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People can use their sense of hearing for discerning thermal properties, 
though they are for the most part unaware that they can do so. While people 
unequivocally claim that they cannot perceive the temperature of pouring 
water through the auditory properties of hearing it being poured, our research 
further strengthens the understanding that they can. This multimodal ability 
is implicitly acquired in humans, likely through perceptual learning over the 
lifetime of exposure to the differences in the physical attributes of pouring 
water. In this study, we  explore people’s perception of this intriguing cross 
modal correspondence, and investigate the psychophysical foundations of 
this complex ecological mapping by employing machine learning. Our results 
show that not only can the auditory properties of pouring water be classified by 
humans in practice, the physical characteristics underlying this phenomenon 
can also be classified by a pre-trained deep neural network.
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Introduction

The nature of temperature perception and its ties to the physics underlying perceived 
warmth and coolness has a long and elaborate history. The ancient Greek Democritus proposed 
a conception of heat and cold based on the presence and amount of spherical fire atoms in the 
air around us (Berryman, 2004). Following this, the perceived sense of heat was described 
through the correlation of the phenomena of heat or coolness with the presence or lack of a 
substance known as phlogiston, and equated with the flow of a fluid substance called caloric 
(Cajori, 1922). To the present day, the study of thermal properties remains central as more and 
more comes to be understood about the actual physical properties underlying what we perceive 
to be heat and cold. And yet even today, regarding precisely how we perceive temperature and 
what it is that is being perceived, the narrative is not nearly so unequivocal.

We gain knowledge about the world through our senses, and there is a timeless delicate 
balance between how much of our conscious perception is written into our neural makeup 
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like a blank slate from sensory experience with the world and how 
much is hardwired into our brain from birth (Locke, 1847). The classic 
view of the senses was one of strict division between them, with 
information coming from the ears being perceived in the auditory 
cortex in the brain, information from touch being perceived in the 
sensory cortex, and so on, with the corresponding routes being largely 
distinct all the way. It is now becoming clear that this understanding 
is partial, if not mistaken, as connections continue to be unsurfaced 
between the senses, for example, between vision and audition 
(McGurk and MacDonald, 1976; King, 2008; Heimler et al., 2015; 
MacDonald, 2018), olfaction and gustation (Auvray and Spence, 2008; 
Spence, 2013, 2015), and so on. The sensations of heat and cold are 
generally related to somatosensory perception, and consist of a direct 
tactile interaction with warm or cold substances, that brings about the 
feeling of hot and cold on our physical body. Temperature perception 
is considered to be more vague than other sensory experiences. Unlike 
other senses, the sense of temperature does not have a specific 
dedicated sensory organ. While sight or hearing can be attributed to 
distinct organs (eyes, ears), the sense of temperature relies on 
thermoreceptors that are widely distributed across the skin. 
Furthermore, the neurological areas underlying thermal sensation are 
widespread in the brain, and no conclusive primary thermal cortex or 
area has been recognized (Oi et al., 2017). Thus far, different regions 
in the insula have been suggested as the best candidates, though the 
insula is also responsible for various sensations, including pain (Tseng 
et al., 2010; Peltz et al., 2011; Segerdahl et al., 2015).

Different forms of “thermal senses” are prevalent throughout the 
animal kingdom, for example snakes are able to “see” and identify 
their prey by it’s body heat (Campbell et  al., 2002). In this study, 
we took a novel, multifaceted approach to study the multisensory 
nature of thermal perception in humans and the cross-modal 
correspondences involved in this form of perception. Several cross-
modal correspondences related to temperature have been identified 
in humans (Spence, 2020). For example, the hue heat hypothesis 
correlates between the tactile sense and the sense of vision, 
representing the effect of different colors on subjectively perceived 
temperature (red-warm, blue-cold) (Mogensen and English, 1926; 
Ziat et  al., 2016). Another correspondence links temperature and 
auditory pitch (cold-higher pitch) (Wang and Spence, 2017; 
Spence, 2020).

