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Deciding where to direct our vehicle in a crowded parking area or where to 
line up at an airport gateway relies on our ability to appraise the numerosity 
of multitudes at a glimpse and react accordingly. Approximating numerosities 
without actually counting is an ontogenetically and phylogenetically primordial 
ability, given its presence in human infants shortly after birth, and in primate 
and non-primate animal species. Prior research in the field suggested that 
numerosity approximation is a ballistic automatism that has little to do with 
human cognition as commonly intended. Here, we  measured visual working 
memory capacity using a state-of-the-art change detection task and numerosity 
approximation using a dot-comparison task, and found a null correlation 
between these two parametrical domains. By checking the evidential strength 
of the tested correlation using both classic and Bayesian analytical approaches, 
as well as the construct validity for working memory capacity and numerosity 
approximation estimates, we  concluded that the present psychophysical 
evidence was sufficiently strong to support the view that visual working memory 
and numerosity approximation are likely to rely on functionally independent 
stages of processing of the human cognitive architecture.
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1 Introduction

Working memory is a pivotal construct in large-scale models of human cognition (e.g., 
Meyer and Kieras, 1997; Dehaene et al., 1998; Anderson, 2007), in which it is incorporated as 
a core workspace for the active maintenance of information gathered through our senses 
(Jolicœur and Dell’Acqua, 1998), or retrieved from long-term memory (Fukuda and 
Woodman, 2017). The capacity of working memory is starkly limited, amounting to 3 objects 
on average in the human adult population, and characterized by a substantial inter-individual 
variability (Cowan, 2001; Luck and Vogel, 2013; Balaban et al., 2019). Although the functional 
characterization of such limits is still debated (cf., Bays and Husain, 2008; Zhang and Luck, 
2008; see, however, Pratte and Green, 2023), studies employing electroencephalographic 
recordings have provided empirical evidence that working memory capacity is inextricably 
intertwined with the ability to protect working memory from clutter or distraction, showing 
that individuals with high working memory capacity are also particularly efficient in using that 
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capacity to store task-relevant rather than irrelevant information 
(Vogel et al., 2005; Gaspar et al., 2016).

Working memory capacity is predictive of such an impressively 
wide range of measures of cognitive efficiency tapping basically all 
high-level psychological constructs (Miyake et al., 2001; Cowan et al., 
2005; Johnson et al., 2013; Unsworth et al., 2014, 2015) that one issue 
worthy of investigation is uncovering aspects of human behavior that 
are not influenced by working memory capacity. Focusing on this 
issue has the potential to deepen our general understanding of which 
stages of processing within a human cognitive architecture can take 
place independently of working memory and, concomitantly, to 
model more precisely the influence of working memory on human 
mental life.

One candidate ability in this perspective is that of approximating 
the numerosity of objects in a bunch when this number is large. 
Choosing a parking spot in a crowded parking area or the line of 
people at an airport gateway are everyday examples where this ability 
is typically exerted, often by simply glimpsing at the situation and 
reacting accordingly. This ability is usually referred to as numerical 
acuity, and defined as the efficiency to categorize as different the 
cardinality of sets of objects varying in ratio. In essence, the higher a 
person’s numerical acuity, the smaller the numerical difference 
between two sets of objects the person needs in order to categorize 
them as different, without resorting to verbal and/or mental count 
(Gallistel and Gelman, 1992; Dehaene, 2011). Studies in developmental 
psychology and animal cognition suggest number approximation is 
phylogenetically and ontogenetically ancestral. We share this ability 
with a number of primate and non-primate animal species, and it is 
present in human infants a few months after birth, following a 
developmental trajectory that is largely independent of that of other 
higher-level abilities, such as language (Barth et al., 2003; Nieder and 
Dehaene, 2009).

Hints that numerosity approximation is indeed functionally 
separable from working memory have been reported by Piazza et al. 
(2011), in a study in which working memory capacity was estimated 
using a whole-display change detection task, in which participants had 
to compare memory and probe arrays of color patches in order to 
detect a possible change in one color. Visual working memory capacity 
was calculated as K, an index of the number of working memory ‘slots’ 
available for storing distinct objects (Cowan, 2001). Numerosity 
processing was explored both as the ability to ‘subitize’ a small number 
of dots in a visual array (e.g., Trick and Pylyshyn, 1994), and as the 
ability to discriminate two concomitant visual arrays of dots based on 
their ‘approximated’ (i.e., estimated without relying on explicit 
counting; e.g., Piazza et al., 2004) numerosity. Subitizing capacity was 
measured in a dot counting task, in which 1 to 8 colored dots were 
displayed for 250 ms and participants were instructed to name the 
number of the dots as fast as they could. Subitizing capacity was 
estimated as the average number of dots after which naming times 
began to increase (Revkin et al., 2008). Numerosity approximation, by 
contrast, was tested in a dot-comparison task, in which up to 44 dots 
were divided into two arrays of unequal number (with large/small 
numerosity ratios of 1.06, 1.14, 1.23, 1.33, or 1.6) and displayed to the 
left and right of fixation until participants pressed one of two buttons 
to indicate the array with a larger dot numerosity. Number 
approximation ability, also known as numerical acuity, was calculated 
based on accuracy in the dot-comparison task and expressed as a 
Weber fraction reflecting the degree of resolution in distinguishing 

