatory bias, explainability, and 
safety hazards of medical AI (Amann et al., 2020). For instance, one 
survey found that over 80% of professional physicians believe that 
health chatbots are unable to comprehend human emotions and 
represent the danger of misleading treatment by providing patients 
with inaccurate diagnostic recommendations (Palanica et al., 2019). 
Further, people perceive health chatbots as inauthentic (Ly et al., 2017), 
inaccurate (Fan et al., 2021), and possibly highly uncertain and unsafe 
(Nadarzynski et al., 2023), leading to their discontinuation or hesitation 
in circumstances where medical assistance is required. Although 
overcoming public resistance to AI healthcare technologies is critical 
for promoting its societal acceptance in the medical field in the future 
(Gaczek et  al., 2023), few studies have investigated how resistance 
behavior toward AI healthcare technologies (e.g., health chatbots) is 
formed. Therefore, the first research question of this study was to 
explore which factors influence people to resist health chatbots.

Resistance is a natural behavioral response to innovative 
technology, as its adoption may change existing habits and disrupt 
routines (Ram and Sheth, 1989). The delayed transmission of 
innovation in the early stages of its growth is primarily attributed to 
people’s resistance behavior (Bao, 2009). Previous research has 
primarily focused on the impact of rational calculations underlying 
individuals’ technology adoption/resistance intentions on behavioral 
decisions. For example, the technology acceptance model (TAM) 
proposes that individuals’ desire to accept a certain technology is 
determined by the degree to which it improves work performance and 
its ease of use (Davis, 1989; Tian et al., 2024). Furthermore, according 
to the equity implementation model (EIM), people’s concerns about 
the ratio of technical inputs to benefits and comparisons with the 
advantages obtained by others in society have a substantial influence 
on their adoption behavior (Joshi, 1991). Some scholars, however, 
have indicated that “utility maximization” does not always serve as a 
criterion for people’s actions, and the rational paradigm may not 
competently explain people’s decision-making behavior (Baron, 1994; 
Yang and Lester, 2008). For example, Parasuraman (2000) found that 
individuals’ perceived discomfort and insecurity regarding innovative 
technologies are important limiting factors in their adoption process, 
and the normative sociocultural pressures of adopting innovative 
technologies may also lead to resistance behavior (Migliore et al., 
2022). However, few studies have examined the influence of irrational 
motivations and psychological mechanisms on health chatbot 

resistance behaviors. As such, the second research question of this 
study was to explore the psychological mechanisms behind people’s 
resistance to health chatbots.

To address the abovementioned research gaps, in this study, we first 
reviewed prior literature on the innovation resistance theory (IRT) and 
prototype willingness model (PWM); based on these theories, we then 
developed a parallel mediation model to investigate the antecedents of 
people’s resistance behavioral tendency of health chatbots, as well as the 
underlying psychological mechanisms. The conceptual framework of 
the study is illustrated in Figure 1. The current study contributes to the 
existing literature in the following ways. First, while numerous prior 
studies have examined attitudes toward AI healthcare technologies and 
motivations for their adoption (Esmaeilzadeh, 2020; Gao et al., 2020; 
Khanijahani et al., 2022), the current study contributes to the existing 
literature by investigating people’s behavior in resisting health chatbots 
and the underlying psychological mechanisms. Second, by identifying 
the rational and irrational factors influencing individuals’ resistance to 
health chatbots, this study advances the established literature’s 
comprehension of resistance behavior toward health chatbots. Finally, 
by combining the IRT and PWM, this study identifies the dual rational/
irrational mediating mechanisms that influence people’s health chatbot 
resistance behavioral tendency and provides a valuable and insightful 
perspective for conducting future research on medical AI 
adoption behavior.

2 Literature review and hypothesis 
development

2.1 Innovation resistance theory

The IRT, initially proposed by Ram (1987), draws on the diffusion 
of innovation theory (DIT; Rogers and Adhikarya, 1979) and attempts 
to explain why people oppose innovation from a negative behavioral 
perspective. Individual resistance to innovation, according to the IRT, 
originates from changes in established behavioral patterns and the 
uncertainty aspect of innovation (Ram and Sheth, 1989). If innovation 
is likely to disrupt daily routines and conflict with established 
behavioral patterns and customs, individuals may refuse to utilize it 
and thus develop resistance behavior (Ram, 1987). Subsequently, Ram 
and Sheth (1989) revised the IRT by proposing that two particular 
barriers perceived by individuals when confronted with innovation, 
namely, functional and psychological barriers, result in their resistance 
behavioral tendency. Functional barriers refer to potential conflicts 
between individuals and innovations in terms of usage, value, and risk, 
whereas psychological barriers relate to the potential impact of 
individuals’ perceived innovation on established social beliefs, 
constituting tradition and image barriers (Kleijnen et al., 2009; Kaur 
et al., 2020).

The IRT provides a comprehensive operationalization framework 
for examining individual resistance to innovative technologies 
(Kleijnen et  al., 2009). Previous research has demonstrated that 
functional and psychological barriers can significantly predict people’s 
resistance intentions and behaviors toward innovative technologies. 
For example, the IRT explains approximately 60% of the variance in 
people’s resistance to mobile payment technology (Kaur et al., 2020) 
and nearly 55% of the variance in their resistance to the online 
purchase of experience goods (Lian and Yen, 2013). Specifically, in 

https://doi.org/10.3389/fpsyg.2024.1276968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zou et al. 10.3389/fpsyg.2024.1276968

Frontiers in Psychology 03 frontiersin.org

terms of functional barriers, Prakash and Das (2022) discovered that 
the perceived value barriers, usage complexity, and privacy disclosure 
risks of digital contact-tracking apps can increase the intentions to 
resist such devices. Singh and Pandey (2024) also indicated that 
inefficient collaboration with AI devices is also a critical barrier to 
their usage. Yun and Park (2022), conversely, found that the reliability 
of chatbot service quality positively impacts users’ satisfaction and 
repurchase intention. Regarding psychological barriers, Chen et al. 
(2022) found that individuals’ perceived tradition barriers to changes 
in established ticketing habits brought about by mobile ticketing 
services were key predictors of resistance, and that those with a 
negative perception of online banking were more likely to display 
subsequent resistance (Kuisma et al., 2007).