Previous related research

We chose to add to the body of work investigating a relatively 
unexplored (and unexpected) connection - the connection between 
the physical temperature of pouring water and their recognizable 
auditory properties in different temperatures (Agrawal and Schachner, 
2023). This multisensory connection is particularly intriguing as this 
correspondence may come about due to perceptual learning through 
passive daily exposure to liquids of different temperatures. Several 
research groups have previously conducted studies into various 
behavioral aspects of this phenomenon. Velasco et al. (2013), asserted 
that humans can hear the difference between hot and cold liquids 
pouring, yet they did not attempt to solve the question of how. They 
also posit that spectral analysis alone cannot account for the difference. 
A later study showed that the sounds made by pouring water alone are 
sufficient for individuals to classify the water as hot or cold across 

different vessel types (Peng and Reiss, 2018). Using the same 
recordings, another study suggested that this precise ability is 
dependent upon prior exposure (Agrawal and Schachner, 2023). By 
comparing the results of children with those of adults, they showed 
that correlating the sound of pouring water with hot or cold is not 
innate but acquired by the age of 6 (Agrawal and Schachner, 2023). 
Yet, there is an ongoing controversy regarding the mechanism 
underlying this. While this ability is not innate (Agrawal and 
Schachner, 2023), classic acoustic features have not shown a conclusive 
characterization of hot versus cold pouring water sounds (Peng and 
Reiss, 2018). Ultimately, the prior research has concluded that “none 
of the theory gives an explanation for the temperature dependence in 
these aspects. In particular, though frequency terms are predicted, 
their amplitudes are not, yet these amplitudes exhibit the strongest 
dependence on temperature.” Moreover. they admit that their “work 
highlights the limitations in theory as well as suggesting directions 
towards more significant advances (Peng and Reiss, 2018).”

Motivation for the study – replication and 
expansion of previous research

This is where the present study comes in. Through a two part 
behavioral study, we wished to corroborate first and foremost, the 
findings indicating that humans are able to differentiate between hot 
and cold liquids (specifically water) not only through touch but also 
by audition. Furthermore, we  wished to weigh in on the debate 
regarding whether the ability is innate or acquired and investigate 
the question of people’s explicit awareness of the different thermal 
properties represented in the water sounds. Consistent repetition 
of  findings concerning this ability are particularly interesting in 
themselves as people are highly exposed to these sounds in their daily 
lives, and yet they are seemingly unaware of how and whether they 
perceive these properties.

Moreover, and expanding upon previous work, we  aimed to 
establish whether there is a basis for cross modal correspondences (as 
one has not yet been identified) by testing whether thermal properties 
can indeed be shown to be physically encoded in the relevant sounds. 
Finding such physical encoding of the thermal properties would 
strengthen the understanding that humans are actively perceiving the 
difference. But what is it about the sounds that allows for such a 
differentiation? We chose to address the problem from a computational 
angle under the hypothesis that the successful and consistent 
classification of pouring water sounds at different temperatures by a 
machine learning algorithm would indicate a physical mapping of 
these thermal properties in sound. If there are differences in the 
physical attributes between different temperatures, yet they do not 
allow people to consciously perceive the different temperatures of the 
sounds of water being poured (though they can), it provides an 
additional cognitive insight. Bringing together machine learning and 
cognitive science commonly involves either deriving inspiration from 
cognitive mechanisms to improve computational performance (Adeli 
and Zelinsky, 2018; Amerineni et al., 2019; Hu et al., 2019) or using 
DNNs to try and implement suggested models of the human brain 
(Kell and McDermott, 2019; Drakopoulos et al., 2021; Hausmann 
et al., 2021). Here, we suggest a third approach in which machine 
learning is utilized to address the current need for paradigms that 
build up from observations in the real world. For this purpose, 
we  employed a pre-trained deep neural network (DNN) for 
characterizing recordings of water at different temperatures being 
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poured. In addition to the machine learning algorithm, to further 
substantiate and ground the difference in the physical mapping, 
we  employed computational analysis of the auditory features, 
comparing those of the hot and cold recordings.

Methods

Participants

We surveyed 84 participants in the multisensory intuition 
questionnaire administered online (Age: 33.8 ± 2.79, average ± SD; 54 
females, 30 males). A separate group of 53 participants was recruited 
for the behavioral auditory classification task (Age: 30 ± 2.76; 19 
female, 22 male also conducted online). Of these, 12 were excluded 
due to failure to perform or complete the task (they did not complete 
all trials, or did not respond in over 10% of the trials). Both studies 
were approved by the Reichman University IRB committee.