quantities varying in ratio (Dehaene, 1993). The results showed that 
working memory capacity was positively correlated with subitizing 
capacity, and not correlated with numerical acuity. Converging with 
earlier analogous proposals (e.g., Drew and Vogel, 2008; see also Ester 
et al., 2012), Piazza et al. (2011) concluded that subitizing capacity 
relies on a multi-purpose, supra-modal (Gennari et  al., 2023), 
attention-demanding system representing cardinalities as a limited 
number of discrete entities encoded in visual working memory, 
whereas numerical acuity relies on a primordial, likely pre-attentive 
(Burr et al., 2010), system for magnitude estimation that does not use 
up visual working memory resources.

Though favorably inclined to believe that the absence of a 
correlation between numerical acuity and visual working memory 
capacity shown by Piazza et al. (2011) is real, we noted important 
issues pertaining to both the design of the change detection task and 
the way in which K was calculated by Piazza et al. (2011) that motivate 
the present attempt at providing a stronger test for a possible 
dissociation between visual working memory and numerical acuity. 
In the change detection task used by Piazza et al. (2011), for instance, 
the memory array was displayed for 700 ms and followed by a blank 
1,000 ms inter-stimulus interval (ISI) prior to the onset of the test 
array, which was exposed for 2000 ms. This is a significant deviation 
from designs typically employed to estimate visual working memory 
capacity, where the timing parameters are often chosen so as to 
prevent participants from adopting idiosyncratic strategies for task 
execution. The memory array, for instance, is typically exposed for a 
much briefer duration, or better, so brief as to prevent participants 
from directing their foveae to a subset of the to-be-memorized objects 
rather than maintaining gaze at fixation. By keeping the exposure 
duration short enough to prevent eye movements and by using a blank 
ISI of a maximum of 1,000 ms, other strategies can also be precluded, 
like, for instance, the phonological recoding of the memoranda 
(Ramaty and Luria, 2018), i.e., encoding and rehearsing the names of 
the colors composing the memory array, which is hypothesized to 
implicate a hand-off of part of the visual working memory content to 
long-term memory and/or the engagement of verbal circuits (Luria 
et al., 2010). Such strategies could mask real individual differences in 
VWM capacity and dilute any correlation with another variable.

Over and above these issues in the design, we found the way in 
which Piazza et al. (2011) estimated and used K for correlation testing 
even more troublesome. As described by Rouder et al. (2011), on the 
assumption that visual working memory resources are fixed and 
discretely subdivided among a limited number of memorized colored 
stimuli, the formula to be used for the calculation of K when using 
whole-display change detection tasks must be the one proposed by 
Pashler (1988), and not that proposed by Cowan (2001). Pashler’s 
(1988) formula takes into account the probability to detect a change 
in any unpredictable color composing a whole-display probe array, 
whereas Cowan’s (2001) formula only applies to conditions in which 
a single item is used to probe working memory for a color that 
occupied a specific position in the memory array. Despite the use of a 
whole-display change detection task, Piazza et al. (2011) used Cowan’s 
(2001) formula. Symptomatic of this arguable choice was the 
maximum K found when 8 colors had to be memorized, which was 
greater than K when 6 or 7 colors had to be memorized, indicating 
that K did not plateau as expected, and that this was likely one of the 
cases that Rouder et  al. (2011) levied to argue against an 
interchangeable use of Pashler’s (1988) and Cowan’s (2001) formulae. 
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Furthermore, if the correlation test sought to explore whether the 
upper limits of visual working memory impose constraints on 
numerical acuity, one should consider the maximum K values 
observed when the memory array’s set-size is supra-capacity, and not, 
as Piazza et al. (2011) did, the average K value across the whole range 
of tested set-sizes, which varied from 1 to 8 colors. At set-sizes inferior 
or equal to visual working memory capacity (i.e., set-sizes 1–3), the 
maximum K is constrained by set-size, and the average K is therefore 
an underestimation of the maximum K (Balaban et al., 2019).

As illustrated in the forthcoming sections, we designed the present 
experiment to test a possible correlation between individual maximum 
Ks and numerical acuity, in an attempt to overcome the above-described 
limitations of the test carried out by Piazza et al. (2011). To anticipate, 
after overcoming these limitations, the results were reassuring, for 
we  detected no correlation, thus providing solid evidence for the 
independence of these two abilities and strengthening considerably the 
view that numerical acuity and visual working memory are indeed likely 
to rely on functionally independent stages of processing in the human 
cognitive architecture, whereby working memory is a high-level central 
hub for information processing and numerosity approximation is 
enabled by lower-level, likely sensory, processing stages.

