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Introduction: Working memory (WM) as one of the executive functions is an 
essential neurocognitive ability for daily life. Findings have suggested that aging 
is often associated with working memory and neural decline, but the brain 
structures and resting-state brain networks that mediate age-related differences 
in WM remain unclear.

Methods: A sample consisting of 252 healthy participants in the age range of 20 to 
70years was used. Several cognitive tasks, including the n-back task and the forward 
and backward digit span tests were used. Also, resting-state functional imaging, 
as well as structural imaging using a 3T MRI scanner, were performed, resulting 
in 85 gray matter volumes and five resting-state networks, namely the anterior 
and posterior default mode, the right and left executive control, and the salience 
networks. Also, mediation analyses were used to investigate the role of gray matter 
volumes and resting-state networks in the relationship between age and WM.

Results: Behaviorally, aging was associated with decreased performance in the digit 
span task. Also, aging was associated with a decreased gray matter volume in 80 
brain regions, and with a decreased activity in the anterior default mode network, 
executive control, and salience networks. Importantly, the path analysis showed 
that the GMV of the medial orbitofrontal, precentral, parieto-occipital, amygdala, 
middle occipital, posterior cingulate, and thalamus areas mediated the age-related 
differences in the forward digit span task, and the GMV of superior temporal gyrus 
mediated the age-related differences in the backward digit span task.

Discussion: This study identified the brain structures mediating the relationship 
between age and working memory, and we hope that our research provides an 
opportunity for early detection of individuals at risk of age-related memory decline.
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1 Introduction

Normal aging begins a series of gradual changes in the human brain (Batouli et al., 2014b). 
In particular, cognitive neuroscientists have reported that regardless of the conditions of 
dementia or mild cognitive impairment (MCI), aging is associated with a decline in a set of 
essential cognitive functions, especially working memory (WM) performance (Bosnes et al., 
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2022; Sisakhti et al., 2024; Klencklen et al., 2017; Sisakhti et al., 2023). 
Working memory is considered an executive function skill that has a 
limited capacity to store and manipulate information temporarily. To 
put it more clearly, working memory is considered a vital brain system 
that provides the storage and manipulation of information required 
for other complex cognitive tasks such as reasoning, comprehension, 
learning, and language (Baddeley, 1992).

It has been reported that the degree of decline in cognitive abilities 
varies among older adults (Wilson et al., 2002). This means that a mild 
decrease in cognitive functions is observed in some older adults, while 
in others, a significant change in cognitive functions is observed 
(Cohen et al., 2019). These observed individual differences in older 
adults suggest that other factors mediate the age-cognition 
relationship. Despite existing scientific reports on age-related decline 
in working memory (Fabiani, 2012), several factors positively or 
negatively mediate the relationship between age and working memory 
that may increase or decrease this decline (Cansino et al., 2018). Given 
that brain changes are common in older age (Lockhart and DeCarli, 
2014) and may affect cognition, various brain measures can 
be considered as mediators to clarify the relationship between age and 
working memory.

Among the factors that can be considered as a mediator between 
age and working memory is the brain structure. Examinations of brain 
volume in elderly adults suggest that the gray matter volume (GMV) 
and white matter (WM) volumes of the brain decrease with age 
(Driscoll et al., 2009; Farokhian et al., 2017; Giorgio et al., 2010). For 
example, GMV has been estimated to decrease by about 3 to 5% per 
decade (Resnick et al., 2003; Sisakhti et al., 2022). It is noteworthy that 
the degree of brain atrophy, like cognitive abilities, is not a 
homogeneous process throughout the brain (Fjell et al., 2014). The 
frontal and temporal lobes, which are involved in cognitive functions, 
show the greatest age-related decline in GMV (Alexander et al., 2006). 
On the other hand, studies have reported the relationship between the 
reduction of cognitive functions and the atrophy of brain areas 
involved in these abilities (Leong et al., 2017; Lövdén et al., 2013; 
Ramanoël et al., 2018). Brain atrophy refers to the loss of brain cells 
(neurons) and the connections between them, which can lead to a 
decrease in brain volume (Fjell et al., 2009). Brain atrophy in aging 
refers to the gradual loss of brain tissue and volume that occurs 
naturally as people age. This process is characterized by several 
morphological changes, including cortical thinning, white and gray 
matter volume loss, ventricular enlargement, and loss of gyri (Double 
et al., 1996).