Questionnaire
We designed an online questionnaire to assess people’s subjective 

intuitions concerning their daily experiences with multisensory 
experiences. Our main purpose was to assess the naive intuition of 
participants regarding their ability to distinguish the temperature of 
poured water through sound (“Can you  tell if water that is being 
poured is hot or cold only by hearing it?”). To ensure that participants 
do not have a contextual and positive bias to the question, we included 
seven additional dummy questions. Similarly, these questions probed 
participants’ self-assessment of their abilities to perceive information 
using an atypical sensory modalities (E.g., “Can you tell if a cup of tea 
contains sugar or not only by smelling it?,” “Can you tell if a fabric has 
a smooth texture or a rough texture only by seeing it?”). The 
questionnaire was presented using Google Forms.

Auditory classification task
In this online experiment, we measured participants’ abilities to 

classify the temperature of pouring water through sound. First, 
we  instructed participants to wear headphones and adjust their 
volume to clearly hear an audio sample of water being poured at 35 
degrees Celsius (the temperature was disclosed to participants). This 
sample was used as an auditory calibration and was not part of the 
experimental stimuli. We implemented a 2-alternative forced choice 
(2AFC) paradigm in our experimental block. In each trial, 
participants listened to a single audio recording of poured water, and 
had to respond if they perceived it to be hot or cold using their 
keyboard arrows. The block included a total of 25 trials, 20 of which 
were testing trials while the remaining five were controls aimed to 
make sure participants were attentive and not merely guessing. Each 
test trial included one of four possible conditions corresponding to 
audio recordings of water temperatures at 5oC, 10oC, 85oC and 90o 
C. Each condition was repeated five times in a randomized order. 
During the five control trials, no sound was heard, and the 
participants were instructed to indicate a direction using their right 
and left keyboard response arrows according to the instructions 
presented on the screen. The experiment was written in the Unity 
software (Unity Technologies, version 2020.2.1f1) and presented 
through the online platform Simmer.io (Simmer Industries) 
(Figure 1).

Stimuli
The acquisition process of the stimuli (water of different 

temperatures being poured) was highly standardized. The recordings 
were carried out by one person throughout the acquisition process. 
The water was poured into one cup throughout, that was kept at room 
temperature. Prior to pouring, the water temperature was verified to 
be no more than 0.5 degrees celsius (C) from the desired recorded 
temperature. A mark was used to ensure that pouring of water 
commenced from the same initial point for all temperatures, and the 
pouring rhythm was controlled using a fixed slope and measuring 
time of 5s to reach the halfway mark of the cup. The recordings were 
carried out in an acoustically isolated room with a Zoom H6 6-Track 
Portable Recorder, in stereo with a sampling rate of 44.1 kHz and a bit 
depth of 24 bits, and were stored in .wav file format.

Statistical analysis

In analyzing the questionnaire, we measured only the percent of 
“Yes” responses for the question “Can you tell if water that is being 
poured is hot or cold only by hearing it?” In analyzing the 
classification task, all analysis was conducted using Python (pyCharm 
community edition). Participants’ responses for each sound were 
categorized by the percentage of “hot” responses (with the percentage 
of cold responses being complimentary). For within subject analysis, 
we first compared the cold sounds against each other (5 and 10°C), 
and the hot sounds against each other (85 and 90°C). We  then 
compared the group of cold temperatures against the group of hot 
temperatures. While each temperature fits binomial distribution 
criteria with p = 0.5 and there are 10 trials overall, this reaches the 
criteria to approximate a normal distribution. This requirement is not 
met for each temperature alone therefore we used the nonparametric 
Wilcoxon signed rank test. However, This requirement was met by 
combining both cold and hot temperatures and comparing them 
against each other (each group includes 10 votes), so this comparison 
was done using a two-tailed paired t-test. Computational extraction 
of auditory features was performed using the Librosa library in 
Python. Mean values for cold and hot temperatures were calculated 
separately, following which Wilcoxon signed-rank tests were 
performed to compare the mean features between the cold and 
hot temperatures.

