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A category theory perspective on
the Language of Thought: LoT is
universal

Steven Phillips*

Mathematical Neuroscience Group, Human Informatics and Interaction Research Institute, National

Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

The Language of Thought (LoT) hypothesis proposes that some collections

of mental states and processes are symbol systems to explain language-like

systematic properties of thought. Recent proponents of this hypothesis point to

additional LoT-like properties in non-linguistic domains to claim that LoT remains

the “best game in town” in terms of explanatory coverage. Nonetheless, LoT

assumes but does not explain why/how symbolic representations connect to

other (non-symbolic) formats. The perspective presented here is supposed to

bridge this gap as a duality in a category theoretical sense: (perceptual) data are

projected onto a base (conceptual) space in one direction, and in the opposite

direction, these data are referenced by that space. Accordingly, perception is dual

to conception. These constructions follow from a universal mapping principle

a�ording an explanation for why/how symbolic and non-symbolic formats are

connected: as the “best” possible transformation between the two forms— so

the slogan, LoT is universal. This view also sheds some light on the apparent

pervasiveness of logic-like capacities across age-groups and species, and these

constructions constitute special types of categories called toposes (topoi), and

every topos has an interpretation in first-order logic.

KEYWORDS

Language of Thought, category theory, topos theory, category, topos, product,

subobject

1 Introduction

The Language of Thought (LoT) hypothesis supposes that (some) collections of mental

states and processes constitute symbol systems having a combinatorial syntax and semantics

that is akin to a language: LoT is a symbol system that represents complex entities by

compositions of symbols representing the entities’ constitutents so that syntactic relations

among constituent symbols capture in a structurally consistent manner the semantic

relations among corresponding constituent entities (Fodor, 1975, 2008). Moreover, for

instance, the state of affairs John loves Mary is represented by a composition of symbols

John, Mary and Loves for constituents John and Mary, and their loves relationship that

are composed of a complex symbol Loves(John,Mary) representing John lovesMary. This

situation is distinguished from a different, but related, state of affairs Mary loves John by

the composite symbol Loves(Mary, John) that swaps the positions of John and Mary in

accordance with the exchange of roles. The roles are encoded by the relative position of

the filler symbols, which allows one to infer the lover of the relationship independently of

the particular instance. Symbolic expressions assumedly correspond to physical states in

a consistent way via a physical instantiation mapping (Fodor and Pylyshyn, 1988). Causal

relations between these physical states are supposed to underwrite the inferential relations

afforded by transformation of corresponding symbolic expressions—LoT is realized as a
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physical symbol system (Newell, 1980), analogous to the

instantiation of a programming language with a computer,

and situates within a representational/computational theory of mind

(Wilson, 1999).

A motivation for LoT is to explain systematicity properties of

thought: e.g., why having the ability to represent John loves Mary

and infer that John is the lover in that relationship implies having

the ability to represent Mary loves John and infer that Mary is the

lover in this relationship (Fodor and Pylyshyn, 1988). As a simple

illustration, LoT assumes (atomic) symbols for John and Mary,

John and Mary, an operation that combines those symbols into

strings of symbols, (John,Mary) 7→ John Mary, and an operation

that transforms the string to recover the first symbol as the lover,

as in John Mary 7→ John. Moreover, having representational and

inferential abilities with regard to John loves Mary is supposed to

imply having representational and inferential abilities with regard

to Mary loves John because both involve the same processes.

However, an explanation for systematicity requires more than

simply positing a collection of (atomic) symbols, processes for

constructing complex symbolic representations from those atoms,

and processes for transforming those representations. LoT assumes

that the construction processes are the “canonical” ones affording

all possibly needed combinations (not just some of them) and that

all possibly needed transformations are always in lock-step with

those constructions. These assumptions have led to conclude that

LoT lacks a complete explanation for systematicity in failing to

explain why these assumptions should hold (Aizawa, 2003), i.e.,

LoT suffers from the same type of problem raised for connectionist

(neural network) theory (Fodor and Pylyshyn, 1988). Others,

however, contend that these assumptions are the core principles of

LoT, not ad hoc assumptions (McLaughlin, 2009).

This contention has become more pressing with evidence

of LoT-like properties in more diverse (non-linguistic) forms of

cognition than previously realized (Quilty-Dunn et al., 2023)—

LoTs appear seemingly everywhere in everyone and by extension

some capacity for logic (Mandelbaum et al., 2022). However,

accounting for the emergence of these properties is still a question

for further study (Quilty-Dunn et al., 2023), which depends on

explaining why/how symbolic representations connect to non-

symbolic formats, given the usual distinction between (System 1)

processes that are fast, non-symbolic, and developmentally early vs.

(System 2) processes that are slow, symbolic, and developmentally

late (Kahneman, 2011; Evans and Stanovich, 2013). Category

theory (Awodey, 2010; Leinster, 2014) was invented to compare

mathematical constructions (Eilenberg and Mac Lane, 1945), e.g.,

across algebra and topology, cf. symbolic and spatial representation.

In this vein, we return to a category theory explanation for

systematicity (Phillips and Wilson, 2010) to account for LoT-

like properties and their relationships to non-symbolic systems.

A categorical explanation says that systematicity follows from

universal construction, i.e., a type of “best” solution for the given

situation. For instance, systematicity for John loves Mary pertains

to a universal construction called a categorical product on the

set of atomic symbols, {John,Mary}, i.e., the set of all pairwise

combinations of symbols together with two projection maps

retrieving the first and second symbols. The purpose of the current

study is to apply this approach to bridge the explanatory gap

between symbolic and non-symbolic properties and, in doing so,

begin to address questions about how LoTs (may) differ within and

between species (Mandelbaum et al., 2022). An outline follows:

The perspective presented here is supposed to bridge this gap

as a duality in a category theoretical sense: (perceptual) data are

projected onto a base (conceptual) space in one direction, and

in the opposite direction, these data are referenced by that space.