Another important factor that is considered as a mediator 
between age and working memory is the resting-state brain 
networks (RSNs). Functional brain networks that exhibit 
synchronized activity during periods of rest—when an individual is 
not actively engaged in a specific task—are referred to as resting-
state networks (Rosazza and Minati, 2011). Humans spend a 
significant portion of their day, estimated to be up to 50%, in mental 
states where their brain is not actively engaged in a specific task or 
cognitive activity. During these periods, the brain is essentially 
resting or operating in a task-free condition (Lurie et al., 2020). The 
patterns of resting-state functional connectivity resemble the 
patterns of activation seen during cognitive tasks, with up to 80% of 
their variation being similar (Cole et  al., 2014, 2016). Evidence 
suggests age-related changes in the resting-state networks (Huang 
et  al., 2015; Jockwitz et  al., 2017), and almost every cognitive 

network has been shown to experience some degree of age-related 
decline (Varangis et  al., 2019). This age-related decline at the 
network level includes a decrease in local efficiency at the network 
level (Song et al., 2014) and a decrease in connectivity within the 
network (Geerligs et al., 2015).

There are reports on the relationships between age and declined 
working memory (Cansino et  al., 2013), between age and brain 
structure and resting state networks (Kaup et al., 2011; Varangis et al., 
2019), and between brain structure and resting state networks and 
working memory (MacHizawa et al., 2020; Osaka et al., 2021). For 
example, a study conducted by Cansino et al. (2013) demonstrated 
that as individuals age, their verbal and visuospatial working memory 
abilities decline. This decrease is more closely linked to the cognitive 
resources required by the task rather than the nature of the 
information being processed (verbal or visuospatial). On the other 
hand, Kaup et  al. (2011) conducted a review study indicating a 
positive correlation between the size of the hippocampal formation 
and memory performance in elderly individuals. Also, Varangis et al. 
(2019) demonstrated a deleterious effect of age on segregation and 
local efficiency and within-network connectivity of resting state 
networks in the brain. In addition, MacHizawa et al. (2020) reported 
a positive relationship between gray matter volume and visual 
working memory, in such a way that gray matter volume in the left 
lateral occipital region and right parietal lobe relates to the capacity 
and precision of visual working memory, respectively. In another 
study, Osaka et al. (2021) investigated the connectivity of resting-state 
networks in individuals with high and low working memory capacity. 
The results indicated a strong connection between dorsal attention 
and salience networks in individuals with high working 
memory capacity.

According to this knowledge, it can be hypothesized that the changes 
in the brain due to aging are responsible for the changes in working 
memory that occur with age. At first glance, this conclusion may appear 
to be correct, but simple correlations do not allow one to prove causality. 
Although there are several studies examining the neural correlates of 
age-related changes in working memory (Archer et al., 2018; Mattay 
et al., 2006; Rypma and D’Esposito, 2000; Schulze et al., 2011), to the best 
of our knowledge, previous studies were not based on testing a mediation 
model. The evidence for which brain structures are the neural substrates 
of age-related working memory decline is weak. In general, the search 
for the exact neural bases for working memory in normal aging has 
brought diverse results. Among the factors that led studies to achieve 
diverse results are the use of small samples or samples with a narrow age 
range, and the use of different cognitive tasks. Although there are 
mediation studies that examine the age-related difference in the tasks 
measuring WM (Bender and Raz, 2012; Cansino et al., 2018; Van Gerven 
et al., 2007; Zuber et al., 2019), to the best of our knowledge, none of 
these previous studies investigated the mediating role of gray matter 
volume and resting-state networks. For example, previous studies have 
examined the mediating role of factors such as inhibition (Van Gerven 
et al., 2007), executive functions (i.e., updating, inhibition, and shifting; 
Zuber et al., 2019), physiological traits, and individual characteristics 
(such as cultural and social activities; Cansino et  al., 2018) in the 
relationship between age and working memory. Therefore, it has not yet 
been explicitly tested which brain structures and resting-state brain 
networks mediate the age-related decline in working memory.