Machine learning procedure
In preparation of the stimuli included in the training set, 

recordings were acquired similarly to the stimuli in the behavioral 
experiment, yet pouring of the water continued until the cup was full. 
A total of 32 audio recordings (16 hot, 16 cold) were obtained with an 
average length of 9.2 s (average length for cold recordings 9.41 s ± 0.59; 
for hot recordings 9.06 s ± 0.57). From these 32 files, 15 produced 3 
recordings, while 17 produced 2 recordings, resulting in a total of 79 
audio segments (40 hot, 39 cold).

The test set consisted of recordings prepared by a research group 
from Queen Mary University London (QMUL) (Velasco et al., 2013) 
and included 38 recordings. Nineteen hot recordings of 85°C, and 
cold recordings of 15°C. Recordings were automated from 5 different 
fixed heights in range 34–38.7cm and in fixed lengths of 32s each. 
These were also segmented into four second segments and resulted in 
127 labeled audio segments (64 hot; 63 cold).
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The machine learning classifier was trained using a support vector 
machine (SVM) algorithm, employing a VGGish-based feature 
extraction module, as described in the VGGish GitHub repository: 
https://github.com/tensorflow/models/tree/master/research/audioset/
vggish. The input to the model is an audio segment, and the output is 
the probability that the recording is of hot water (cold is 
supplementary). The probabilities were calibrated using Platt scaling, 
i.e., running logistic regression on the classifier’s scores, and then fit 
to a sigmoid whose parameters represent the training data (Figure 2).

The first step involved transforming each audio segment into a 
Mel Spectrogram (window size of 1,024 samples and hop size of 512 
samples, number of Mel bins 64 - covering the range 125–7,500 Hz). 
The Mel spectrograms were input into the VGGish module for feature 
extraction, producing 512 features per audio segment. We classified 
those features using an SVM classifier with a radial kernel 
(Farhat, 1992).

The model’s hyper-parameters (class weights, regularization, 
kernel type, and scaling technique), were determined through a 
10-fold cross-validation (CV) process (Stone, 1974). Meaning it was 
trained on 90% of the data and tested on the remaining 10%. This 
process was run 10 times each time using a different cut of the dataset 
until all data was part of the test once and the best performing 
parameters were chosen. A data stratification algorithm was applied 
to ensure that segments from a single recording would remain in 
one-fold, thus avoiding data leakage between the train and test sets. 
Once hyperparameters were chosen, the model was fit by training it 
on all of the training data.

The results were evaluated using the area under the receiver 
operating characteristic (ROC) curve. This measures the performance 
of the model using different thresholds on the output probabilities. 

The ROC curve indicates the tradeoff between false positives (FP) and 
true positives (TP). Since the model outputs probabilities, it is possible 
to determine different thresholds for the binary classification of “hot” 
(e.g., if a recording is above 0.5 or 0.75 probability of being hot). 
Hence the area under the curve (AUC) evaluates the overall ability of 
the model to perform an adequate separation between the classes, in 
this case hot and cold, regardless of the chosen threshold. In chance 
level this would be 50%.

For the training set this evaluation was done by averaging the 
performance of a 10-fold cross validation as described above, and for 
the testing set this was evaluated using the fit model.

Results

Participants claimed that they could not classify the thermal 
properties of pouring water (hot vs. cold) based on auditory properties. 
80% of participants who responded to the multisensory intuitions 
questionnaire indicated that they could not differentiate between 
hot and cold pouring water sounds. The subjects were subsequently 
asked to explain their response. Among subjects who responded that 
they cannot tell the difference between hot and cold pouring water 
sounds, many said that there is no difference in sound, while some 
stated that there may be a difference in sound, but it is minimal. 
Among those who responded that they could differentiate, most 
attributed this ability to a physical difference that leads to variations 
in auditory properties. Only one participant claimed to have 
previously noticed the thermal differences represented in sounds. 
He  stated: “I believe I  know those sounds, and I  remember 
them differently.”