2 Methods

2.1 Participants

Given the expected result was a nil correlation between estimates 
of numerical acuity and visual working memory, a standard power 
analysis — which is intended to determine the number of participants 
required to attain a pre-determined statistical power to detect a 
significant effect — would have resulted in an abnormally large 
number of participants (in the order of hundreds). To circumvent this 
problem, our approach was that of hypothesizing that a correlation 
could indeed be found, with Pearson’s rs ranging from 0.4 and 0.6. To 
detect such effects, the number of participants required to attain a 
statistical power of 0.8 and an alpha of 0.05 ranged from 18 to 45. 
Forty-six students from the local University (27 women, 19 men) were 
thus recruited to take part in the present experiment after giving 
informed consent. All participants reported normal or corrected-to-
normal vision and no history of neurological and/or psychiatric 
disorders. Their mean age was 22.7 years (SD = 2.7). Three participants 
were removed due to less than 60% correct responses in the change 
detection task, and two participants were removed because of mean 
performance values (see below) exceeding the sample mean by three 
standard deviations in the dot-comparison task. The final sample 
included 41 participants (23 female, 18 male, mean age = 22.9, 
SD = 2.7). The experimental protocol was vetted by the local Ethical 
Committee (Protocol #4683).

2.2 Stimuli and procedure

The stimuli of the change detection and dot-comparison tasks 
were generated with E-Prime 2 software (Psychology Software Tools 
Inc.) and MATLAB (Version: 9.13.0, R2022b, The MathWorks Inc.), 
respectively, and displayed on the black (RGB: 0, 0, 0) background of 
a 24” CRT monitor with a refresh rate of 60 Hz at a distance of about 

65 cm. The two tasks were administered on the same day, one after the 
other following a pause, in counterbalanced order across participants.

An example of the stimuli and a schematic illustration of the 
sequence of events in the change detection task is reported in Figure 1.

Each trial started when the participant pressed the spacebar of the 
keyboard positioned in front of them. Upon spacebar press, a light gray 
(RGB: 220, 220, 220) fixation cross, subtending 0.8 × 0.8° of visual angle, 
was displayed at the center of the screen for a 900–1,000 ms interval, 
randomly jittered in steps of 20 ms. A memory array composed of two, 
three, or five colored squares was then displayed around fixation for 
150 ms. Each square subtended 1° × 1° and the colors were randomly 
chosen among blue (RGB: 0, 0, 255), brown (RGB: 157, 0, 23), orange 
(RGB: 255, 128, 0), purple (RGB: 128, 0, 255), dark green (RGB: 30, 140, 
60), cyan (RGB: 0, 255, 255), pink (RGB: 255, 174, 201), magenta (RGB: 
255, 0, 255), yellow (RGB: 255, 255, 0), red (RGB: 255, 0, 0), and light 
green (RGB: 0, 255, 0). The colored squares could be  displayed at 
random positions within a notional rectangle subtending 5° × 5°, within 
the constraints that the minimum distance between the upper left 
corners of two adjacent squares could be no less than 1.5°, and the 
minimum distance between the fixation point and the side of the 
nearest square could be no less than 1.3°. After a 900 ms blank retention 
interval, a test array was displayed that was, with equal probability, 
identical to the test array or different from the memory array for the 
change in one color. The test array remained in view until participants 
pressed one of two keys (i.e., the keys “1” or “2” of the numeric keypad, 
counterbalanced across participants) to indicate whether memory and 
test arrays were the “same” or “different” for one color. The experiment 
was composed of 810 trials, organized in 27 blocks of 30 trials each, and 
preceded by 16 trials of practice.

An example of the stimuli used in the dot-comparison task is 
reported in Figure 2.

Two arrays composed of white (RGB: 255, 255, 255) dots were 
separately included in two gray (RGB: 128, 128, 128) square areas 
positioned to the left and right of a central light gray (RGB: 220, 220, 
220) fixation cross subtending 0.8 × 0.8°.

Each trial consisted of two arrays of dots, in which one array served 
as reference with a numerosity constrained to be of either 16 or 32 dots. 
The numerosity of the other array was systematically varied according 
to the numerosity of the reference array. If the reference array contained 
16 dots, the numerosity of the other array ranged, with equal probability, 
from 12 to 20 dots. If the reference array contained 32 dots, the 
numerosity of the other array ranged, with equal probability, from 24 to 
40 dots. This experimental design resulted in 8 distinct tested large/
small numerosity ratios, that is, 1.063, 1.067, 1.125, 1.143, 1.188, 1.231, 
1.250, and 1.333. To counterbalance the influence of physical/sensory 
factors covarying with numerosity, we  used the Matlab toolbox 
CUSTOM (De Marco and Cutini, 2020), such that both arrays had 
equal dot density in a random 50% of trials, and covered an equal total 
surface area in the other 50% of trials.