Given that neurological changes can occur before the onset of 
cognitive decline (Coupé et  al., 2019), identifying the brain 
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structures and resting-state brain networks which mediate the 
relationship between age and working memory may provide an 
opportunity to slow or prevent memory loss in the elderly. The 
present study aims, therefore, to investigate which brain structures 
and resting-state brain networks mediate age-related differences in 
working memory.

2 Methods

2.1 Participants and procedure

We recruited 252 participants from the Iranian brain imaging 
database (IBID; Batouli et al., 2021). The inclusion criteria in the 
study were that the participants should be aged from 20 to 70 years, 
have completed at least 12 years of education, should be able to read, 
and have consent to participate in all stages of the research, in 
accordance with previous works (Batouli and Sisakhti, 2020). By 
selecting a wider age range, the study can capture a more 
comprehensive understanding of the trends and patterns in the 
population. This approach allows for the examination of age-related 
effects across a spectrum of adulthood rather than focusing solely on 
the extremes of age. Also, by not strictly dividing the participants into 
young and old groups, we aimed to avoid confounding factors that 
could arise from comparing two distinct age groups. This could lead 
to more nuanced findings that reflect gradual changes in health rather 
than sudden differences attributable to age alone. Also, they were 
Iranian, and Persian was their first or second language. The exclusion 
criteria were as follows: neurological or severe somatic disorder, 
pregnancy or breastfeeding, weight above 110 kg, previous use of 
drugs for neurological disorders, long-term history of drug use 
(except aspirin, vitamins, antibiotics, pain relievers, sleeping pills, 
anti-nausea drugs, and vaccinations), drug use or alcohol addiction 
(only based on the subjective report), and MRI contraindications.

The participants were distributed in 5 age groups: 59 participants 
in the early adult group (20–30 years old, 30 females), 62 participants 
in the early middle-aged adult group (30–40 years old, 31 females), 
55 participants in the late middle-aged adult group (40–50, 31 
females), 50 participants in the late adult’s group (50–60, 27 females), 
and 26 participants in the older adult group (60–70, 14 females). In 
this study, to achieve the goal of the research, we  used several 
cognitive tasks, including the n-back task and the forward and 
backward digit span tests. Also, several Magnetic Resonance Imaging 
(MRI) protocols were performed. The procedures of data collection 
in the IBID study have been extensively documented in previous 
reports (Batouli et al., 2021). See Table 1 for demographic information 
of the participants by their age group. The ethical approval code for 
this study was IR.NIMAD.REC.1396.319, issued by the National 
Institute for Medical Research Development, in agreement with the 
Declaration of Helsinki, and informed consent was obtained from 
all participants.

2.2 Cognitive tests

In this research, the data of two widely used measures, the N-back 
task and the forward and backward digit span tests, were used to 
investigate the working memory.