FIGURE 1

From left to right – we employed a questionnaire to examine whether people think they can tell if pouring water is hot or cold, the vast majority were 
skeptical. Next, we used recordings of hot and cold water being poured, which were recorded in an acoustic room setting in our lab. We used these 
recordings to assess the capabilities of people to attribute thermal traits to the sound of pouring water in an online 2AFC task. Finally, we used these 
same recordings to train a machine learning model to perform the same classification in order to find out if sound physically encodes the thermal traits 
of pouring water. To avoid potential biases in classification we used an independent test.
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Participants were able to classify the thermal properties of pouring 
water (hot vs. cold) based on auditory properties. Behavioral results are 
displayed in Figure 3. Results for all temperatures were significantly 
different from chance level: 5°C (26% + − 18, r = −4.37, p < 0.0001), 
10°C (31% + − 18, r = −3.23, p < 0.05), 85°C (71% + − 18, r = 4.37, 
p < 0.0001), 90°C (72% + − 18 t = 4.75, p < 0.0001). Following this, 
we tested individual differences, by comparing inter-subjects’ responses 
for rating the hot and cold water sounds. Once we were assured that 
both cold recordings were perceived as similar (w = 0.45, p = 0.65) and 
both hot recordings were perceived as similar (w = 0.09, p = 0.93), 
we  used a two-tailed paired t-test to compare the ratings of each 
subject. This showed highly significant results (t = −6.01, p < 0.0001).

Thermal traits of the auditory properties of pouring water can 
be classified by a pre-trained deep neural network. The DNN was 
trained on data collected by our group and then tested on data from 
an external dataset collected by an entirely different group to ensure 

independence between the training and the testing data. Results on 
the external test set showed 94.5% AUC, representing a high level of 
classification ability. (Figure  4) The mean probability of hot 
recordings was 70% + −30 (n = 64). The mean probability for cold 
recordings was 12% + −14 (n = 63), indicating a clear and distinct 
separation between the two classes. At a later stage, following the 
validation of the network, we applied the deep learning model to the 
recordings used for the behavioral experiment to make sure they 
were not exceptions. Cold recordings’ probabilities were 7% for 5°C 
and 21% for 10°C, as opposed to hot recordings, with 99.4% for 85°C 
and 99.7% for 90°C.

A difference in harmonic properties was revealed by computational 
extraction of auditory features. Of the analyses conducted on the 
extracted auditory features, spectral centroids, zero-crossing rates, and 
mel frequency cepstral coefficients (MFCCs) did not differ 
significantly between cold and hot water sounds. On the other hand, 
chroma features were significantly different between the cold and hot 
water sounds (p < 0.01).

Discussion

This study aims to shed light on the physical underpinnings of 
the cross-modal, multisensory nature of thermal perception in 
humans. The data presented corroborates findings indicating that 
people are able to perceive the thermal properties of water through 
audition. More specifically, they are able to discern between hot and 
cold pouring water by their auditory characteristics. This is despite 
the fact that the overwhelming majority of people claim that they 
cannot make precisely this distinction (indicating that the ability is 
implicitly acquired). By using a different approach - combining a 
pre-trained DNN with training an SVM algorithm followed by 
computational extraction of auditory properties, we succeeded in 
showing that the thermal traits of pouring water are indeed 
manifested in sound.

As the physical attributes underlying humans’ ability to map 
auditory properties of thermal traits have remained elusive, we took 
the novel approach of employing machine learning, more 
specifically a pretrained VGGish DNN, to shed light on this matter. 
Our results, namely the ability of the classifier to delineate between 

FIGURE 2

The model flowchart: audio is truncated into segments of 4s; those segments are represented in a Mel spectrogram, so they fit the input for the 
VGGish net. In the next step the sounds are decomposed using the VGGish feature extractor to a feature vector containing 512 features. These features 
are fed into the SVM classifier, resulting in a probability score that can be translated into a binary result using a threshold.

FIGURE 3

Group “hot” responses in each temperature condition (n  =  41). 
Participants were able to correctly classify above chance level each 
condition temperature by sound alone (two-tailed Wilcoxson signed 
Rank test). Bunching hot and cold conditions separately and 
comparing these, we found that the rate of group “hot” responses 
was significantly higher (two-tailed paired t-test). Asterisks denote 
the significance level of the statistical tests. The black lines indicates 
the paired comparisons between two conditions or the grouped 
cold and hot conditions. Error bars show the standard deviation from 
the mean.
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the hot and cold pouring water sounds to a high degree of accuracy, 
point to a physical manifestation of the thermal traits in audition. 
These findings may strengthen the view that the multisensory link 
between thermal properties and audition is implicitly learned 
through passive exposure and perceptual learning. This conclusion, 
alongside the physical differences we have uncovered between the 
hot and cold pouring water sounds, has several implications and 
raises interesting questions.