Accordingly, perception is dual to conception. For a preview, these

maps pertain to fiber bundles and presheaves, respectively, and

their maps are related by universal mapping properties affording an

explanation for why/how symbolic and non-symbolic formats are

connected: as a best possible transformation between formats. An

upshot of this approach is that each additional LoT-like property

also pertains to a universal construction which constitutes a special

type of category called a topos. Every topos has an interpretation in

first-order logic, hence the apparent pervasiveness of a capacity for

logic across age groups and species. A summary of these LoT-like

properties is given next and a category theory account in the section

that follows. Discussion of this view is given in the final section.

This study provides a novel category theory perspective on the LoT

hypothesis. Category theory may seem abstruse to many cognitive

scientists, so the presentation style is informal rather than technical

to facilitate some conceptual intuitions. More technical details are

found in references and Supplementary material, which provides

the background theory pertaining to formal conceptions of LoT

and some further perspective. The central intuition driving this

category theoretical perspective on LoT is that the relations between

representational states, i.e., the maps (also called morphisms or

arrows) of a category, have “shape”, and shape is given by topology,

which affords the common ground for moving between (LoT-like)

symbolic and non-symbolic representational formats.

1.1 Additional LoT-like properties

LoT is usually considered for System 2 (contra, System 1)

cognition. However, other LoT-like properties are also apparent

in non-linguistic domains, including perceptual, social, infant, and

non-human cognition (Quilty-Dunn et al., 2023). Six additional

properties were educed from an analysis of the literature with

a particular focus on visual cognition in the context of object

files (Kahneman et al., 1992) that supposedly store and update

information on external objects over time. The following is a

summary of the six properties (Quilty-Dunn et al., 2023, with the

quoted text from there). Language-like examples are given for their

familiarity with a more detailed connection to object files given in

the next section.

1. Discrete constituents: representations have “distinct constituents

corresponding to individuals and their separable features”. For

example, the representation, Loves(John,Mary) for John loves

Mary has distinct constituents John andMary corresponding to

individuals John andMary.

2. Role-filler independence: “[LoT architectures] combine

constituents in a way that maintains independence between

syntactic roles and the constituents that fill them”: e.g., the

constituents John and Mary represent the same individuals,

i.e., John and Mary independently of their syntactic roles as

subject or object in the loves relation.
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3. Predicate-argument structure: “a predicate is applied to an

argument to yield a truth-evaluable structure”, e.g., it may or

may not be true that John loves Mary.

4. Logical operators: AND, OR, IF, and NOT.

5. Inferential promiscuity: “computational processes that transform

representations with one logical form into representations

with another logical form”. For example, if John is tall and

Mary is tall, John is tall corresponds to transformation from

tall(John) AND tall(Mary) to tall(John).
6. Abstract conceptual content: the capacity to “represent

abstract categories without representing specific details”, e.g.,

representing a concept of chair as an abstraction of specific

chair instances.

Parallel examples in visual cognition involve symbol-like

representations for external objects and their visual features in ways

that exhibit the six LoT-like properties. The authors argue that the

LoT hypothesis is currently the “best game in town” by providing a

broader account of cognitive behavior (Quilty-Dunn et al., 2023),

which aligns with an earlier assessment from the classicist vs.

connectionist debate over properties, such as systematicity (Aizawa,

2003).

Despite the explanatory successes and renewed interest in LoT,

the question of how LoT is supposed to arise remains (Quilty-Dunn

et al., 2023). Note that a probabilistic version of LoT (Goodman

et al., 2015) does not necessarily help here, since the probabilistic

inferences are over LoT-like representations. This situation would

seem to favor deep learning approaches that eschew symbols

and learn directly from data (see Kriegeskorte, 2015; Krizhevsky

et al., 2017; Vaswani et al., 2017). However, there is an ongoing

debate as to whether deep learning models are psychologically

plausible in regard to the training which are needed for human-

level performance and the specific types of predictions and errors

made (Bowers et al., 2022). Our focus here is a categorical

perspective on LoT (which may also help reconcile these views in

the System 1/System 2 sense, already mentioned), not an attempt to

settle this debate.

2 A category theory perspective

Our category theory perspective begins with a brief overview

of basic concepts used to recast LoT in category theoretical terms.

We start with the concept of map, which is also called morphism

or arrow (Awodey, 2010; Leinster, 2014). A map is a “directed

relation” between a pair of objects, written f :A → B, to indicate

that map f goes from object A to object B, called the domain and

codomain of f , respectively. The two senses of the word “object”

used throughout the current study are distinguishable from the

context. A pair of maps f : A → B and g :B → C (i.e., where

the codomain of f is the domain of g) compose to form a map:

h = g ◦ f :A → C, where ◦ denotes the composition operation.

A collection of objects and a collection of maps together with a

composition operation satisfying certain rules constitute a category,

C. The archetypal example is the category of sets and functions,

Set, where the composition operation is function composition.

Categories may also be objects in a larger category. In this situation,

the arrows in the larger category are called functors, F :C →

D, which map objects to objects and morphisms to morphisms

in a structurally coherent way: e.g., monotonic functions (order-

cohering maps), f : P → Q, are functors between categories

that are ordered sets, a ≤P b implies f (a) ≤Q f (b). Functors

are also objects in categories whose maps are called natural

transformations, η : F
.
→ G, which transform the images of the

domain functors, F(A) and F(f ), into the images of the codomain

functors, G(A) and G(f ), in a coherent way, i.e., the result of a

transformed map is the same as the transformed result of a map,

G(f ) ◦ ηA = ηB ◦ F(f ). Deeper and broader expositions are

found in many introductions to category theory (Awodey, 2010;

Leinster, 2014), along with a conceptual introduction specifically

for cognitive scientists (Phillips, 2022), scientists generally (Spivak,

2014), and a broader audience (Lawvere and Schanuel, 2009).