Given that the IRT has previously demonstrated effective 
predictions of resistance intention and subsequent resistance behavior 
in innovative technologies such as mobile payments (Kaur et  al., 
2020), internet banking (Laukkanen et al., 2009), and smart home 
services (Hong et al., 2020), this study speculates that functional and 
psychological barriers of health chatbots are positively associated with 
people’s resistance intention. In a word, Individuals may be unwilling 
to engage with health chatbots if they believe that there are more 
barriers and risks involved than benefits. Similarly, when people have 
an adverse impression of the actual utility of health chatbots and 
perceive them as contradictory to their own healthcare-seeking 
norms, they may develop resistance intention to health chatbots. 
Accordingly, this study proposes the following research hypotheses:

H1: Functional barriers have a positive effect on health chatbot 
resistance intention.

H2: Psychological barriers have a positive effect on health chatbot 
resistance intention.

2.2 Prototype perception and resistance 
behavior

Prototypes are social images that represent individuals’ intuitive 
perceptions of the typical characteristics conveyed by engaging in 

certain social behaviors, such as the degree to which they evaluate 
behaviors including smoking (Piko et  al., 2007), alcohol abuse 
(Norman et al., 2007), substance use (Wills et al., 2003), and risky 
selfies (Chen et  al., 2019). In daily life, prototypes are commonly 
perceived as representations of a particular group that are easily 
identifiable and visible (Gibbons and Gerrard, 1995). Prototype 
perceptions of specific groups or social behaviors facilitate or inhibit 
individual behavioral tendencies (Thornton et al., 2002; Gerrard et al., 
2008; Litt and Lewis, 2016; Lazuras et  al., 2019). For example, 
adolescents who have negative prototype perceptions of smoking (e.g., 
it is “stupid”) significantly predict resistance to smoking (Piko et al., 
2007). Conversely, if they perceived smoking as a positive prototype 
(e.g., it is “cool”), they were more likely to smoke (Gibbons and 
Gerrard, 1995). Thus, by adapting to, assimilating, or distancing 
themselves from specific prototypes, individuals can adopt behaviors 
that build a desired self-image or resist certain behaviors to avoid a 
socially unfavorable image (Gibbons et  al., 1991; Gibbons and 
Gerrard, 1995).

Individual attitudes and subsequent behavioral tendencies are 
commonly thought to be influenced by prototypical similarity and 
favorability (Lane and Gibbons, 2007; Branley and Covey, 2018). 
Prototypical similarity is the degree of similarity between the 
individual’s perceived self and the prototype, and is usually assessed 
by the individual’s response to the question “How similar are you to 
the prototype?” (Gerrard et  al., 2008). Prototypical favorability is 
considered to be an individual’s intuitive attitudinal evaluation toward 
a certain group or behavior, the assessment of which usually involves 
adjectival descriptors (Gibbons and Gerrard, 1995). For example, 
prototype favorability is usually measured by evaluating how certain 
behaviors are consistent with a series of adjectives such as “popular” 
or “unpleasant.” The more favorable individuals’ attitudes toward 
particular groups or objects, the greater their likelihood of joining the 
group or engaging in that behavior, and vice versa (Piko et al., 2007). 
Yokoi et al. (2021) discovered that the perceived low-value similarity 
of AI healthcare technologies led to a distrust of AI healthcare systems, 
and the degree of perceived anxiety and fear regarding health services 
may also lead to individual resistance behavior (Tsai et al., 2019).

Although initial research on the PWM relied solely on prototypical 
perceptions to explain behavioral willingness (Blanton et al., 1997; 

FIGURE 1

Conceptual framework.
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Gibbons et  al., 1998), recent studies have shown that individuals’ 
prototypical perceptions can also explain behavioral intentions 
(Norman et al., 2007; Zimmermann and Sieverding, 2010). Further 
research on the effects of prototypical properties by Blanton et al. 
(2001) suggests that negative prototypical perceptions are more likely 
to lead to personal behavioral changes. In an investigation of teenage 
smoking resistance, it was observed that negative prototype 
perceptions were more likely to profoundly influence behavioral 
decisions than positive perceptions (Piko et al., 2007).

Based on the studies above, it can be inferred that if people have 
negative prototypical beliefs about health chatbots, such as “unsafe” 
and “unreliable,” their subsequent resistance intention and willingness 
to health chatbots are more likely to be substantial. Thus, this study 
speculates that a negative prototype perception regarding health 
chatbots may increase people’s resistance intention and willingness, 
and the following research hypotheses are proposed:

H3a: A negative prototype perception regarding health chatbots 
has a positive effect on resistance intention.

H3b: A negative prototype perception regarding health chatbots 
has a positive effect on resistance willingness.

2.3 Mediating role of resistance intention 
and resistance willingness

Previous studies have investigated the acceptance and resistance 
behaviors of individuals in the context of innovative medical 
technologies from a rational decision-making perspective (Tavares 
and Oliveira, 2018; Ye et  al., 2019), generally concluding that 
individuals’ adoption behaviors toward medical technologies are the 
result of thoughtful deliberation (Deng et al., 2018; Wang et al., 2022). 
However, individuals’ decisions to accept healthcare innovations are 
not necessarily reasonable or logical. Irrational elements such as self-
related emotions (Sun et al., 2023), social pressure (Jianxun et al., 
2021), and specific sociocultural contexts (Hoque and Bao, 2015; Low 
et al., 2021) have also been found to have a significant impact on 
decisions to utilize digital health technology.