2.2.1 N-back task
One of the most popular tasks in cognitive neuroscience studies 

to measure working memory performance is the n-back task (Owen 
et al., 2005). This task typically involves presenting participants with 
a series of stimuli, and the objective is to determine whether each 
stimulus matches the one presented N items prior. The processing load 
increases with increasing value of N, which is indicated by a decrease 
in accuracy and an increase in reaction time (RT; Au et al., 2015). Its 
greater manipulation power and less complexity than other cognitive 
tasks are the reasons for the wide use of this task (Conway et al., 2003). 
It should be noted that in this research the one-back task was used. In 
the condition of a one-back test, the target is any letter that is identical 
to the letter immediately preceding it. So in the letter sequence “N-R-
Y-C…,” the participant should respond “match” if the 5th letter in the 
sequence were a “C” because it matches one previous letter. This task 
was presented on a laptop connected to a button box on which 
participants made their responses. All participants used their index 
fingers to press a specified button. Stimuli were randomly presented 
at a fixed central location on the computer screen. Also, Stimuli were 
randomly presented at a fixed central location on the computer screen 
for 500 ms with an inter-stimulus interval of 2,500 ms. Prior to the 
start of the actual task, participants were trained until they 
demonstrated that they understood the task and their performance 
stabilized. The trials used for practice were not used in the main task. 
The time required for this test was 10 min. At the end, the accuracy 
percentage score for each person’s performance in this test was 
obtained. Increasing the difficulty of the N-back task might have been 
cognitively difficult for the older participants. Using a challenging task 
could lead to fatigue and frustration. Also, By using the 1-back task, 
we  aimed to establish a baseline level of performance before 
progressing to more difficult tasks. This can provide valuable 
information about participants’ cognitive abilities and help determine 
appropriate difficulty levels for future studies.

2.2.2 Digit span test
A prevalent measure for the assessment of verbal working 

memory is the digit span test (Ostrosky-Solís and Lozano, 2006). Digit 
Span test requires subjects to repeat series of digits of increasing 
length. This test can be used in two formats, forward digit span test 
(FDST) and backward digit span test (BDST). In the digit span test, 
first a series of numbers are presented audibly and the examiner asks 
the subject to repeat those digits, In the FDST, the examiner asks the 
subject to repeat the numbers in the same order they were read aloud. 
In the BDST, the examiner asks the subject to repeat the numbers in 
the reverse order of the numbers presented by the examiner. The 
presentation rate of digit spacing and pitch should be consistent with 
standard procedures. The presentation of digit spacing was 1 s apart. 
Constant pitch should be used to pronounce all digits, meaning that 
we did not have to change the pitch when pronouncing each digit in 
a sequence. Varying voice pitch may facilitate the use of a chunking 
strategy, which may lead to overestimation of ability. Also, repetition 
was not allowed in the digit span. If the subject wanted us to repeat 
the sequence, it should be said: “I can only say the numbers once, just 
make your best guess.” The presentation starts with two digits in a 
series and the difficulty level of the test increases with the presentation 
of up to 9 digits in a series. It should be noted that the score in the 
two-digit series is not considered. In the present study, each series is 
repeated three times and one score is given for each correct answer. 
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For this purpose, first, each series was repeated three times and then 
the difficulty of the test was increased. The series of digits in the three 
series were always different. It should be mentioned that a percentage 
correct for each trial was considered for the analyses. Due to the fact 
that the score is calculated from 3-digit to 9-digit series, the maximum 
score of the participants in each forward and backward format is 21.

2.3 MRI scanning

The MRI machine used in this study was a Siemens 3.0 Tesla 
scanner (Prisma, 2016), devoted to research, at the Iranian National 
Brain Mapping Lab.1 We used a 64-channel head coil in our study. The 
MRI protocols were selected to match the international projects, such 
as the UK Biobank or the ENIGMA consortium. The MRI protocols 
were as follows.

Resting-state fMRI: Total time = 6 min; TR = 2,500 ms; TE = 30 ms; 
flip angle = 90 degrees; voxel size = 3.0 × 3.0 × 3.0 mm; #slices = 40; 
matrix size = 64 × 64 × 40; Time-points = 144.

Structural T1-weighted MPRAGE: Total time = 4:12 min; 
TR = 1800 ms; TE = 3.53 ms; flip angle = 7 degrees; voxel 
size = 1.0 × 1.0 × 1.0 mm; #slices = 160; matrix size = 256 × 256 × 160.

All MRI data were visually checked for good quality, based on 
previous methods (Sisakhti et  al., 2021, 2022). This step included 
image information such as matrix and voxel sizes, the number of time-
points (for resting-state fMRI), and checking the images to be right-
to-left oriented. Besides, the visual check was performed to spot 
possible macroscopic artifacts and vibration/motion evidence in 
images, and to check head tilt and head positioning, signal loss, 
ghosting, or other possible artifacts in the data.