Here, categories are regarded as collections of symbolic or non-

symbolic states and functors and natural transformations as maps

between them. Our categorical approach is presented in three parts

by, first, introducing two principles guiding our perspective on

LoT (Section 2.1), second, recasting the six LoT-like properties

using these principles (Section 2.2) and, third, observing that these

constructions constitute a special type of category, called a topos,

which also pertain to object files (Section 2.3).

2.1 Universal mapping properties and
principles

There are two category theory principles that guide our

perspective on LoT: the universal mapping principle and the

duality principle. The universal mapping principle (UMP) says

that constructions are determined by a universal mapping property

(UMP) that is given by a unique-existence condition. For example,

the categorical product of sets A and B (introduced earlier) is

a set P and two maps πA : P → A and πB : P → B, called

projections, that together satisfy the following unique-existence

condition: for every set Z and pair of maps f :Z → A and

g :Z → B, there exists a unique map u :Z → P such

that (f , g) = (πA,πB) ◦ u. The product—pair (P,π), where

π = (πA,πB)—has a universal property in that all maps into

A and B factors through π . This construction is optimal in the

sense that the unique-existence condition is only satisfied with

sets that have at least as many elements as the number of A-

elements multiplied by the number of B-elements (existence) and

at most that many elements (uniqueness). There is generally more

than one universal construction for the given situation (here,

the maps into A and B), but all such universal constructions

are unique up to a unique isomorphism, meaning that there is

one and only one way to go between two such constructions.

Every construction given by a UMP acts like a global minimum,

i.e., all constructions point to the universal construction as a

structural analog (abstraction) of gradient descent—there are

no “local minima” in this situation. UMP says that universal

constructions are obtained by following this “gradient”. In this

way, the category theory approach (Phillips and Wilson, 2010,

2016) is supposed to address the basic explanatory criterion for

systematicity—i.e., to explain why systematicity necessarily follows

from the core principles of the theory, not just how systematicity
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may be consistent with that theory (Fodor and Pylyshyn, 1988;

Aizawa, 2003)—essentially, as a universal construction, All roads

lead to Rome! This principle is supposed as a driver of cognitive

constructions (Phillips, 2021).

The duality principle pertains to the directionality of maps.

Formally, for every category C, there is an opposite category Cop

that has the objects and the “reversed” arrows of C, i.e., an arrow

f :A → B in C is an arrow f op :B → A in Cop. A construction in

C has a dual construction in Cop (NB. Copop = C). This principle

also applies to universal constructions. For instance, a product in C

has a dual universal construction called the coproduct, which is the

product in Cop. Coproducts are universal constructions so follow

the same pattern for products with the arrows reversed. To wit,

the coproduct of sets A and B is a set Q together with two maps

(injections, ιA :A → Q and ιB :B → Q) infusing A and B into

Q such that for any set Z and maps f :A → Z and g :B → Z

the pair (f , g) factors uniquely through the injections: i.e., there

exists a unique map u :Q → Z such that (f , g) = u ◦ (ιA, ιB). This

construction is also optimal in that the unique-existence condition

is only satisfied with sets that have at least as many elements as the

number of A-elements plus the number of B-elements (existence)

and at most that many elements (uniqueness). A category and its

opposite are related to a functor, Iop :C → Cop. More generally,

a functor of the form F :C → Dop (equivalently, F :Cop → D) is

called contravariant from C to D (a functor of the form F :C →

D is called covariant from C to D). A pair of opposing functors

(possibly contravariant), F :C ⇆ D :G, that are related by a certain

type of universal construction is called an adjoint situation, i.e.,

the best possible recovery of the objects C and maps f in C from

their images, F(C) and F(f ) in D, by the opposing functor G as the

objects GF(C) and maps GF(f ) in C; equivalently, the best possible

recovery of the objects D and maps g in D from their images, G(D)

and G(g) in C, by the opposing functor F as the objects FG(D) and

maps FG(g) in D. Adjoint situations are also regarded as a form

of duality. In this way, the universality and duality principles are

intimately related.

These two principles guide our categorical perspective on

thought as mappings between percepts and concepts representing

entities. We start with a basic, dual-view of a function between

sets f :A → B as an A-labeling of the elements in B or the B-

properties of the elements in A (Lawvere and Schanuel, 2009).

In a deck of cards, for example, each card has the property of

suit (i.e., club, spade, diamond, and heart) and rank (i.e., two,

three,..., queen, king, ace). Accordingly, there are maps from the

deck listing these properties, i.e., suit :D → S and rank :D → R.

We may also think of the deck as a set of (perceptual) instances for

the concepts of suit and rank. Moreover, a map in one direction

(percepts to concepts) is a conceptualization of percepts and a map

in the opposite direction is a perceptual instantiation of concepts.

In general, a function in Set does not have an opposite as a

function in Setop, unless that function has an inverse. The best

one can do is to recover the preimage from every element b in

B, i.e., the set of elements in A whose image under f is b. For

instance, suppose a set of colored shapes, CS = {♠,♣,♦,♥}, a

set of colors, C = {b, r}, and a set of shapes, S = {s, c, d, h}.

The color function produces a color image for each item, e.g.,

fc :♠ 7→ b, and the preimage function for fc recovers the subset

of colored shapes with the given color, e.g., f−1c [C] : b 7→ {♠,♣}.