The last decade has seen an upsurge in the use of machine 
learning for better understanding observations and phenomena in 
the real world, which are particularly difficult or elaborate to 
explore and subsequently generate predictions. This study aims to 
contribute to this body of knowledge modestly, by showing that 
there is a physical classification of the thermal properties of pouring 
water in auditory properties discernable by a machine learning 
classifier. Previous research had not been successful at achieving 
these aims. Specifically, the present findings support the view that 
machine learning could be utilized for providing insight into the 
current need for paradigms that build up from observation in the 
real world. In addition, this work takes the approach of using 
ecological, complex, multidimensional stimuli in the study of 
perception, an angle that is relatively unexplored in sensory research.

A caveat of this form of study could be that it raises questions 
at a higher level concerning to what extent machine learning 
algorithms can constitute underlying computational models with 
regard to perception and behavior. With regard to perceptual 
learning, specifically in the visual domain, research findings have 
shown physiological and behavioral schemas corresponding to 
those seen in human experiments in trained DNNs (Wenliang and 
Seitz, 2018; Bakhtiari, 2019). On the other hand, it is well known 
that in the visual domain, DNNs are “fooled” into classifying images 
entirely unrecognizable to humans (Nguyen et al., 2015) among 
other well documented phenomena of DNNs being “fooled” or 
misclassifying (Szegedy et  al., 2014; Zhang et  al., 2023). These 
findings, taken together indicate that while DNNs may represent 

perceptual learning processes in humans to a certain extent, the 
question of whether they coincide with the mechanisms taking 
place in humans when taken to interpret the behavioral level 
remains to be determined. This is particularly due to the lack of 
interpretability of current DNNs, which is a limitation of this study. 
While current DNNs allow us to prove that underlying physical 
differences exist, as done in the present study, they do not provide 
the physical correlates themselves. An initial computational 
extraction of auditory features we conducted uncovered a difference 
in harmonic properties, specifically chroma features. Further 
research is thus warranted to provide a more thorough 
understanding of this perceptual phenomenon.

When employing machine learning to link the physical world 
to human perception, an important criterion is desired, namely the 
attainment or corroboration of human performance on the task 
(Kell and McDermott, 2019). Yet, it is commonly observed that 
machine learning algorithms differ from the human performance 
on the task, raising the question of whether and to what extent the 
underlying performance characteristics match (Jozwik et al., 2017; 
Kell and McDermott, 2019). This question remains central in 
machine learning as a whole, as models representing mechanisms 
underlying vision and audition both improve significantly in 
performance (Kell and McDermott, 2019), sometimes even 
outperforming their human counterparts (Geirhos et al., 2021). 
Insofar as machine learning algorithms of the kind used in the 
present research are thought to represent underlying performance 
characteristics faithfully, we feel justified in making the link. In this 
case, we  suggest a correspondence between the findings of the 
machine learning algorithm and human behavior, possibly 
strengthening the conclusion that these findings represent a 
physical manifestation of the thermal traits in audition that are 
perceived by humans. Yet we cannot discern in this case whether 
and to what extent the humans outperform the algorithm or vice 
versa, and such an exploration quantitatively comparing between 
the two classifications would be warranted in future research.

FIGURE 4

Performance evaluation for the model. (Left) This shows the ROC curve that indicates relation between true positive and false positive. The AUC 
provides an estimation on the model’s overall ability to separate the two given classes. This is a common technique that allows the general evaluation 
of the model without setting a specific threshold. (Right) Histogram of probabilities (the output of the model). The x-axis shows the model’s output 
regarding the probability of a recording to be classified as hot, this ranges from 0 – definitely cold, to 1 – definitely hot. For convenience we drew 
recordings of hot pouring water in red and recordings of cold pouring water in blue. This figure demonstrates a successful separation between the two 
classes. We also note that while few hot recordings could be classified as cold the opposite does not occur.
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Future directions

The results of this study warrant a further extension regarding the 
question of to what extent humans are capable of differentiating or 
delineating between the auditory properties of different temperatures. 
A future study could explore the just noticeable difference (JND) of 
temperatures perceived through their auditory properties. Previous 
research into the JND for warm and cold sensations, as represented 
through the tactile modality on the skin when exposed to 
environments at different temperatures, suggests that there is a 
difference between the JND of warm temperatures as compared to 
cold (Choo, 1998). Following our study, it would be interesting to 
explore whether these findings are relevant to the perception of 
temperatures as perceived through audition as well. Our preliminary 
findings suggest that as represented in audition, differences on the 
warm end of the spectrum are better perceived than those on the 
cold end.