An important methodological note is in order about the use of 
this specific software for stimuli generation. As is well-known, a 
number of continuous variables naturally covary with numerosity 
when expressed non-symbolically. For instance, a larger amount of 
dots occupies a larger space area, has a greater total surface and a 
greater convex hull, such that one might argue — as done by some in 
the literature (e.g., Leibovich et al., 2017) — that a dot-comparison 
task does not tap into number processing, but into the detection of 
some combination of continuous variables. However, the software 
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CUSTOM (De Marco and Cutini, 2020) provides a state-of-the-art 
solution for decorrelating numerosity and perceptual variables. 
Density control is a sophisticated aspect of the algorithm, as it goes 
beyond traditional density measures by introducing an innovative 
metric based on inter-item spacing. The algorithm’s incorporation of 
randomness implies that when the same input parameters are used, 
all generated images will exhibit precisely identical visual features, 
despite appearing visually different from one another. The constraints 
implemented in CUSTOM are of geometrical nature, indicating that 
the algorithm is completely unbound by any theoretical perspective. 
In addition, to further minimize the chance of the presence of either 
sensory or response biases induced by our stimuli, we generated a set 
of 1,280 pairs of arrays of dots for each participant and randomly 
sampled 192 pairs of dot arrays that were displayed on separate 
experimental trial, organized in 12 blocks of 16 trials each.

Participants were instructed to indicate the side (“left” vs. “right”) 
of the array of larger numerosity by pressing a spatially corresponding 
key of the computer keyboard (“A” for left and “L” for right). The arrays 
remained on the screen until participants made their response within 
a maximum interval of 2 s. A short practice phase composed of 16 
trials preceded the experimental phase.

3 Results

3.1 Change detection task

Mean proportions of correct responses were 0.95 for set-size 2, 
0.91 for set-size 3, and 0.80 for set-size 5. Individual accuracy 
proportions were submitted to an ANOVA with set-size (2, 3, and 5) 

FIGURE 1

Schematic illustration of the sequence of events on one trial of the change detection task. Participants were instructed to maintain gaze at fixation (+) 
and memorize the colors of a varying number (2–5) of squares (memory array) displayed for 150  ms. After a blank interval of 900  ms, a test array was 
displayed that could be identical to the memory array or, as is the case illustrated in the figure, a change in color occurred for one square. The test 
array remained in view until response detection.

FIGURE 2

Example of the stimuli in the dot-comparison task. Participants were instructed to maintain gaze at fixation (+) and press, within a maximum interval of 
2  s, one of two buttons to indicate the side (left vs. right) of the dots array of larger numerosity. The stimuli remained in view until response detection.
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as a within-participant factor. The results revealed a significant 
difference in accuracy across set-sizes [F(2,80) = 209.4, 𝜂2

p = 0.840, 
p  < 0.001]. Post-hoc comparisons were conducted via three 
independent t-tests using the false discovery rate (FDR; Benjamini 
and Hochberg, 1995) correction for multiple comparisons. All t-tests 
yielded significant results, reflecting the fact that accuracy for set-size 
2 (0.95) was higher relative to accuracy at set-size 3 [0.91; t(40) = 9.3, 
p < 0.001], and accuracy at set-size 5 [0.80, t(40) = 14.3, p < 0.001], with 
these two latter accuracy values also differing from each other 
[t(40) = 15.5, p < 0.001].

The individual average number of colors memorized at each 
set-size was estimated in terms of K, which was calculated using 
Pashler’s (1988) formula:

 

ˆ
ˆ

ˆ1

ˆ fK hN
f

 −
=  − 

where ĥ  and f̂ are the observed hit and false alarm proportions, 
respectively, and N is the set-size.

Individual K values were submitted to an ANOVA with set-size as 
a within-participant factor. The results revealed a significant difference 
in memory capacity across set-sizes [F(2, 80) = 128.6, 𝜂2

p  = 0.974, 
p  < 0.001]. Post-hoc comparisons were conducted via three 
independent FDR-corrected t-tests. All t-tests yielded significant 
results, reflecting the fact that K at set-size 2 (1.9) was smaller relative 
to both K at set-size 3 [2.8; t(40) = −42.4, p < 0.001], and K at set-size 
5 [4.4, t(40) = −31.4, p < 0.001], with these two latter K values differing 
from each other [t(40) = −42.9, p < 0.001].

To inspect whether our data met the criterion for K construct 
validity proposed by Balaban et al. (2019), we checked whether K 
correlated across each pair of set-sizes. Balaban et al. (2019) argument 
for this check was that if K at each set-size validly estimates the 
number of stored colors in visual working memory, then K at each 
set-size should be predictive of (i.e., correlate with) K at each other 
set-size. As is apparent in Figure 3, K values in the present context met 
this criterion (Pearson’s rs reported in the insets).