2.4 Data analysis

2.4.1 Resting fMRI data analysis
Details of our data analysis were published previously (Alemi 

et al., 2018). In summary, first, the fMRI data underwent seven steps 
of preprocessing, including slice timing correction, realignment, 
co-registration, normalization, smoothing, segmentation, and motion 
correction. Slice timing section was performed using the following 
settings: number of slice = 43; TR = 2,500 ms; TA = 0.9768 (1–1/43). For 
realignment, the settings were: quality = 0.9; separation = 4; 
smoothing = 5; and interpolation = 5. To perform the co-registration 
step, we chose the T1 image as the reference image, and all volumes of 
the resting state images were chosen as the source images. In 

1 www.nbml.ir

normalization, for the image to align we selected the T1 image, and 
for image to write, we selected all volumes of the resting state images 
that were extracted from the last preprocessing step (co-registration). 
The setting of smoothing was: FWHM = 6; data type = same; implicit 
masking = none. For motion correction, the MCFLIRT toolbox, 
utilized in FSL, was used, and the criteria for including the data with 
an acceptable motion was the absolute displacement (rotation and 
translation) being less than 2.0 mm.

Also, one preprocessing step was performed on the structural 
T1-weighted images, which included removing the skull and 
non-brain tissues from the T1-weighted brain images. FSL (FMRIB 
Software Library v6.0 Created by the Analysis Group, FMRIB, Oxford, 
United Kingdom) has a tool for this called BET (Brain Extraction 
Tool), and we  used it with these settings: fractional intensity 
threshold = 0.35; bias field and neck cleanup.

We used the MELODIC toolbox (Multivariate Exploratory Linear 
Optimized Decomposition into Independent Components), from the 
FSL software package (FMRIB Software Library v6.0 Created by the 
Analysis Group, FMRIB, Oxford, United  Kingdom), in order to 
identify the brain activation maps during the resting state; these brain 
activations are referred to as independent components in the spatial 
ICA algorithm performed in Melodic, FSL. Independent Component 
Analysis is used to decompose a single or multiple 4D data sets into 
different spatial and temporal components.

The preprocessed data were imported into MELODIC (group ICA 
analysis, temporal concatenation approach), in order to pick out 
different activation and artifactual components without any explicit 
time series model being specified. The settings of the MELODIC 
analysis included: number of inputs = 252; slice timing 
correction = interleaved; motion correction = MCFLIRT; spatial 
smoothing FWHM = 5 mm; activate intensity normalization; multi 
session temporal concatenation mode of analysis; and Threshold IC 
maps = 0.9. Running the ICA analysis on these 252 resting-state fMRI 
data, based on the above settings and by the temporal concatenation 
approach, resulted in 109 independent components for all the 252 
fMRI data. Each independent component represents a particular 
pattern of brain activation or artifact, observed in common in all the 
252 data and during the resting state.

These 109 components included the maps relevant to the task-
evoked activations, relevant to the intrinsic activities of the individuals 
during the resting-state, as well as the maps relevant to the artifacts or 
other confounding factors. Based on our hypothesis in this work, and 
based on previous works (Tang et al., 2017), we identified the following 
functional networks among our results, and the other steps of the 
analysis were merely performed on these networks: anterior and 
posterior default mode network (Ant-DMN & post-DMN), right and 
left executive control network (R-ECN & L-ECN), and salience network 
(SN), resulting in five networks. Identification of these networks were 
based on visual inspection of the output functional networks.

TABLE 1 The demographic information of the participants; the participants are divided into five groups based on their age.