Another interesting direction, in light of the implicit perceptual 
learning supported by this research, would be to provide explicit 
training on the correspondence between these thermal and auditory 
properties. From initial research, we have reason to believe that 
with training, the JND can be further decreased, particularly with 
relation to warm temperatures as represented by their auditory 
properties. Following training, it may be possible for humans to 
perceive slighter differences within the range of temperatures. If this 
was indeed proven possible, it would indicate that there is in 
principle auditory information that we are able to use behaviorally 
but we are not aware of, and so do not actively use. This could also 
allow for the creation of new sensory experiences, for example, the 
creation of a sensory transduction system that expands hearing in 
the human range with the sensing of info or ultrasound. In addition, 
these fundamental differences in the auditory properties could 
guide technology connecting infrared sensors to the sounds, 
enabling sensing of thermal properties without disturbing the visual 
system - as is the case with thermal vision devices commonly in use 
at present. While these directions are feasible in theory, there is 
much to explore before such applications can be  applied. The 
finding that people are able to differentiate between the thermal 
properties of pouring water is robust, as it has been replicated by 
numerous studies including our own (Velasco et al., 2013; Agrawal 
and Schachner, 2023), yet generalization of this phenomenon 
remains distant at present. Future research should explore not only 
the nature of the particular auditory properties but also their 
universality with respect to different materials or properties of 
liquids, such as viscosity.

Moreover, these findings can further be explored in the brain by 
conducting neuroimaging studies of people classifying the thermal 
properties of water by their auditory characteristics, with or without 
training. Temperature perception in the brain remains relatively 
poorly defined and understood (Bokiniec et al., 2018), particularly 
with relation to differentiation in theoretical localization of hot vs. 
cold sensation (Aizawa et al., 2019). Prior research conducted in our 
lab has shown that novel topographies can arise in the brain as a result 
of training (Hofstetter et al., 2021). Research such as this supports the 
idea that the development and specializations in the brain are task-
specific, rather than sensory-dependent (Ricciardi et  al., 2014; 
Cecchetti et al., 2016; Amedi et al., 2017; Sathian and Ramachandran, 
2019). Under this interpretation, by employing the principles of 

perceptual learning, it is possible to induce or enhance the formation 
of topographies for features not naturally allotted, through nurture, 
perhaps even those corresponding to novel or enhanced senses 
(Hofstetter et al., 2021). These future directions and explorations can 
have significant implications for our understanding of numerous 
aspects of thermal perception and perception in general, among them 
the evolution of our perceptual processes, the development of these 
processes throughout the lifetime, and more.

In conclusion, this study took a mixed approach to studying the 
nature of temperature perception in humans from a multisensory 
viewpoint. It serves as a stepping stone to elucidating the connection 
between the physical properties underlying the temperature of 
pouring water, and the auditory properties of them that we perceive 
in our daily interactions with water of different temperatures. First 
we replicated prior research indicating that this perceptual ability, the 
“thermal sense,” in humans is acquired without explicit training as 
people are unaware that they acquire this ability, thereby strengthening 
the understanding that it is implicitly learned by a process of 
perceptual learning throughout the lifetime (Velasco et  al., 2013; 
Agrawal and Schachner, 2023). While this prior research, supported 
by our findings, indicates that humans possess this ability, they have 
not been able to shed light on why. Expanding on this body of work 
from a different angle, we showed that these perceptual processes are 
indeed based on an underlying physical foundation, an encoding of 
the thermal properties of water in audition that is classifiable by a 
machine learning algorithm. In addition, we provide a clue as to the 
nature of these properties through a computational analysis of 
auditory features that identified a difference in harmonic properties. 
As opposed to the sterile homogeneous conditions often employed in 
research on perception, this study adds to the growing field of 
exploration into multisensory integration with stimuli having high 
ecological validity, utilizing natural stimuli that are complex and 
multi-dimensional.
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