Additionally, we estimated d’ (Green and Swets, 1974) to inspect 
the memory strength (i.e., signal quality and discriminability) of visual 
working memory representations. d’ values reflect the individual 
capacity to differentiate between remembered and non-remembered 
items, thereby capturing the ability to distinguish between these two 
states of visual working memory representations. To calculate d’, 
we used the following formula:

 ( ) ( )ˆ ˆhd Z Z f=′ −

where ( )ˆZ h  and ( )ˆZ f  are the Z-score of the hit rate and of the false 
alarm rate, respectively. As in Balaban et al. (2019), d’ decreased as the 
set-size increased (d’ at set-size 2 = 3.53; d’ at set-size 3 = 2.85; d’ at 
set-size 5 = 2.01), indicating a progressive decrease in memory signal 
strength as set-size increased.

The progressive increase of mean Ks as set-size was increased 
could suggest that K values at set-size 5 did not reflect the expected 
plateau of maximum memory capacity for all participants. To check 
for this possibility, we simulated K values for an artificial set-size 6, 
and inspected whether this simulated K would exceed the real K value 

observed at set-size 5. In order to predict K at set-size 6, we fitted four 
linear polynomials to a subset of moments of the distribution of K 
values observed at set-sizes 2, 3, and 5, namely, mean (1.9, 2.8, and 4.4, 
respectively), standard deviation (0.09, 0.16 and 0.41, respectively), 
skewness (−1.41, −0.81, and −0.42, respectively), and kurtosis (4.1, 
3.0, and 1.9, respectively). Based on these values, we generated 10,000 
random distributions of 41 (equal to the participants’ numerosity) 
artificial K values using the function ‘rpearson’ of the PearsonDS 
(Becker and Klößner, 2023) package in R (R Core Team), after 
constraining the range of possible set-sizes from 0 to 6. The density 
plots of the real and simulated Ks (averaged across 10,000 artificial 
values) for each set-size are shown in Figure 4. The simulated data for 
set-size 6 showed that a minority of participants did not in fact reach 
their individual maximum memory capacity at set-size 5. Importantly, 
however, the density plot for set-size 6 is clear in indicating that, in the 
present artificially generated scenario, most participants would have 
reported a K value peaking around a median K value of 5.03, implying 
that at least half of the participants had reached their maximum visual 
working memory capacity at set-size 5.

3.2 Dot-comparison task

Individual Weber fractions (ω) were calculated as an index of each 
participant’s numerical acuity. The computation of this parameter was 
based on the proportion of correct responses at each numerosity ratio, 
using the formula proposed by Piazza et al. (2004):
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where Plarger is the probability of responding larger on a trial on which 
a reference dot array of Nref numerosity (varying between 16 and 32) 
had to be compared with a dot array of N numerosity, and erf is the 
error function.

Overall, participants showed an average ω value of 0.20 (SD = 0.07, 
data fit: R2 = 0.81, SD = 0.14). Given a smaller ω indicates greater acuity in 
discriminating between dot numerosities, we reversed the (somewhat 
counterintuitive) relationship by analyzing and plotting numerical acuity 
values as 1 – ω, such that a greater 1 – ω value indicates greater acuity. 
Additionally, we  independently estimated ω for trials on which the 
reference frame included 16 dots and on which the reference frame 
included 32 dots, finding ω values that did not differ from ω computed 
considering all trials (mean = 0.22, SD = 0.09; mean = 0.19, SD = 0.08, 
respectively), resulting also from comparable fits (R2 = 0.85, SD = 0.12; 
R2  = 0.85, SD = 0.11, respectively). To evaluate the reliability of ω, 
we correlated individual ω between trials varying in reference frame dot 
numerosity (16 vs. 32) finding a significant result [r(39) = 0.67, p < 0.001].

3.3 Correlation between visual working 
memory capacity and numerical acuity

We conducted a correlation analysis between individual values of 
numerical acuity and the maximum K reached at set-size 5, after 
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ascertaining no participant reached a maximum K value at smaller 
set-sizes. Given the expected null result based on the work of Piazza 
et  al. (2011), we  computed the Bayes factor (Bf01) using a beta 
distribution as prior with 1 3/  scale so as to substantiate an expected 
higher likelihood of the null hypothesis (i.e., absence of a correlation 
between visual working memory capacity and numerical acuity) 
against the alternative hypothesis (i.e., presence of a correlation 
between visual working memory capacity and numerical acuity). The 
choice of this prior distribution, often defined as “wide” (e.g., Ly et al., 
2016), was made so as to allow us to consider every possible 
correlation value without constraining the analysis to a predetermined 
range of correlation values. The scatterplot with the values are shown 
in Figure 5, with Pearson’s r and the Bayes factor reported in the insets. 
Based on a standard approach to hypothesis testing, the results were 
clear-cut in showing absence of a correlation between visual working 
memory and numerical acuity. Furthermore, the Bayes factor 
supported these results, suggesting that the evidence in favor of the 
absence of a correlation for both the present tests was ‘substantial’ 
(Jeffreys, 1939).