Age groups Group 1  
(20–30  years)

Group 2  
(31–40  years)

Group 3  
(41–50  years)

Group 4  
(51–60  years)

Group 5  
(61–70  years)

Gender Female 30 31 31 27 14

Male 29 31 24 23 12

YoE mean (±std) 16.89 (±2.17) 16.81 (±3.92) 14.62 (±3.27) 13.97 (±4.06) 13.53 (±3.31)

The number of participants in each group are provided. YoE, Years of Education, provided as mean (±std); std., standard deviation.
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Dual regression is a tool that we can use as part of a group-level 
resting state analysis to identify the subject-specific contributions to the 
group level Independent Component Analsis (ICA). The output of dual 
regression is a set of subject-specific spatial maps and time courses for 
each group level component (spatial map) that can then be compared 
across subjects/groups. All steps of dual regression were applied in FSL 
software. We applied dual regression on the outputs of the MELODIC 
ICA by a very simple code in the virtual machine of Linux in the 
WINDOWS environment. The Dual Regression coding (example code: 
dual_regression group_IC_maps des_norm design.mat design.con 
n_perm output_directory input.filelist) was applied on the outputs of 
the MELODIC ICA step, where the inputs were the 109 components 
estimated for all the 252 participants. The outputs of this step were used 
to quantify the strength of the activation of each of the five networks in 
the 252 participants of the study. The strength was defined as the 
average z-value of the activated voxels (z-value>2.3) in the network.

2.4.2 Volumetric data analysis
Details of our volumetric analysis methods were published 

previously (Batouli et al., 2014a; Batouli and Saba, 2021; Keihani et al., 
2017). As a summary, initially the quality of the T1-weighted scans was 
visually checked for a correct orientation and matrix and voxel sizes. 
The visual check was also performed to spot possible macroscopic 
artifacts and vibration/motion evidence in images, for a proper signal-
to-noise ratio, and to check head tilt and head positioning, signal loss, 
ghosting, or other possible artifacts in the data.

Next, voxel-based morphometry (VBM) analysis (Ashburner and 
Friston, 2000) was performed as follows. The T1- weighted scans were 
segmented into gray matter volume (GMV), white matter (WM), and 
cerebrospinal fluid (CSF), using the Segment toolbox, SPM12, which 
created the Native Space plus Diffeomorphic Anatomical Registration 
Through Exponentiated Lie Algebra (DARTEL) imported outputs 
(Ashburner, 2010); using the default settings of the “Run DARTEL: 
create template” toolbox, the accuracy of inter-subject alignment was 
improved by iteratively averaging the DARTEL-imported data of the 
GMV and WM tissue types to generate population-specific templates; 
and after generation of the templates, all the GMV and WM images 
were normalized to the Montreal Neurological Institute (MNI) 
standard space, using the “Normalize to MNI space” toolbox.

The aim of this analysis was to estimate the volume of several 
brain regions, and as a result, two brain atlases were used in this 
section, including the Desikan-Killiany Atlas (Alexander Loh et al., 
2019) and the Aseg Atlas (Fischl et al., 2002; Sederevičius et al., 2021). 
The atlases provided the ROIs of brain areas, and then the volume of 
an ROI was calculated by adding the probability estimates of the GMV 
and WM maps, and then multiplying the resulted value to 3.375 mm3 
(the volume of one voxel), using a code written in MATLAB. In this 
section, the volume of 85 brain regions were estimated for all the 252 
participants. Generally, 85 gray matter volumes and 5 resting-state 
networks were included in the statistical analysis of the study.

2.5 Statistical analysis

This study aimed to examine the mediating effects of the brain 
structures and resting-state brain networks on the relationship 
between age and working memory. The preliminary analysis was 
done using SPSS version 26 and the mediation analysis was done 

using AMOS version 24. The steps of statistical analysis were as 
follows: first, the mean and standard deviation of the study variables 
(including independent, and dependent variables) were estimated. 
Skewness and kurtosis were also reported, which indicated the 
normal distribution of the data. In the next step, correlation analysis 
was performed between all study variables. It should be noted that 
age was included as an independent variable, brain structures and 
resting-state brain networks as mediators, and working memory as 
the dependent variable. The correlation analyses were first performed 
between age and each score in the cognitive tasks, then the correlation 
between age and each of the brain structures and resting-state brain 
networks was performed; and then, the correlation between brain 
imaging measures and each score in cognitive tasks was calculated. It 
should be  mentioned that to reduce the risk of false positive 
discoveries due to multiple comparisons effect, the study utilized the 
Bonferroni approach as a subset of the Family-Wise Error Rate 
(FWER) multiple comparison corrections, setting the adjusted 
significance level at 0.00052. This level of p-value was applied to all 
our analyses, and therefore the reported results are 
FWER-corrected.