Similarly, for shape, fs :♥ 7→ h and f−1s [S] : h 7→ {♥}. These

two perspectives illustrate a simple case of a more general duality

(adjoint situation) that exists between fiber bundles and presheaves,

where the sets have the structure of a topological space. There are

also maps between bundles and maps between presheaves that are

determined by universal properties (Mac Lane and Moerdijk, 1992;

Awodey, 2010), which can be interpreted as changes in perception

and conception. Simple examples of these situations are used for

our categorical view of LoT-like properties.

2.2 A LoT like a category

Thought is supposed to have (at least) six additional LoT-

like properties. Quilty-Dunn et al. (2023) consider properties in

visuospatial formats pertaining to object files (Kahneman et al.,

1992). An object file is characterized as a representation that

“(i) sustains reference to an external object over time, and

(ii) stores and updates information concerning the properties

of that object” (Green and Quilty-Dunn, 2021). Object-tracking

and visual memory effects, e.g., forgetting/remembering of a

color feature independently of an orientation feature or tracking

an object despite a feature change is observed to support

a propositional/compositional format over formats that are

iconic/wholistic (Green andQuilty-Dunn, 2021; Quilty-Dunn et al.,

2023). Other domains include reasoning and inference over visually

presented information. The purpose here is to show how these

six LoT-like properties pertain to the universality and duality

principles with examples of case situations from Quilty-Dunn et al.

(2023).

2.2.1 Discrete constituents
The discrete constituents property, in the context of object

files, pertains to visual features such as color and shape that are

represented independently of each other as implied by, say, a

recall task where accuracy in recalling color does not change with

shape and accuracy in recalling shape does not change with color.

LoT captures the discreteness property by positing symbols for

the constituent features and a process that combines symbols to

construct complex representations, e.g., rs for a red square and

rt for a red triangle. The symbol for red does not change with

the juxtapositioning of shape symbols capturing discreteness. The

order of the symbols does not matter for this property.

From a categorical (topological) perspective, discreteness is

a universal (mapping) property. A set X can be given a spatial

(topological) structure by imposing a topology T consisting of

subsets of X, called open sets, that specify the relative proximity

of elements in X. The inclusions of open sets imply an order. In

this way, an order is imposed on the elements of a set by specifying

a corresponding topology. Every set has two extreme topologies:

the discrete topology where every subset of X is an open set and the

indiscrete topologywhere the only open sets are the empty set andX.

In the discrete case, every element x ∈ X belongs to an open set with

just that element, {x}, and corresponds to the discrete constitutent

property (every symbol is “equiproximal” to every other symbol).

Discreteness in this topological sense is a universal construction.
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A space T is finer than a space T′ if every open set of T′ is an

open set of T; dually, T is coarser than T′ if every open set of T′

is an open set of T. The discrete topology is the finest space on X,

since every subset of X is an open set. The indiscrete topology is

the coarsest space, since the only open sets are the empty set and

X, which are required for any topology. Moreover, in the category

of topologies on X ordered by inclusion of open sets, the indiscrete

and discrete spaces are universal constructions called the initial and

terminal objects, respectively: an object is initial (terminal), denoted

0 (1) if for every object Z in the category there exists a unique

map u : 0 → Z (u :Z → 1). Hence, discreteness follows from a

universal construction.

The importance of this topological view is in placing the

notion of symbolic (discreteness) on common groundwith a notion

of non-symbolic (non-discreteness). A non-discrete space is an

indiscrete space or a space that is not a discrete space. A continuous

function between topological spaces, f :X → Y , preserves

proximity at possibly courser levels a granularity, meaning that

for every open set U of Y , the preimage of U is an open set of

X. The collection of topological spaces on X and their continuous

functions constitute a category, which affords the common ground

for moving between symbolic and non-symbolic systems.

2.2.2 Role-filler independence
Evidence for role-filler independence arises in a way that is

similar to discrete constitutents in that the representations of roles

are not affected by particular fillers and the representations of

fillers are not affected by particular roles. The canonical example

is the representations of John loves Mary and Mary loves John

where representing the role of lover is the same regardless of

being filled by the symbol for John or Mary (e.g., as always being

encoded as the first position) and the representation for John

is the same regardless of the role (as in always being the same

symbol). In the context of object files, role-filler independence

appears in object tracking tasks where the identity of the object

(role) remains unchanged despite changes in visual features such as

color (filler)—role independence from filler. Conversely, attributes

can maintain their integrity despite swapping attributed objects—

filler independence from role (Quilty-Dunn et al., 2023). In this

situation, roles can also be (explicitly) represented as symbols that

are composed of symbols for fillers to indicate their role.

A corresponding categorical view is to treat the roles and fillers

in terms of presheaves, i.e., set-valued (contravariant) functors on

topological spaces, F :Xop → Set. A presheaf maps open sets

and inclusions, interpreted as roles and role relations, to sets and

restrictions maps, interpreted as fillers and filler relations. For

instance, the part-whole relations among the symbols ⊠,⊞,×,+

are given by a presheaf that sends the inclusion {∗} ⊆ {∗, ⋆} to

the restriction map ⊠ 7→ ×,⊞ 7→ +. In this way, a presheaf

has spatial and non-spatial properties (more complex relationships

beyond part-whole relations are also given by presheaves on other

topological structures, such as graphs, or complexes). A sheaf is a

universal presheaf, which has the special property that the attached

data are recoverable from just the data attached to the points of

the underlying space, called the stalks of the sheaf. The dual view

is the category of fiber bundles on that space: presheaves map

roles to fillers and bundles map fillers to roles. A perspicuous way

to think about presheaves is as relational database tables, where

table headings correspond to the points of the space and table

rows correspond to the image of the presheaf (Abramsky and

Brandenburger, 2011; Abramsky, 2013). For instance, the loves

relation can be regarded as a presheaf on the discrete topological

space for the two-point set {s, o}, where s represents the subject

and o represents the object of the relation, that is mapped to a set of

pairs including (John,Mary) representing the instance John loves

Mary. Two types of maps of presheaves are presheaf morphisms

which are maps between the data attached to the same space (table

rows) and maps between possibly different spaces on which the

data are attached (table headings). Suppose, for instance, John loves

Sue instead of Mary. This change is conveyed by the mapping,

(John,Mary) 7→ (John,Sue). The passive form, Mary is loved by

John is obtained from a continuous function mapping subject to

object and object to subject, s 7→ o, o 7→ s, inducing a functor

that swaps the corresponding columns creating a new table for

the passive form. Accordingly, roles and fillers of a relation are

independently represented by presheaves.