4 Discussion

Our investigation aimed to establish evidence for the relationship 
between working memory capacity and numerical acuity. 
We  implemented a particularly stringent test, eliminating possible 
confounds between numerosity and different analogical dimensions and 
preventing participants from using irrelevant strategies to solve the tasks. 
First, we used timing parameters in the design of the change detection 
task to discourage participants from foveating on individual items, 
engaging in verbal rehearsal, and/or employing idiosyncratic strategies. 
Second, we generated the dots in the numerical acuity task such that 
numerosity was not correlated with perceptual variables. Furthermore, 
we employed a more appropriate formula, as proposed by Pashler (1988), 
to calculate estimates of working memory capacity (i.e., Ks). These 
methodological choices ensured that our measurement of working 
memory capacity was aligned with current theoretical frameworks and 
provided the most rigorous possible measure of participants’ capacity.

Importantly, we did not find a significant correlation between 
these psychophysical estimates of working memory capacity (K) and 

FIGURE 3

Correlations between individual Ks computed for different set-sizes. (A) Set-size 2 and set-size 3; (B) set-size 2 and set-size 5; (C) set-size 3 and set-
size 5. The lines on each plot represent the estimated regression lines.

FIGURE 4

Frequency distributions of real (red, blue, and green, set-size 2, 3, 5, respectively) and simulated K values (black, set-size 6).
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numerical acuity (ω). To bolster the statistical support for our null 
result, we conducted a Bayesian analysis. This analysis framework 
offers valuable insights for interpreting evidence in favor of the null 
hypothesis. Incorporating a Bayesian analysis in our study provides 
crucial insight. It acknowledges that a null result can be meaningful, 
serving as evidence not compatible with the presence of a correlation. 
By showing that the strength of the evidence favoring the null 
hypothesis is substantial, our study excludes alternative, theoretically 
less relevant, explanations for the null results such as lack of 
statistical power.

While we  found a null correlation between working memory 
capacity and numerical acuity, it is important to note that 
psychophysical effects separately indexed by these distinct measures 
were successfully detected after double-checking their reliability. 
Values of numerical acuity were highly correlated across levels of 
absolute reference numerosity. K values were also highly correlated 
across memory array set-sizes. After checking for these measures’ 
reliability, we observed a significant difference in working memory 
capacity estimates among participants when memorizing an 
increasing number of items (i.e., 2, 3, or 5 items), in the form of a 
progressive increase in K values as the set-size increased. In addition, 
as the set-size increased, there was a decrease in d’ values, reflecting a 
progressive decline of the ability to reliably differentiate between 
remembered and non-remembered items. In the dot-comparison task, 
we assessed the precision of numerical approximation (i.e., numerical 
acuity) using the internal Weber fraction (ω). The average ω value of 
0.20 exhibited by our participants indicates good numerical 
discrimination ability, reflecting a generally high acuity in 
discriminating between quantities. An unexpected result was observed 
when simulating K for a hypothetical set-size of 6. We did this in order 
to ascertain that K values at set-size 5 truly reflected the maximum 
working memory capacity for all participants, and that no further 
increase in K would be  found at set-size 6, even for a subset of 
participants. However, the comparison between K values at set-sizes 
5 and 6 revealed that, although the mean K at set-size 6 amounted to 
5.03, some participants were not at capacity with set-size 5, implying 

that our change detection design was perhaps suboptimal to detect a 
memory plateau at the largest (not simulated) set-size. As a partial 
justification, we replicated the design of Fukuda et al. (2015), who 
tested 495 participants. These authors found that K values plateaued 
at 3 at set-size 4, with K eventually decreasing at larger set-sizes. In 
light of this result and the particularly large sample size in Fukuda 
et al.’s (2015) study, our choice of set-size 5 was aimed at determining 
a K value that reflected a memory plateau. Since Fukuda et al. (2015) 
study was based on a much larger sample size than ours, we deem it 
quite unlikely that a zero correlation between working memory 
capacity and numerical acuity at set-size 5 would have been obtained 
and become significant, had we used a set-size 6 (or larger).