According to the PWM, “reasoned action” and “social reaction” 
constitute the two pathways through which individuals process 
information (Gibbons et al., 1998). “Reasoned action” is considered to 
be akin to the deductive pathway of the theory of reasoned action 
(TRA), which refers to people’s behavioral intention based on rational 
considerations and after thoroughly considering the consequences of 
a given behavior (Todd et  al., 2016). For example, the perceived 
usefulness and usability of telemedicine technology are critical for 
promoting usage intentions and behaviors (Rho et al., 2014), whereas 
the greater the perceived performance and privacy risks of mobile 
physician procedures, the lower the adoption intentions (Klaver et al., 
2021). Meanwhile, according to Todd et al. (2016), the “social reaction” 
pathway is dominated by irrational causes and is a behavioral reaction 
based on intuitive or heuristic elements. Thus, in contrast to behavioral 
intentions, which are built on rational decision-making, behavioral 
willingness represents reactive actions in response to a specific 
situational stimulus or social stress (Chen et al., 2019) and is more 
likely to be profoundly influenced by perceived prototypes (Hyde and 
White, 2010). For example, in a prior study investigating expert 

perspectives on the acceptance of chatbots for sexual and reproductive 
health (SRH) services, half the participants from the total sample 
expressed low acceptance because of the perceived unreliability of 
such devices (Nadarzynski et al., 2023).

Based on the aforementioned studies, this study suggests that 
there is a dual psychological process of resistance intention and 
resistance willingness behind people’s resistance behavioral tendency 
of health chatbots. Resistance intention refers to individuals’ taking 
action based on rational considerations before engaging in resistance 
behavior. Resistance willingness is recognized as a relatively emotional 
and impulsive behavioral tendency behind individuals’ resistance 
behavior (Gerrard et al., 2008; Todd et al., 2016), where individuals 
are more likely motivated by social pressure and ambiguous 
perceptions regarding the typical negative characteristics of a specific 
technology. In summary, individuals may follow both rational and 
irrational behavioral paths in the process of innovative medical 
technology utilization. Consequently, this study delineates the rational 
and irrational psychological processes behind individuals’ resistance 
behavior toward health chatbots and investigates the potential 
influence of two psychological mechanisms, resistance intention and 
resistance willingness, on their resistance behavioral tendency. Due to 
the functional and psychological barriers of the IRT stemming from 
the “rational person hypothesis,” it is emphasized that economic gains 
and cost savings will largely influence the likelihood of innovation 
resistance (Szmigin and Foxall, 1997). Therefore, this study speculates 
resistance intention mediates the relationships between functional 
barriers, psychological barriers, and resistance behavioral tendency, 
respectively. Furthermore, resistance intention and resistance 
willingness were hypothesized to mediate the relationship between 
negative prototype perceptions of health chatbots and resistance 
behavioral tendency. Accordingly, this study proposes the 
following hypotheses:

H4: Resistance intention and resistance willingness toward health 
chatbots have positive effects on resistance behavioral tendency.

H5: Functional barriers and resistance behavioral tendency are 
mediated by resistance intention toward health chatbots.

H6: Psychological barriers and resistance behavioral tendency are 
mediated by resistance intention toward health chatbots.

H7: A negative prototype perception regarding health chatbots 
and resistance behavioral tendency are mediated by resistance 
intention and resistance willingness toward health chatbots.

3 Methodology

3.1 Sample and procedure

To examine the research hypotheses, data were collected using 
credamo (www.credamo. com), a popular online questionnaire 
research platform in China; the respondents were provided extrinsic 
incentives to register for the survey (Zheng, 2023). By checking each 
participant’s IP address and limiting each device to a single response, 
the questionnaire system automatically ensured the validity of the 
answers. Following completion of the informed consent form, 
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participants completed a self-report questionnaire about health 
chatbots through credamo. To ensure that each participant was fully 
informed about health chatbots and their usage scenarios, the 
respondents were initially provided with a description of what a health 
chatbot is and how it functions. Following this step, a total of 28 items 
were presented in the main component of the questionnaire to 
evaluate respondents’ views concerning functional barriers, 
psychological barriers, prototype perceptions, resistance intentions, 
resistance willingness, and resistance behavioral tendency of health 
chatbots. Finally, respondents were asked to provide demographic 
information including gender, age, education, income, residence, and 
experience with health chatbots. A total of 406 questionnaires were 
collected; however, eight individuals were excluded because they failed 
the attention check, and 398 participants qualified to form our 
research sample. The Ethics Committee of the School of Journalism 
and Communication, Jinan University (China; JNUSJC-2023-018) 
provided ethics approval for this study.

The sample size was determined following the criteria 
recommended by Kline (2023), which suggests that the ratio of the 
number of measured items to the number of participants should be at 
least 1:10. The 398 participants whose data were used for our analysis 
exceeded this sample size estimation and satisfied the academic 
recommendations. Table 1 presents the demographic information of 
the participants.

3.2 Measures

All measuring instruments utilized in this study were checked by 
two professionals in this research field, who jointly translated the 
instruments into Chinese after discussing and resolving differences to 
improve the questionnaires’ clarity, reliability, and content validity. 
Twenty-three respondents, including two experts, were included in a 
pretest to ensure the semantic content of the items and logical 
structure of the questionnaires. The questionnaires’ content and 
structure were modified based on their feedback, as necessary. All 
items (Table 2) were evaluated using a 5-point Likert scale ranging 
from “1 = completely disagree” to “5 = completely agree.”

3.2.1 Functional barriers
According to Ram and Sheth (1989), functional barriers are the 

constraints of innovative technologies that require changes in users’ 
established behavioral habits, norms, and traditions. They include 
three dimensions of individual perceptions relating to usage barriers, 
value barriers, and risk barriers regarding innovation. This study 
measured the perceived functional barriers of people’s resistance to 
health chatbots in terms of the three dimensions mentioned above.