This situation also applies to the type of role-filler independence

that is claimed for object files (Quilty-Dunn et al., 2023). The roles

for object files are points of a (discrete) topological space and their

attributes are the attached data. Change in a color feature, say,

from red to green for a tracked object corresponds to a presheaf

morphism on a one-point space: a mapping between corresponding

one-tuples, e.g., (r) 7→ (g). The “swapping” of color features

in multiple object tracking scenarios (Quilty-Dunn et al., 2023)

corresponds to the functor induced by the continuous function

that exchanges the role of each object as points (locations) in a

topological space, l1 7→ l2, l2 7→ l1. This situation generalizes

to other scenarios, e.g., the continuous function on a three-point

space, l1 7→ l2, l2 7→ l1, l3 7→ l3 leaves the attributes attached to the

third role unchanged. Moreover, object files as presheaves capture

role-filler independence.

Structured (part-whole) relations also appear among objects

in a complex visual scene that are akin to grammatical

structure, which provides further support for a LoT in visual

cognition (Quilty-Dunn et al., 2023). Hierarchical structures are

orders, which have corresponding topologies. Hence, the LoT-like

relational structure of visual scenes is also captured by presheaves

on such topologies.

2.2.3 Predicate-argument structure
Quilty-Dunn et al. (2023) also argue that object files have a

predicate-argument structure akin to language, as in their examples

“That spherical object is red” or “That red object is spherical”. The

object is predicated by a color in the first example and by a shape

in the second example. A map f :A→ B can be regarded as listing

the B-properties of A-objects (Lawvere and Schanuel, 2009). Every

continuous function f :Y → X induces a sheaf of sections on X,

F :Xop → Set, i.e., for each open set U of X, the set of functions

F(U) = {s :U → Y|f ◦ s = 1U}, called the sections (right-

inverses) of f restricted to the open set U. Moreover, suppose a

set of colored shapes, CS ⊆ C × S where C and S are the sets of

colors and shapes with the discrete topologies. The (trivial) fiber
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bundle on C consists of the projection πc :C × S → C which

induces the sheaf of sections on C, i.e., the dual map, F :Cop →

Set sending the color red, for instance, to the set of red objects.

Similarly, the projection πs :C×S→ S induces the sheaf of section

on S. Thus, the duality between bundles and presheaves captures

predicate-argument structure.

In the sense of (classical) logic, predicate-argument structure

pertains to propositions that either true or false. For relations as

subsets of Cartesian products, evaluation is given by the relation’s

characteristic function: for a (binary) relation R ⊆ A × B, the

characteristic function is a function χR :A × B → 2, where 2 =

{⊥,⊤} is the set of truth values, sending pair (a, b) to ⊤ (true)

whenever a is R-related to b, i.e., (a, b) ∈ R, otherwise ⊥ (false).

There is a one-to-one correspondence between relations and their

characteristic functions, which is given by the following “square”

of arrows (see Goldblatt, 2006):

R
!
−→ 1

⊆









y









y

t

A× B −→
χR
{⊥,⊤}

(1)

where t picks out ⊤ (true). This unique correspondence follows

from another instance of a universal construction involving the

terminal object, 1 = {∗}, and the pullback of the arrow t along χR

yieldingR. Pullbacks are given by a universal mapping property that

is closely related to products. For sets, the pullback of a function

f :A→ C along a function g :B→ C (equivalently, g along f ) is a

setA×CB = {(a, b)|f (a) = g(b)} and its two projections, which acts

like a product constrained by the maps into C (if C is the terminal

object, implying no constraints, then the pullback is just a product).

More generally, for a category C with a terminal object, an

object � in C is called a subobject classifier for C if there exists an

arrow τ : 1 → � such that for each monomorphism (cf. injection)

ι :U → X there exists a unique arrow χι :X → � such that the

following diagram is a pullback (see Goldblatt, 2006):

U
!
−→ 1

ι









y









y

τ

X −→
χι

�

(2)

where χι is called the classifying morphism, τ is called the truth

arrow, andU is called a subobject of X. This abstraction from subset

to subobject affords a richer notion of truth. In the category of

presheaves on X, for instance, the subobject classifier is interpreted

as assigning truth to just that part of the data on the open sets

for which the predicate holds. If the predicate holds nowhere

or everywhere on the space, the empty set or X is returned,

respectively, corresponding to false or true in the usual sense.

2.2.4 Logical operators
Logical operators AND, OR, IF, and NOT have corresponding

abstractions in category theory. We have already observed that the

two-element set corresponds to the set of Boolean truth values,

2 = {⊥,⊤}. This set is constructed from the coproduct of singleton

sets, 1 = {∗} (terminal objects), i.e., 2 = 1+1, where+ denotes the

coproduct. The four logical operators correspond to maps between

these sets: e.g., AND (∧) is the map ∧ : 2 × 2 → 2; (⊥,⊥) 7→

⊥, (⊥,⊤) 7→ ⊥, (⊤,⊥) 7→ ⊥, (⊤,⊤) 7→ ⊤; similarly, for OR and

IF, NOT is themap¬ : 2→ 2;⊥ 7→ ⊤,⊤ 7→ ⊥. These operators in

coordination with the subobject classifier afford logical operations

over relations. The complement of a relation R ⊆ A×B, denoted R,

is given by composing the subobject classifier χR with the map for

NOT, i.e., the subobject classifier χR = ¬ ◦ χR.