Finally, the mediation effects of the brain structures and resting-
state brain networks on the relationship between age and each score 
in cognitive tasks were investigated. To identify the direct and indirect 
effects of age on working memory, the correlation between the paths 
of the hypothetical model was calculated and the non-significant paths 
were removed step by step. It is noteworthy that years of education 
were included as the control variable in the path analysis. Controlling 
for years of education helps us provide more accurate and meaningful 
insights into the relationships between variables and ensures 
differences in outcomes are not simply due to variations in years of 
education. Finally, the acceptable empirical model was examined.

3 Results

3.1 Preliminary analyses

3.1.1 Descriptive statistics
First, the mean, standard deviation (SD), and range of the age, 

n-back test, forward digit span task and backward digit span task tests 
were computed. The mean accuracy in the one-back task for all the 
participants was 90.98 ± 12.79%. The mean total forward and 
backward digit span task for all the participants were 8.20 ± 1.94% and 
6.21 ± 1.99%, respectively. The ranges for the kurtosis and skewness of 
each data ranged from −1 to +1, indicating that age, n-back test, FDST 
and BDST were normally distributed (Hair et al., 2022). The results by 
age groups are given in Table 2.

Subsequently, the intervening role of years of education and 
gender on variables was examined. The Pearson correlation analysis 
revealed that there was a significant correlation between years of 
education and the score of the n-back test, forward and backward DST 
(r = 0.30, p < 0.01; r = 0.36, p < 0.01; r = 0.44, p < 0.01, respectively). The 
correlation coefficients are presented in Table  3. Also, the T-test 
analysis showed no significant differences between males and females 
in the n-back test [t (df = 250) = −1.03, p > 0.05], FDST [t (df = 250) 
=0.97, p > 0.05], and BDST [t (df = 250) = −0.72, p > 0.05]. The analyses 
indicated that years of education could play the role of an intervening 
variable in working memory, but not gender.
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3.1.2 Age associations
The results of the Pearson correlation analysis indicated that there 

was no significant correlation between age and the score of the n-back 
test (r = 0.06, p > 0.05). However, both the FDST and BDST were 
significantly correlated with age (r = −0.41, p < 0.01; r = −0.42, p < 0.01; 
respectively), suggesting that an increased age was associated with a 
poorer working memory performance.

According to the VBM analysis, 85 cortical and subcortical gray 
matter volumes were obtained in this study. The Pearson correlation 
analysis revealed a significant and negative correlation between age 
and 80 of those volumes, suggesting a decreased GMV with 
increasing age.

In our RSN analysis, five resting-state networks, namely the 
anterior and posterior default mode network (DMN), right and left 
executive control network (ECN), and salience network (SN) were 
selected. The association of the level of the activity of these networks 
with age showed that the anterior default mode network, left executive 
control network, and salience network exhibited a negative correlation 
with age (r = −0.26, p < 0.01; r = −0.23, p < 0.01; r = −0.22, p < 0.01; 
respectively). To address the issue of false-discovery bias when 
conducting multiple comparisons, the Bonferroni correction was 
employed, which adjusted the significance level to 0.00052.

3.1.3 The neural correlates of working memory
To investigate the neural correlates underlying working memory, 

correlation analysis was performed between GMVs and the RSNs with 
the working memory measures. The correlation analysis showed that 
the GMV in 56 and 31 brain structures significantly correlated with 
the FDST and BDST, respectively. On the other hand, no significant 
correlation was observed with the one-back test results. Similarly, the 
activity levels of the RSNs did not show a significant correlation with 
the WM measures. The results of this section are provided in Table 4.