Usage Barriers (UB): Usage barriers indicate the amount of effort 
required to comprehend and utilize innovative technologies, as well 
as the degree of change to existing usage routines and habits (Ram and 
Sheth, 1989). Four items derived from Laukkanen (2016) were used 
to evaluate individual assessments of usage barriers related to health 
chatbots; for example, “Health chatbots are easy to use” (Cronbach’s 
α = 0.823).

Value Barriers (VB): Value barriers are generated by 
inconsistencies between innovations and current value systems, 
particularly when there are inequitable advantages when adopting 
innovative technologies (Parasuraman and Grewal, 2000). Two items 

adapted from Laukkanen (2016) were used to evaluate individuals’ 
perceptions of value barriers related to health chatbots; for example, 
“Compared to human doctors, health chatbots have no advantages for 
treating” (Cronbach’s α = 0.742).

Risk Barriers (RB): Risk barriers are described as adoption barriers 
caused by users’ perceived uncertainty regarding innovative 
technologies (Marett et  al., 2015). Three items derived from 
Chakraborty et  al. (2022) were used to evaluate individuals’ risk 
perceptions of health chatbots; for example, “My health information 
will be  misused by the service provider of the health chatbots” 
(Cronbach’s α = 0.844).

3.2.2 Psychological barriers
Innovation may lead to psychological contradictions for 

individuals in some aspects, such as the impact of individuals’ 
technology utilization on their traditions and norms, and the 
perceived image barriers of innovation, which include the two 
dimensions of tradition barriers and image barriers (Ram and Sheth, 
1989; Yu and Chantatub, 2015).

TABLE 1 Demographics information of respondents.

Demographic 
variables

Groups Frequency Percentage 
(%)

Gender

Male 144 36.18%

Female 254 63.82%

Age

0–20 4 1.01%

21–30 172 43.22%

31–40 190 47.74%

41–50 20 5.03%

51–60 12 3.02%

Education

High School and 

below
6 1.51%

Junior college 28 7.04%

Bachelor’s degree 298 74.87%

Master’s degree 

and above
66 16.58%

Income (¥)

0–2000 14 3.52%

2001–6,000 60 15.08%

6,001–10,000 154 38.69%

10,001–150,000 78 19.60%

More than 15,000 92 23.12%

Residence

Rural 17 4.27%

Urban 381 95.73%

Health Chatbot Usage Experience

Yes 97 24.37%

No 301 75.63%
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TABLE 2 Measurement model assessment.

Construct Items VIF Loading Cronbach’s 
α

rho_A CR AVE

Functional Barrier (FB)

Usage barrier (UB) 

(Laukkanen, 2016)

 1 Health chatbots are easy to use. (R)

 2 It’s convenient to use health chatbots. (R)

 3 Progress in health chatbots services is 

clear. (R)

 4 Using health chatbots for disease 

diagnosis easy. (R)

1.907

1.511

1.772

1.915

0.818

0.758

0.821

0.832

0.822 0.823 0.882 0.652

Value barrier (VB) 

(Laukkanen, 2016)

 1 Compared to human doctors, health 

chatbots have no advantages for treating.

 2 Health chatbots will improve my ability to 

manage diseases. (R)

1.532

1.532

0.897

0.886

0.742 0.743 0.886 0.795

Risk barrier (RB) 

(Chakraborty et al., 

2022)

 1 My health information will be misused by 

the service provider of the health 

chatbots.

 2 Health chatbots will disclose my personal 

privacy data.

 3 Using health chatbots have some serious 

consequences that I cannot predict 

currently.

1.859

2.142

2.102

0.857

0.881

0.880

0.844 0.844 0.906 0.762

Psychological Barrier (PB)

Tradition barrier (TB) 

(Laukkanen, 2016)

 1 When I need medical treatment, I prefer 

the human doctor.

 2 When I need medical treatment, I prefer 

the health chatbots. (R)

1.791

1.791

0.913

0.912

0.798 0.798 0.908 0.832

Image barrier (IB) 

(Laukkanen, 2016)

 1 I have the impression that health chatbots 

are too complex and useless.

 2 I have the impression that health chatbots 

are often difficult to use.

1.973

1.973

0.920

0.925

0.825 0.826 0.92 0.851

Negative Health 

Chatbot Prototype 

(NHCP) 

(Esmaeilzadeh, 2020; 

Wu et al., 2023)

 1 Health chatbots are dangerous.

 2 Health chatbots are not to be trusted.

 3 Health chatbots are unreliable.

 4 Health chatbots will replace human 

doctors.

2.026

1.781

1.577

2.387

0.846

0.796

0.769

0.880

0.841 0.851 0.894 0.679

Resistance Intention 

(RI) (Van Gool et al., 

2015)

 1 I tend to resist health chatbots.

 2 I was likely to resist health chatbots.

 3 I do not think it’s impossible for me to 

resist health chatbots.

 4 I think I’ll resist health chatbots.

2.610

2.215

2.823

2.414

0.877

0.838

0.896

0.864

0.892 0.895 0.925 0.756

Resistance Willingness 

(RW) (Van Gool et al., 

2015)

 1 I will also resist health chatbots.

 2 Responding the same to resist health 

chatbots.

 3 Doing the same to resist health chatbots.

1.887

2.012

2.266

0.859

0.868

0.892

0.844 0.844 0.906 0.762

Resistance Behavioral 

Tendency (RBT) 

(Laumer et al., 2016)

 1 I will not accept the recommendations of 

health chatbots.

 2 I will not cooperate with the health 

chatbots.

 3 I am opposed to the changes in medical 

practice brought by health chatbots.

 4 I disagree that health chatbots have 

changed the traditional way of treating 

diseases.