The two-cups task is supposed to demonstrate a capacity for

logic, i.e., if an object is NOT under one cup, it must be under the

alternative cup (Quilty-Dunn et al., 2023). Suppose CONTAINS

is the predicate on the set of cups yielding true if the object is

under the cup. Composing with the NOT map yields the subobject

classifier identifying the alternative cup as containing the object.

2.2.5 Inferential promiscuity
Inferential promiscuity in the visual context is supposed

when inferences transcend changes in visual features. LoTs have

the inferential promiscuity property by virtue of computational

processes that transform representations with logical form: e.g., P∧

Q⇒ P, or P⇒ P ∨ Q. The categorical analogs of conjunction and

disjunction are the categorical product and coproduct. In a category

with products and coproducts, C, the product functor sends pairs

of objects (and maps) to their products, 5 : (A,B) 7→ A × B. The

implication P ∧ Q⇒ P corresponds to the natural transformation

from the product functor to the functor picking out the first object,

5́ : (A,B) 7→ A, i.e., the natural transformation π :5
.
→ 5́

whose maps are the natural projections πA : A × B 7→ A. The

analogous situation applies to disjunction, which corresponds to

the natural injection, ιA :A 7→ A + B. Moreover, functors act as

representations, hence natural transformations as representation

transformations that range over the objects A in C, such as P ranges

over propositions.

2.2.6 Abstract conceptual content
Object-specific preview benefit, i.e., a reaction-time benefit for

test items related to previously viewed stimuli, particularly across

modalities such as observing an image of an apple for basic category

APPLE and testing with the word “apple” suggests that object-

files store abstract conceptual content along with specific instances

of that concept (Quilty-Dunn et al., 2023). LoT accommodates

this situation by assuming that perceptual representations of the

instances are linked to a symbolic representation of the concept.

We have already observed a categorical version of abstract

conceptual content in the deck of cards, for instance, the map from

cards to suits, suit :C→ S, which assigns specific cards to their suit,

e.g., suit : 2♥ 7→ ♥. This function (projection) constitutes a fiber

bundle and induces a sheaf of sections that sends each suit to the

set of cards with that suit, as in {♥} 7→ {2♥, . . . , 10♥, J♥, . . . , A♥}.

Naturally, this situation also extends to individual cards that are

given by different decks, i.e., where cards with different faces, say

for the two-of-hearts, indicate the same card, 2♥. In this way,

perception is dual to conception. The map from percept to concept

(fiber bundle) acts as the conceptual interpretation of the stimuli,

and the map from concept to percept (presheaf) acts as the best
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possible recovery of the stimuli after the percept is no longer

available due to an occlusion event.

2.3 A topos of thought (object files)

The universal and dual constructions pertaining to the six LoT-

like properties constitute a special type of category called a topos

(Mac Lane and Moerdijk, 1992; Lawvere and Rosebrugh, 2003;

Goldblatt, 2006). A topos is a category that has all (finite) limits and

exponential objects. We have already observed examples of limits in

the form of terminal objects, products, and pullbacks and their dual

constructions, called (finite) colimits, in the form of initial objects

and coproducts. (The dual of pullback is pushout.) An exponential

object in Set consists of a collection of functions from a set A to a

set B, denoted BA, called a function space—the number of functions

in BA is |B||A|, where |A| and |B| are the number of elements in

A and B, respectively. Note the two special cases where A and

B are the initial and terminal objects, i.e., the empty set and the

singleton set, respectively—the number of functions in B0 and 1A

is |B|0 = 1|A| = 1, as required by the definitions for initial and

terminal [exponential objects pertain to another type of universal

construction, which have applications in computer science as the

curry-uncurry transform: e.g., addition as an operator whereby a+

b = (+a)b]. Having finite limits and an exponential object implies

having finite colimits and a subobject classifier. These conditions

define an elementary topos, which are easier to state, though more

general, than the conditions for the original Grothendieck topos

(differences between these concepts are not explored here). Object

files were regarded in terms of fiber bundles and presheaves, in

the previous section. Categories of presheaves on a space X and

categories of fiber bundles over X are topoi, which evokes another

slogan, LoT is a topos.

A category/topos theory approach arguably affords the most

concise, systematic, and formally precise framework for studying

the structure of thought. The basic ingredients of a topos

are constructions derived from universal mapping properties.

All (finite) limits are constructed from just two special cases,

i.e., pullbacks and terminal objects—equivalently, products and

another type of limit called equalizer (see Leinster, 2014).Moreover,

limits are constructed from adjoint functors which are themselves

obtained from Kan extensions (Mac Lane, 1998). For instance, the

product functor 5 :C2 → C is obtained from a Kan extensions of

the identity functor 1C along the diagonal functor 1 :C → C2, as

indicated by the following “triangle” of maps:

C2

1









y

x









5

C −→
1C

C

(3)

This situation is akin to an autoassociative neural network

model that attempts to recover the input from its hidden unit

representations by adjusting parameters to minimize the distance

between the target given by the identity map and the network

response. The best that one can do in this categorical situation

is a natural transformation from the target given by the identity

functor to the system response given by the composition G ◦ F,

i.e., η : 1C
.
→ G ◦ F; dually, ǫ : F ◦ G

.
→ 1D. A Kan extension

in this situation may be regarded as the best that a (cognitive)

system can do to recover what was lost by taking an action as a

(left/right adjoint) functor F :C → D, i.e., the right/left adjoint

functor G :D → C, thus absorbing the universality and duality

principles as a single universal-duality (adjointness) principle.