The absence of a correlation between working memory capacity 
and numerical acuity holds important theoretical implications. It 
suggests that these cognitive processes rely on distinct mechanisms 
and, likely, distinct neural networks. The observed independence 
between psychophysical estimates of working memory capacity and 
numerical acuity may support the notion of a modular cognitive 
architecture, where specialized subsystems carry out different 
functions. It also raises the possibility of a hierarchical organization, 
with working memory being hierarchically superior in the human 
cognitive architecture to a lower-level numerical approximation ability 
that is likely to be a reflection of a sensory routine. This proposal is 
compatible with models like that of Burr and Ross (2008), based on a 
study showing that, as is typical for a range of physical signals in all 
sensory modalities, numerosity approximation is subject to habituation. 
Burr and Ross (2008) had subjects habituate for 30 s to two arrays of 
items of different numerosity displayed to the left and right of fixation, 
followed by two equinumerical arrays in the same position. Strikingly, 
subjects consistently underestimated the array displayed in the same 
position as the habituating array of larger numerosity and overestimated 
the other. The sensory nature of the visual signal that ultimately 
determines numerical acuity may also provide a novel perspective on 
the absence of a correlation between numerical acuity and visual 
working memory. Specifically, visual working memory is a multi-
faceted construct in which multiple factors contribute to its known 
limitations. A plethora of studies focusing on an established ERP 
hallmark of information maintenance in visual working memory, i.e., 
the sustained posterior contralateral negativity (or SPCN; Lefebvre 
et al., 2011; also known as contralateral delay activity, or CDA; Luck 
and Vogel, 2013), have long converged on the idea that two factors are 
key in modulating visual working memory efficiency. One is capacity, 
broadly defined as the amount of space used to store information and 
maintain it in an active state. Typically, visual working memory 
capacity is held to be  indexed by amplitude increments of SPCN 
activity (i.e., the net increment in negativity resulting from subtracting 
the ipsilateral activity detected at parietal electrodes from the 
contralateral equivalent) proportional to the set-size of a memory array 
in change detection tasks (Luria et al., 2010). Critically, however, SPCN 
amplitude variations also capture a second factor, namely, attention 
control efficiency. This is supported by studies showing that individuals 
with particularly high K values show SPCN amplitude increments 
when presented with information that is relevant for the task at hand, 
but not when they are presented with irrelevant, and potentially 
distracting, information. In striking contrast, individuals with low K 
values, besides a generally attenuated SPCN response to memory load 
compared to high-K individuals, display SPCN amplitude increments 
both when presented with relevant and irrelevant information (e.g., 

FIGURE 5

Scatterplot of individual numerical acuity (NA) values in the dot-
comparison task and maximum K values in the change detection 
task. Pearson’s r and the Bayes factor of the correlation analysis are 
reported in the inset.
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Vogel et al., 2005). This strongly suggests that visual working memory 
capacity is strictly intertwined with selective attention, in that, contrary 
to low-K individuals, high-K individuals are endowed not only with 
more capacity, but also with more efficient attention control for 
selecting the type of (relevant) information that is ultimately stored in 
visual working memory. This fact is all the more important when 
seeking to make sense of the absence of a correlation between visual 
working memory and numerical acuity. If we, like others, hypothesize 
that an approximate sense for numerosity is a sensory primitive in 
perception, much like, e.g., color, orientation, and motion, then 
numerosity is a signal that is embedded in early forward volleys of 
visual information flowing from posterior to anterior areas and, as 
such, is more than likely processed pre-attentively and unselectively 
(cfr., Lamme and Roelfsema, 2000). More work will be required to test 
this specific hypothesis, based on the rationale that numerical acuity 
should not vary as a function of the availability of attentional resources. 
One prediction that future work should address is that numerical 
acuity ought not to be impacted by an attentional blink (Raymond 
et al., 1992; see also Dell’Acqua et al., 2012) when a dot-comparison 
array is displayed as the second target trailing a first target at short 
intervals in rapid serial visual presentation. This demonstration would 
make a nice tie with analogous demonstrations provided for other, 
putatively sensory-driven, dimensions (some reviewed by Cohen et al., 
2012). Even more critically, numerical acuity could be estimated in a 
dot-comparison task implemented as the second task of a psychological 
refractory period design (PRP; Pashler, 1994), and proved to 
be unaffected by task overlap, in analogy with demonstrations provided 
for different, pre-attentively processed, sensory information (e.g., Lien 
et al., 2024).

If numerical acuity and visual working memory are separate 
systems, then they are also likely implemented in distinct neuronal 
substrates in the adult brain, and this may seem at odds with findings 
pertaining to the anatomical and functional organization of the brain 
processes engaged by these abilities. Neuroimaging studies exploring 
the hemodynamic correlates in change-detections tasks have long 
pointed to posterior regions of the dorsal pathway, the intra-parietal 
sulcus (IPS) in particular, as a core hub in the working memory 
maintenance of visual input. Relative to other areas along the fronto-
parietal, or dorsal, pathway, whose activity increases linearly even for 
set-sizes larger than maximum K, activity in IPS increases up to 
set-sizes equal to maximum K, and plateaus thereafter. Together with 
analogous results of EEG explorations of posterior activity in change 
detection tasks (e.g., Vogel and Machizawa, 2004), this pattern of IPS 
activity has been taken as a hallmark of the involvement of IPS in the 
encoding and maintenance of visual working memory representations 
(Todd and Marois, 2004, 2005; Xu and Chun, 2006; Robitaille et al., 
2010; Cowan et al., 2011; Brigadoi et al., 2017). Investigations of the 
hemodynamic correlates of numerosity processing have indicated IPS 
as a core hub also for numerical cognition (Piazza et al., 2004, 2007; 
Arsalidou and Taylor, 2011). More specifically, IPS neurons have been 
shown to be organized in topographical maps of numerosities (Harvey 
et al., 2013). This neuroanatomical overlap of the cortical regions 
involved in visual working memory and numerosity processing may 
subtend a common functional scaffolding for representing both 
numbers and visual input in working memory. The dorsal pathway is 
primarily responsible for the processing of spatial information by the 
adult brain, likely for visuo-motor mapping operations subserving 
action (Milner and Goodale, 1995). Of import, the semantics of 
numbers has been hypothesized to be inherently spatial (e.g., Nieder 