1.819

1.908

1.869

1.765

0.819

0.834

0.818

0.799

0.835 0.836 0.890 0.668

VIF, variance inflation factor; rho_A, Dijkstra-Henseler’s ρA; CR, composite reliability; AVE, average variance extracted. R, reverse scoring.
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Tradition Barriers (TB): Tradition barriers are characterized by 
changes in existing user routines, culture, and behaviors, as well as 
social pressures linked to the application of innovation (Sadiq et al., 
2021). Two items adapted from Laukkanen (2016) were used to 
evaluate individuals’ perceptions of tradition barriers related to health 
chatbots; for example, “When I need medical treatment, I prefer the 
human doctor” (Cronbach’s α = 0.798).

Image Barriers (IB): Image barriers refer to individuals’ negative 
impressions of innovation, focusing primarily on perceptions of the 
level of complexity of innovation utilization (Lian and Yen, 2014). Two 
items adapted from Laukkanen (2016) were used to evaluate 
individuals’ perceptions of image barriers related to health chatbots; 
for example, “I have the impression that health chatbots are too 
complex and useless” (Cronbach’s α = 0.825).

3.2.3 Negative health Chatbot prototype
In line with the prototype perception literature (Gibbons and 

Gerrard, 1995; Lazuras et al., 2019) and existing public perception 
research on medical AI (Esmaeilzadeh, 2020; Wu et al., 2023), the 
participants were asked to self-report their perceptions of the typical 
risk characteristics of health chatbots. An item example is as follows: 
“Health chatbots are dangerous” (Cronbach’s α = 0.841).

3.2.4 Resistance intention
Four items adapted from Van Gool et al. (2015) were used to 

evaluate individuals’ resistance intentions toward health chatbots. For 
example, an item is “I tend to resist health chatbots” (Cronbach’s 
α = 0.892).

3.2.5 Resistance willingness
Based on the prototype perception literature (Gibbons and 

Gerrard, 1995; Van Gool et al., 2015), resistance willingness toward 
health chatbots was measured by asking individuals about their 
experience in a given scenario: “If in real life and the online world, 
you found yourself surrounded by people who were resisting health 
chatbots, what would you do?” The participants were asked to self-
report their resistance willingness in response to three items based on 
this scenario; for example, “I will also resist health chatbots” 
(Cronbach’s α = 0.844).

3.2.6 Resistance behavioral tendency
Three items adapted from Laumer et al. (2016) were utilized to 

evaluate individual resistance behavioral tendency of health chatbots. 
An item example is as follows: “I will not accept the recommendations 
of health chatbots” (Cronbach’s α = 0.835).

4 Results

Partial least squares structural equation modeling (PLS-SEM) was 
employed to examine the proposed research model. Compared to 
covariance-based structural equation modeling (CB-SEM), another 
important structural equation modeling method, PLS-SEM has 
flexibility in model construction, supports path estimation, and 
computes model parameters under non-normal distribution 
conditions (Hulland, 1999), This maximizes the explanatory power of 
endogenous variables, making it more appropriate for small and 
medium samples, as well as for studies targeting causal inference and 

predictiveness (Hair et al., 2019). Generally, PLS-SEM consists of two 
components: a measurement model used to examine the correlation 
between observable and latent variables and a structural model used 
to examine the correlation between exogenous and endogenous 
latent variables.

4.1 Common method bias

Cross-sectional surveys based on respondents’ self-reports may 
have a common method bias (CMB) issue (Podsakoff et al., 2003). 
This study first employed Harman’s single-factor technique to examine 
possible CMB, and the results revealed that the single factor 
contributed 33.29% of the total variance and did not exceed the 50% 
threshold (Chang et al., 2020). Second, the potential marker method 
was used to evaluate CMB, utilizing age as the marker variable (Li 
et al., 2023); the results showed that the correlation coefficient between 
the marker variable and other variables in our model did not exceed 
0.3 (Lindell and Whitney, 2001). Finally, the collinearity diagnostics 
results among the explanatory variables revealed that the variance 
inflation factor (VIF) was less than 3.3 (Kock, 2015). The statistical 
indicators shown above imply that there was no CMB in this study.

4.2 Measurement model assessment

First, the measurement model was tested to examine the validity 
and reliability of the survey instruments. Table 2 shows that for all the 
instruments, the Cronbach’s α, Dijkstra-Henseler’s ρA, and composite 
reliability (CR) exceed 0.7, indicating acceptable internal reliability of 
the tools (Fornell and Larcker, 1981; Dijkstra and Henseler, 2015). 
Furthermore, the factor loadings of the instruments were all higher 
than the expected value of 0.7, and the average variance extracted 
(AVE) varied from 0.652 to 0.851, which is higher than the threshold 
value of 0.5 (Fornell and Larcker, 1981). Consequently, the convergent 
validity of the instruments was verified.

Second, the discriminant validity of the instruments was 
examined. As shown in Table 3, the HTMT ratio varied from 0.128 to 
0.741 and did not exceed the 0.85 threshold, whereas the confidence 
interval of the HTMT ratio did not exceed 1.00 (Henseler et al., 2015). 
Table 4 indicates that the correlation coefficient between any two 
variables is less than 0.8, and the square root of the AVE exceeds the 
value of the correlation coefficient between the variables (Campbell 
and Fiske, 1959; Fornell and Larcker, 1981). These results suggest that 
the measurements passed the discriminant validity test.

Finally, the standardized root mean square residual (SRMR) and d_
ULS were assessed to evaluate the global model fit. The SRMR index of 
the proposed research model was 0.054, which is lower than the 
recommended threshold of 0.08. The d_ULS is expected to be lower than 
0.95 (Tenenhaus et al., 2005), and this value of the proposed research 
model was 0.926. Being higher than the recommended index, this 
indicated that the overall degree of model fit met the research requirements.