This adjointness principle affords a basis for explaining

why/how symbolic representations connect to other, non-symbolic

representational formats. Recall that categories of topological

spaces and continuous functions provide common ground for

connecting symbolic and non-symbolic representations as discrete

and non-discrete spaces, respectively. For instance, there is a

continuous function from the two-element set {∗, ⋆} with the

discrete topology to the same set with the indiscrete topology, i.e.,

the map sending each element to itself, thus realizing a transition

between a symbolic to a non-symbolic format. This difference

is analogous to the difference between a multi-slot vs. single-

slot view of object files (Green and Quilty-Dunn, 2021)—each

point (open set) in the discrete space corresponds to a different

object role vs. a single object role (non-empty open set) in the

indiscrete case by their topologies. In the discrete case, each point

belongs to a distinct open set, {∗} and {⋆}. For the indiscrete

case, the only non-empty open set contains both points, {∗, ⋆}.

For the corresponding categories of presheaves, the discrete space

affords compositionality, whereas the indiscrete space does not.

For example, the deck of cards represented as a presheaf on the

set representing suit and rank, {s, r}, with the discrete topology

affords recovery of the suit and rank of each card: for instance, the

inclusion {s} ⊆ {s, r} is sent to the restriction map that consists of

the mapping 2♥ 7→ ♥. No such access to constituents is afforded

with the indiscrete topology because the indiscrete topology does

not have any non-trivial inclusion maps.

Some theoretical and empirical implications of this difference

in topology pertain to the respective presheaf morphisms, as

illustrated by a simple example. Suppose the string “CAT” is

associated with the string “DOG”. What should the strings “ACT”

and “TAC” be associated with? If the strings are interpreted as

words and the mapping as a free association, one might respond

with “NOW” and “TIC”, respectively, by ignoring associations

between constituent letters. This situation corresponds to a map

between presheaves on an indiscrete space. However, if the

strings are interpreted as letter sequences and the association

as a mapping of letters, one might respond with “ODG” and

“GOD”, respectively, using the three constituent letter maps for

the map from “CAT” to “DOG”. This situation corresponds

to a map between presheaves on a discrete space. Thus, the

empirical implications pertain to responses on novel strings:

the discrete case affords generalization—correct prediction of

target responses for novel strings; the indiscrete case does

not. These two situations were observed experimentally when

subjects trained on letter-pair to color-shape associations exhibited

both forms, depending on the difficulty of the task, i.e.,

number of associations to be learned (Phillips et al., 2016).

Moreover, the relationship between these two cases is given

by an adjoint situation (Phillips, 2018). An analogous situation

may be used to reconcile multi-slot and single-slot views of

object files, where visual features spontaneously do vs. do not

break apart.
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3 Discussion

What is gained by rendering LoT-like properties in terms

of category/topos theory constructions? The idea of treating

relations between representational states as arrows affords two

gains, which is discussed here. First, arrows have shape (in addition

to direction) that is given by topology in the context of sheaves

and bundles, providing the common ground needed to connect

symbolic and non-symbolic formats via continuous functions. This

idea that the (causal) relations between representational states are

determined by the “shape” of those states which is familiar to the

classical view as syntactic form (Fodor and Pylyshyn, 1988). What

category theory adds is the way that certain shapes (constructions)

are universal—satisfy universal mapping properties—and that

every universal construction follows from the universal mapping

principle: “gradient” descent (ascent) to the corresponding terminal

(initial) object (Phillips and Wilson, 2016; Phillips, 2021). In this

way, category theory affords an extra level of explanation for why

such LoT-like properties arise, beyond the classical account of

stipulating symbolic representations as needed (see Section 1), and

how such constructions connect to other formats, beyond just

assuming that they do.

Second, category/topos theory provides a systematic treatment

of LoTs in terms of a small number of conditions (limits and

exponential objects) and principles (universality and duality). We

already noted that limits and exponential objects are obtained from

universal properties and that all finite limits arise from just two

types, terminals and pullbacks. The conciseness goes even further—

all limits are universal with respect to just one type of functor,

the diagonal functor 1 :C → CJ where J is the “shape” of the

functor into C, i.e., a category, J, typically consisting of a small

number of objects and arrows, whose identities are unimportant,

used to pick out objects and arrows in the target category, C.

A terminal is a limit with respect to the empty shape and a

pullback with respect to a shape that has three distinct objects

and two distinct arrows, i.e., · → · ← ·. Dually, colimits

derive from just two types, initial objects and pushouts. The shape

of an initial object is also the empty category, 0op = 0. The

shape category for pushouts is opposite the one for pullbacks, i.e.,

· ← · → ·. The diversity of limits and colimits stems from the

variety of categories, C, to which the diagonal functor is applied.

Not all categories have all types of limits, but all limits derive

from the same universality principle (UMP), i.e., the principle of

construction from a universal mapping property (UMP).Moreover,

in each case, the limit/colimit functor is right/left adjoint to the

diagonal functor, thus combining the universality and duality

principles into a single adjointness principle, whence the slogans,

Adjoints are everywhere and All concepts are Kan extensions (Mac

Lane, 1998). For the purpose of assessing the differences in LoTs

within and across species (Mandelbaum et al., 2022), one needs

a systematic organizational framework. As a formal framework in

this regard, category/topos theory is arguably the “best game in

town” for concision and formal precision. Topos theory brings

together algebra, topology/geometry, and logic (see Leinster, 2011),

cf. language, perception, and reasoning, which affords an analogous

panoramic view for cognitive science: an integrative view of LoT

(Fodor, 1975) as an algebra of thought, perception as a geometry

of thought (Gärdenfors, 2000), and reasoning as mental models of

thought (Johnson-Laird, 2008).