and Dehaene, 2009; Cutini et al., 2014; Leibovich et al., 2017; Basso 
Moro et al., 2018, for a review) and information that is ultimately 
necessary for the generation of visual working memory traces is also 
spatial (e.g., Courtney et al., 1996; Harrison et al., 2010; Pertzov and 
Husain, 2014; Cai et al., 2019).

The present results can however be reconciled with the hypothesis 
of distinct neural substrates for visual working memory and numerical 
acuity by referring to a particularly recent set of findings suggesting 
that IPS is not the sole cortical region populated by neurons tuned to 
numerosity. Kutter et al. (2018) recorded activity from neurons in the 
mid-temporal cortex of neurosurgical patients involved in a 
calculation task requiring addition or subtraction of quantities 
expressed symbolically (i.e., digits) and non-symbolically (i.e., arrays 
of dots) and showed selective tuning of these neurons to specific 
numbers in either format. The population of neurons tuned selectively 
to numerical values expressed as digits were largely segregated from 
the population of neurons tuned selectively to numerical values 
expressed as arrays of dots. That is, neurons in the bilateral 
mid-temporal lobe coded either the numerosity of arrays of dots or 
the semantics of digits, but not both. Neurons with properties akin to 
IPS neurons have been described by Cai et al. (2023) in a 7-T fMRI 
exploration using a paradigm similar to that used by Kutter et al. 
(2018). Like IPS neurons, neurons organized in topographic maps 
tuned to numbers expressed both symbolically and non-symbolically 
have been found in the temporal-occipital cortex. Via the 
parahippocampal cortex, activity in these cortical areas is likely to 
provide numerosity information to IPS for the generation of semantic 
codes for numbers (Kutter et al., 2018). The widespread involvement 
of large portions of the posterior visual cortex up to and including 
frontal regions seems to be the rule rather than the exception, even 
when numbers must be processed in tasks like subitizing and visual 
exact enumerations (Demeyere et al., 2012), with some of these areas 
showing an interesting overlap with areas controlling visuo-spatial 
attention shifts (Sathian et al., 1999). In general, therefore, IPS may 
be a cortical region that two particularly extended fronto-parietal 
networks, one subserving visual working memory (e.g., Ungerleider 
et al., 1998), the other number perception (e.g., Nieder and Dehaene, 
2009), share, without, however, necessarily implying any form of 
informational cross-talk between them. These anatomical 
considerations invite a final note of caution with reference to the 
generalizability of the present results to dot-comparison tasks using 
different numerosities than those used in the present study. In the 
present dot-comparison task, participants were presented with 
displays including 12–40 dots. A patient recently described by Anobile 
et al. (2020), who suffered an extended cortical insult as a result of 
hypoxic brain injury, displayed a performance in a dot-comparison 
task that was comparable to that of controls for numerosities of 12–16 
dots, and a dramatically impaired performance for both smaller (i.e., 
in the subitizing range) and larger (64–128) numerosities. Anobile 
et al. (2020) have taken this neuropsychological pattern to reflect the 
existence of three distinct systems uniquely tuned to distinct 
numerosity ranges, one of which (i.e., the intermediate system) 
appears to be specifically involved in processing dot numerosities that 
coincide with those classically tested in neurologically intact 
participants, as we did in the present context. At the most general 
level, this indicates that the ability to process numerical quantities is 
unlikely to be a monolithic construct, raising possible questions about 
the specific aspect of number processing that appears to be dissociated 
from visual working memory (e.g., Anobile et  al., 2019). More 
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specifically, however, a single case report may not be  perhaps a 
sufficiently solid empirical ground to question the generalizability of 
the present results. It is clear that this note of caution ought to be taken 
into serious consideration, should reports of cases like that described 
by Anobile et al. (2020) increase following their seminal observation.

In conclusion, our study provides a refined and reliable examination 
of the relationship between working memory capacity and numerical 
acuity. The independence observed between these cognitive processes 
— suggested by the absence of a correlation between the specific 
psychophysical measures used in the present empirical investigation — 
deepens our understanding of the boundaries and interactions of 
working memory within the broader cognitive system.
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