4.3 Structural model assessment

Using the PLS-SEM algorithm and bootstrapping resampling 
procedure, this study evaluated the path coefficients and significance 

https://doi.org/10.3389/fpsyg.2024.1276968
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zou et al. 10.3389/fpsyg.2024.1276968

Frontiers in Psychology 08 frontiersin.org

of the proposed model. The explained variance (R2) and effect size (f2) 
were also estimated to test the model’s explanatory power and actual 
efficacy, respectively. The R2 values for resistance intention, resistance 
willingness, and resistance behavioral tendency were 0.377, 0.391, and 
0.429, respectively, each of which was higher than 0.19 (Purwanto, 
2021). This indicated that the research model had good explanatory 
power. The f2 value was used to estimate whether the latent variables 
had substantial effects on the endogenous variables. Table 5 indicates 
that, f2 values range from 0.015 to 0.646; this clarifies that in the 
model, two paths have weak effects and four paths exceed the medium 
effect (higher than 0.15; Cohen, 1988).

As shown in Table 5, the results of the path analysis indicate that 
functional barriers positively influenced resistance intention 
(β = 0.519, p < 0.001), thus H1 was supported. Additionally, 
psychological barriers also had a significant positive effect on 
resistance intention (β = 0.112, p = 0.007), thus, H2 was supported. A 
negative prototype perception regarding health chatbots also had a 

significant positive effect on both resistance intention (β = 0.122, 
p = 0.008) and resistance willingness (β = 0.627, p < 0.001); thus, H3a 
and H3b were supported. Finally, both resistance intention (β = 0.336, 
p < 0.001) and resistance willingness (β = 0.432, p < 0.001) were positive 
predictors of resistance behavioral tendency; thus, H4 was supported.

We also conducted a series of mediation analyses to examine the 
mediating role of resistance intention and resistance willingness 
between functional barriers, psychological barriers, a negative 
prototype perception regarding health chatbots, and resistance 
behavioral tendency. Table  6 indicates that resistance intention 
significantly mediated the link between functional barriers and 
resistance behavioral tendency (β = 0.174, CI [0.152; 0.247], p < 0.001). 
Thus, H5 was supported. Moreover, resistance intention (β = 0.038, CI 
[0.008; 0.062], p = 0.018) also had a significant mediating effect in the 
link between psychological barriers and resistance behavioral 
tendency. Thus, H6 was supported. Finally, resistance intention 
(β = 0.041, CI [0.010; 0.065], p = 0.010) and resistance willingness 

TABLE 3 Discriminant validity of HTMT ratio and 95% confidence interval.

Construct 1 2 3 4 5 6 7 8 9

 1 UB

 2 VB
0.659

[0.574; 0.749]

 3 RB
0.654

[0.566; 0.738]

0.714

[0.631; 0.797]

 4 TB
0.361

[0.253; 0.469]

0.277

[0.153; 0.401]

0.31

[0.193; 0.424]

 5 IB
0.368

[0.257; 0.481]

0.316

[0.196; 0.443]

0.306

[0.203; 0.412]

0.624

[0.543; 0.710]

 6 NHCP
0.253

[0.144; 0.374]

0.216

[0.111; 0.334]

0.251

[0.129; 0.368]

0.468

[0.362; 0.568]

0.462

[0.355; 0.557]

 7 RI
0.542

[0.455; 0.628]

0.678

[0.583; 0.77]

0.565

[0.481; 0.647]

0.41

[0.296; 0.516]

0.287

[0.188; 0.388]

0.342

[0.227; 0.449]

 8 RW
0.128

[0.078; 0.243]

0.142

[0.050; 0.26]

0.200

[0.093; 0.319]

0.408

[0.294; 0.523]

0.332

[0.23; 0.43]

0.741

[0.665; 0.814]

0.206

[0.101; 0.312]

 9 RBT
0.278

[0.167; 0.396]

0.269

[0.147; 0.398]

0.263

[0.149; 0.378]

0.641

[0.55; 0.725]

0.52

[0.425; 0.611]

0.537

[0.437; 0.628]

0.516

[0.421; 0.611]

0.638

[0.555; 0.717]

HTMT, Heterotrait-monotrait; UB, Usage barriers; VB, Value barriers; RB, Risk barriers; TB, Tradition barriers; IB, Image barriers; NHCP, Negative health chatbot prototype; RI, Resistance 
intention; RW, Resistance willingness; RBT, Resistance behavioral tendency.

TABLE 4 The square root of AVE and correlation coefficient between variables.

Construct 1 2 3 4 5 6 7 8 9

 1 UB 0.808

 2 VB 0.515 0.891

 3 RB 0.546 0.565 0.818

 4 TB 0.292 0.213 0.525 0.912

 5 IB 0.303 0.247 0.256 0.507 0.923

 6 NHCP 0.212 0.173 0.212 0.386 0.384 0.824

 7 RI 0.467 0.553 0.492 0.346 0.247 0.297 0.869

 8 RW 0.108 0.111 0.170 0.338 0.277 0.627 0.179 0.873

 9 RBT 0.229 0.213 0.221 0.525 0.432 0.454 0.447 0.536 0.818

AVE, average variance extracted; UB, Usage barriers; VB, Value barriers; RB, Risk barriers; TB, Tradition barriers; IB, Image barriers; NHCP, Negative health chatbot prototype; RI, Resistance 
intention; RW, Resistance willingness; RBT, Resistance behavioral tendency.
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(β = 0.271, CI [0.191; 0.294], p < 0.001) also had significant mediating 
effects on the link between a negative prototype perception regarding 
health chatbots and resistance behavioral tendency. Thus, H7 was 
supported (see Figure 2).

5 Discussion and implications

5.1 Discussion

This study aimed to examine the factors contributing to individuals’ 
resistance toward health chatbots, as well as the underlying 
psychological mechanisms, by constructing a parallel mediation 
model. Based on the theoretical frameworks of IRT and PWM, our 
results clarify the effects of functional barriers, psychological barriers, 
and negative prototype perceptions regarding health chatbots on 

resistance behavioral tendency, as well as the mediating roles played by 
resistance intention and resistance willingness between their linkages.