There are, however, important caveats to this categorical view.

In particular, capacities for inference are not the same across

age-groups and species. For instance, older children but not

younger children around the age of 5 years old have a capacity for

transitive inference (Halford, 1984; Andrews and Halford, 1998):

if aRb and bRc then aRc. How should these differences be treated

within this category/topos theory approach? One may appeal to

cognitive capacity limitations, such as the number of items that

can be concurrently held in working memory (Cowan, 2001)

or the number of variables that can be concurrently processed

(Halford et al., 1998). Presheaves as relational tables have a “two

dimensional” structure in terms of the number of columns and

the number of rows. The number of columns can be interpreted

as relational arity: a one-column table is a unary relation and a

two-column table is a binary relation. Relational complexity theory

says that differences in inferential ability correspond to differences

in the capacity to process relational information (Halford et al.,

1998, 2014), which has also been considered in terms of categorical

products/pullbacks (Phillips et al., 2009), which underlie sheaves

(Mac Lane and Moerdijk, 1992). The number of rows can be

interpreted as the number of items that can be stored or referenced.

These two types of cognitive capacities (Halford et al., 2007) are

potentially relatable via sheaf theory.

Another caveat is that not all aspects of a construction derive

from universal properties. For instance, the universal property in

an adjoint situation pertains to the left/right adjoint functor for

the given functor, F, if such an adjoint exists. The given functor,

F, itself is not necessarily obtained from some universal properties

(if F has a left/right adjoint,G, Fmay be dually viewed as a universal

construction given G). In these situations, a pair of adjoint functors

act like hypothesis generation and test, i.e., given a hypothesis as the

functor F, test this hypothesis for a universal property as the left or

right adjoint G to F. There may be more than one adjoint situation

between a pair of categories of which only some are relevant to

the task at hand. In this case, the category/topos theory approach

needs to be augmented with a measure of relevance or fitness akin

to a neural network model. Incorporating category/sheaf theoretic

constructions into such models is another possibility (Clark et al.,

2008; Hansen and Gebhart, 2020; Barbero et al., 2022; Bradley et al.,

2022). Cognitive systems are supposed to be resource-dependent

and goal-driven. A categorical theory of resources (see Coecke

et al., 2016) may also afford an explanation for why a universal

property, hence systematicity, fails to emerge. A LoT is after all a

physical symbol system (as mentioned earlier) embedded in some

environment. If the environment provides insufficient information

to establish the needed construction, the universal construction

may be suboptimal with regard to the construction that would

have been obtained had more information been made available,

i.e., in a larger context. In this case, the universal construction

is from a functor interpreted as the available resources to some

object interpreted as the task goal (see Supplementary material,

remarks 132).

Viewing LoT as a topos leads to other properties beyond the

six canvassed in the previous section. The archetypal topos is the

category of sets and functions, Set, whose classifying object is the
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set of Boolean values (true and false). Thus, Set acts like ordinary

classical logic. A category of presheaves on a space X is also a

topos but with a different classifying object consisting of the open

sets of X which affords the graduated notion of truth mentioned

earlier (NB. The classifying object is not a “free parameter” but

a universal mapping property of the particular category/context

that one is working in). The law of excluded middle, i.e., ¬¬A =

A, characterizing classical logic, need not hold for some topoi.

For instance, the category of directed graphs is a topos whereby

¬¬A 6= A, but ¬¬¬A = ¬A (Lawvere and Schanuel, 2009).

What these additional properties mean for a language of thought

has yet to be worked out. However, a general implication of

this graded notion of truth is that response errors should align

with the open sets (roles), e.g., correctly recalling object color but

not shape, which accords with the view that accounting for the

types of errors that humans make is more important than simply

modeling overall response accuracy, at least in vision (Bowers

et al., 2022). A topos theory approach is also apt for a formal

theory of goals that are organized into subgoals given that the

concept of subobject is a generalization of the concept of subset,

hence dependency order. To continue the analogy, functors are to

subfunctors (cf. subsets) as goals are to subgoals, or partial solutions

to a problem (see Supplementary material, remarks 132). Exploring

the implications of these formal abstractions are topics for future

studies.

The claim that LoT is universal is to be understood in

the context of a particular aspect of cognition, not that all of

cognition is necessarily LoT-like. LoT is not the only game in

town (Quilty-Dunn et al., 2023) and universality is not absolute

with respect to cognition in toto—universal constructions are local

with respect to some category or relative with respect to some

functor. As already discussed, systematic failures point to other

aspects of cognition that are better accounted for by incorporating

other types of theories, such as embodied cognition (Shapiro and

Spaulding, 2024), that realize the requisite universal properties.

Other approaches such as dynamical systems (Port and van Gelder,

1998) and Bayesian probability (Griffiths et al., 2008) also have

categorical connections (Lawvere and Rosebrugh, 2003; Culbertson

and Sturtz, 2014; St. Clere Smithe, 2023). Where category theory

stands apart from other theoretical approaches is the way that

such alternatives are incorporated into a universal way, vis-a-vis,

adjointness. Indeed, topos theory is the quintessential example

for mediation of opposites (Lawvere, 1989, 1992—see Rosiak,

2022, for further philosophical discussion). Category theory was

developed as a type of meta-mathematics (Eilenberg andMac Lane,

1945), and cognitive science was founded as an interdisciplinary

science of mind (Miller, 2003). The pertinent parallel here is that

category/topos theoretical approaches are the natural approach

to explain why/how these different aspects live together. LoT

may well have a good game, but category theory is the better

sport.
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