Consistent with prior studies conducted in the domain of 
innovation resistance (Sadiq et al., 2021; Cham et al., 2022; Friedman 
and Ormiston, 2022), this study revealed that perceived functional 
and psychological barriers also exerted a significant positive influence 
on individuals’ resistance intention to health chatbots. Moreover, 
according to the path coefficients of the findings, we  found that 
functional barriers of health chatbots have a greater positive impact 
on people’s resistance intention and behavior than psychological 
barriers. This conclusion is similar to that of prior studies, such as 
Kautish et  al. (2023), who found that functional barriers to 
telemedicine apps play a more predictable role in users’ purchase 
resistance intentions. Furthermore, Our results demonstrate that 
people’s negative prototype perception regarding health chatbots, such 
as their being “dangerous” and “untrustworthy,” significantly influence 

TABLE 5 Hypothesis testing results.

Hypothesis B β SE T LLCI-ULCI f2 p

FB→RI 0.670 0.519 0.051 13.045 0.569; 0.771 0.376 0.000

PB→RI 0.111 0.112 0.041 2.691 0.029; 0.192 0.015 0.007

NHCP→RI 0.122 0.122 0.046 2.651 0.035; 0.216 0.019 0.008

NHCP→RW 0.759 0.627 0.047 15.983 0.669; 0.855 0.646 0.000

RI→RBT 0.295 0.336 0.034 8.760 0.232; 0.362 0.188 0.000

RW→RBT 0.315 0.432 0.032 9.788 0.255; 0.381 0.286 0.000

FB, Functional Barriers; PB, Psychological Barriers; NHCP, Negative health chatbot prototype; RI, Resistance intention; RW, Resistance willingness; RBT, Resistance behavioral tendency. f2, 
effect size; LLCI, lower limit confidence interval; ULCI, Upper limit Confidence Interval.

TABLE 6 Mediation effects testing results.

Hypothesis B β SE T LLCI-ULCI p

FB→RI→RBT 0.197 0.174 0.025 8.018 0.152; 0.247 0.000

PB→RI→RBT 0.033 0.038 0.014 2.365 0.008; 0.062 0.018

NHCP→RI→RBT 0.036 0.041 0.014 2.586 0.010; 0.065 0.010

NHCP→RW→RBT 0.239 0.271 0.026 9.153 0.191; 0.294 0.000

FB, Functional Barriers; PB, Psychological Barriers; NHCP, Negative health chatbot prototype; RI, Resistance intention; RW, Resistance willingness; RBT, Resistance behavioral tendency. LLCI, 
lower limit confidence interval; ULCI, Upper limit Confidence Interval.

FIGURE 2

Structural model.
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their resistance intention, resistance willingness, and resistance 
behavioral tendency. This suggests that people’s heuristic perceptions 
of the negative images and risk beliefs concerning health chatbots are 
important determinants of their resistance behavioral tendency. This 
finding responds to a previous research question on whether people’s 
negative psychological perceptions of healthcare AI affect their 
subsequent usage intentions and behaviors (Schepman and Rodway, 
2020; Jussupow et  al., 2022). Specifically, according to the path 
coefficients, a negative prototype perception regarding health chatbots 
had a greater impact on resistance behavioral tendency through 
resistance willingness than resistance intention. This is consistent with 
previous research, which found that prototypical perceptions influence 
individual behaviors through behavioral willingness rather than 
behavioral intentions in behaviors such as smoking (Gerrard et al., 
2005) and alcohol abuse (Davies et al., 2016; Gibbons et al., 2016).

Drawing on the PWM, this study reveals the dual rational/irrational 
mediating mechanisms underlying people’s resistance to health chatbots. 
In particular, this study demonstrates that individuals’ perceived 
functional and psychological barriers may significantly influence their 
resistance intention, thereby increasing the likelihood of subsequent 
resistance behavioral tendency. Similarly, negative prototypes regarding 
health chatbots may increase resistance behavioral tendency through 
resistance intention and resistance willingness. Importantly, our results 
indicate that negative prototype perceptions regarding health chatbots 
have a greater impact on individuals’ resistance willingness and their 
subsequent resistance behavioral tendency than functional and 
psychological barriers. In summary, when confronted with irrational 
factors such as social pressure and intuitive negative cues, people are 
more likely to reject health chatbots. This is consistent with previous 
research by Sun et  al. (2023), who discovered that the presence of 
emotional disgust toward smartphone apps reduced individuals’ 
adoption intentions. This result reaffirms the prior finding that prototype 
perceptions have a greater influence through behavioral willingness, and 
thus impact individual behavior (Myklestad and Rise, 2007; Abedini 
et al., 2014; Elliott et al., 2017). Fiske et al. (2019) explained that since 
people do not integrate AI devices into their real lives, their ambiguous 
perceptions arising from their lack of specific knowledge can significantly 
affect the perceived risks of AI technologies (Dwivedi et al., 2021), and 
may lead to their refusal to utilize health chatbots.

5.2 Implications

5.2.1 Theoretical implications
By constructing a comprehensive model that includes rational and 

irrational psychological pathways to health chatbot resistance, this study 
contributes theoretically to the existing literature in the following ways. 
First, it enriches existing research on people’s acceptance behavior toward 
health chatbots. Previous studies have focused on investigating 
individuals’ attitudes toward health chatbots (Palanica et  al., 2019), 
adoption motivations (Nadarzynski et al., 2019; Zhu et al., 2022), and 
psychological processes of adoption (Chang et al., 2022), with the aim of 
exploring ways to facilitate people’s adoption behavior in the context of 
medical AI technologies. However, identifying the factors that lead to 
people’s resistance to medical AI technology is a critical component in 
discovering ways to promote people’s adoption behaviors. This study 
systematically and empirically explored the factors and psychological 
mechanisms that influence people’s resistance to health chatbots by 

constructing a parallel mediation model. The study extends our 
understanding of individuals’ acceptance behaviors toward medical AI 
technologies from the perspective of their formative resistance behavioral 
tendency. Second, by combining the IRT and PWM, this study enriches 
existing literature on the antecedents and psychological pathways of 
individuals’ resistance to health chatbots. Prior research has primarily 
emphasized the impact of rational considerations such as acceptability 
(Boucher et al., 2021), perceived utility (Nadarzynski et al., 2019), and 
performance expectancy (Huang et al., 2021), on individuals’ health 
chatbot adoption behavior. This study focused on the effect of individuals’ 
direct heuristic negative prototype perceptions regarding health chatbots 
on resistance willingness and subsequent behavior, revealing that the 
irrational paths driven by negative prototype perceptions have a more 
profound influence on individuals’ resistance willingness and behavior 
toward health chatbots, providing valuable theoretical references for 
conducting future research on medical AI resistance behavior.

5.2.2 Practical implications
This study also reveals some practical insights that can contribute to 

the development of interventions for addressing people’s resistance to 
health chatbots. First, our findings suggest that individuals’ perceived 
functional barriers to health chatbots can significantly influence their 
resistance intentions and behaviors. Therefore, designing more 
convenient and relatively user-friendly health chatbots may be the way 
forward. As noted by Lee et al. (2020), improving the interactivity and 
entertainment of AI devices in healthcare may help reduce 
communication barriers between users and AI devices, thus increasing 
the acceptance of health chatbots. In addition, service feedback 
mechanisms for health chatbots should be established and adequately 
evaluated to optimize the devices, which in turn would reduce the 
perceived complexity of health chatbots and actual usage difficulty. 
Second, this study found that individuals’ psychological barriers to 
health chatbots also significantly impact resistance intention as well as 
subsequent resistance behavioral tendency. Thus, future designers of 
health chatbots should consider the important influence of psychological 
barriers on resistance behavioral tendency. Accordingly, health chatbot 
providers should design products and services that are more applicable 
to people’s daily lives and decrease the degree of disruption to their 
established routines. Furthermore, offline health chatbot experience 
programs should be established to enhance people’s sense of security in 
utilizing health chatbots and encourage the acceptance of innovative 
medical AI technologies. The necessary knowledge about health 
chatbots and their advantages should be increased to reverse the possible 
negative perception of health chatbots and reduce individuals’ 
psychological discomfort in their adoption process (Röth and Spieth, 
2019). Finally, our findings highlighted the significant impact of 
individuals’ negative prototype perceptions regarding health chatbots on 
their resistance behavioral tendency. Therefore, it is crucial to eliminate 
people’s instinctive negative views of health chatbots for their social 
popularization. Health chatbot providers, in particular, should utilize 
influential media channels to continuously disseminate information 
regarding health chatbots’ scientific utility to address asymmetric 
perceptions and promote an objective understanding of this technology. 
Moreover, scientific facts about health chatbots, such as functioning 
principles, utilization scenarios, and essential precautions, should 
be  popularized by media outlets to reverse negative prototypical 
perceptions about health chatbots and support rational views and 
assessments regarding this technology.
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6 Limitations and future research

The present study had some limitations. First, the data for this 
study were derived from a cross-sectional survey based on self-
reports; future research could use experimental methods to 
acquire causal insights or conduct a longitudinal tracking survey 
to construct a more dynamic model that explores the evolution of 
resistance attitudes and behaviors. Second, although this study has 
demonstrated the influence of factors such as functional barriers, 
psychological barriers, and negative prototype perceptions 
regarding health chatbots on resistance behavioral tendency, the 
influences of innovation resistance are commonly grounded in 
specific scenarios (Claudy et al., 2015). Thus, it would be valuable 
for future studies to incorporate in-depth interviews as well as 
qualitative research methodologies such as grounded theory to 
obtain more comprehensive results on the impact of health 
chatbots on individuals. Third, the measurement of resistance 
behavioral tendency in this study may not strictly represent actual 
resistance behavior. It is recommended that future research adopt 
more direct methods to measure people’s actual resistance 
behavior toward health chatbots. Fourth, consistent with prior 
research, the current study investigated resistance psychology and 
behavior primarily from the perspective of individual perceptions, 
attitudes, and behaviors. However, the factors influencing 
individual resistance to innovative technologies are diverse 
(Talwar et al., 2020; Dhir et al., 2021). For example, a recent study 
confirmed that user emotions impact innovation evaluation and 
subsequent resistance behavior (Castro et al., 2020). Therefore, 
future research should consider the effects of factors such as 
individual emotions, cultural context, and social circumstances on 
individuals’ resistance behaviors.

7 Conclusion

The popularization of AI in healthcare depends on the 
population’s acceptance of related technologies, and overcoming 
individual resistance to AI healthcare technologies such as health 
chatbots is crucial for their diffusion (Tran et al., 2019; Gaczek et al., 
2023). Based on the IRT and PWM, this study investigated the 
effects of functional barriers, psychological barriers, and negative 
prototypical perceptions regarding health chatbots on resistance 
behavioral tendency and further identified the mediating roles of 
resistance intention and resistance willingness between their 
associations. The results indicated that resistance intention mediated 
the relationship between functional barriers, psychological barriers, 
and resistance behavioral tendency, respectively. Furthermore, The 
relationship between negative prototype perceptions and resistance 
behavioral tendency was mediated by resistance intention and 
resistance willingness. Importantly, the present study found that 
negative prototypical perceptions were more predictive of 
resistance behavioral tendency than functional and psychological 
barriers. This study empirically demonstrates the influence of the 
dual psychological mechanisms of rationality and irrationality 
behind individuals’ resistance to health chatbots, expanding 
knowledge on resistance behaviors toward health chatbots 
and recommending ways to overcome this resistance through 
tailored interventions.
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