3.2 The higher level (mediation) analysis

The mediation model was conducted to clarify the mediation role 
of the structural and functional brain measures in the relationship 
between age and working memory. Age was the independent variable 
of the path analysis, brain structure and resting state networks as the 
mediators, working memory as the dependent variable, and years of 
education as the control variable. Based on the preliminary analyses 
performed above, only the structural and functional brain measures 
which showed a significant correlation with age and the cognitive tests 
results were included in the model. Based on that, the measures of the 
one-back test were not involved in the model. The brain structures T
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TABLE 3 The correlation coefficients between age and education and 
cognitive tests, and the t-test results for gender differences in the study 
variable; YoE, Years of education; **p-value  <  0.01.

Correlation 
with age

Correlation 
with YoE

M vs. F 
(p-value)

Age – −0.37** 0.40

N-back accuracy % −0.06 0.30** 0.30

Total FDST −0.41** 0.36** 0.33

Total BDST −0.42** 0.44** 0.46
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TABLE 4 The coefficients of the correlation between the brain volumes and age, FDST and BDST measures.

Brain Structure Age correlation FDST correlation BDST correlation

Left Right Left Right Left Right

Inf. Occ. −0.16** −0.20** 0.12* 0.10 0.12 0.16*

Ant. Cingulate −0.43** −0.46** 0.26** 0.26** 0.19** 0.20**

Ant. Mid. Cingulate −0.39** −0.34** 0.29** 0.25** 0.21** 0.22**

Post. Mid. Cingulate −0.41** −0.33** 0.26** 0.28** 0.17** 0.20**

Mid. Frontal −0.52** −0.46** 0.33** 0.29** 0.29** 0.26**

Mid. Occipital −0.38** −0.35** 0.29** 0.21** 0.17** 0.20**

Sup. Occipital −0.33** −0.33** 0.21** 0.16* 0.18** 0.15*

Calcarine −0.25** −0.23** 0.16* 0.12* 0.14* 0.10

Ant. Occipital −0.395** −0.24** 0.21** 0.19** 0.17** 0.20**

Parieto-Occipital −0.30** −0.40** 0.19** 0.31** 0.23** 0.27**

Cuneus −0.23** −0.27** 0.13* 0.18** 0.12 0.14*

Entorhinal G. −0.14* −0.07 0.11 0.12* 0.15* 0.11

Fusiform −0.32** −0.34** 0.23** 0.20** 0.22** 0.18**

Inf. Parietal −0.42** −0.47** 0.26** 0.27** 0.15* 0.19**

Inf. Temporal −0.41** −0.46** 0.27** 0.26** 0.21** 0.24**

Lateral Occipital −0.32** −0.29** 0.23** 0.17** 0.17** 0.17**

Lateral Orbitofrontal −0.55** −0.56** 0.26** 0.26** 0.25** 0.22**

Lingual G. −0.29** −0.24** 0.17** 0.09 0.11 0.04

Medial Orbitofrontal −0.46** −0.46** 0.26** 0.30** 0.19** 0.20**

Mid. Temporal −0.47** −0.49** 0.27** 0.27** 0.23** 0.26**

Para-Hippocampal −0.38** −0.28** 0.22** 0.18** 0.27** 0.22**

Paracentral G. −0.34** −0.31** 0.25** 0.27** 0.16* 0.20**

Pars Opercularis −0.42** −0.39** 0.18** 0.22** 0.10 0.16*

Pars Orbitalis −0.44** −0.41** 0.19** 0.14* 0.15* 0.11

Pars Triangularis −0.50** −0.40** 0.20** 0.23** 0.19** 0.20**

Postcentral G. −0.39** −0.40** 0.23** 0.25** 0.15* 0.19**

Posterior Cingulate −0.41** −0.38** 0.24** 0.24** 0.18** 0.19**

Precentral G. −0.45** −0.41** 0.33** 0.22** 0.21** 0.14*

Precuneus −0.47** −0.51** 0.24** 0.27** 0.26** 0.26**

Sup. Frontal −0.53** −0.50** 0.26** 0.29** 0.23** 0.26**

Sup. Parietal −0.43** −0.39** 0.25** 0.25** 0.24** 0.21**

Sup. Temporal −0.52** −0.51** 0.27** 0.28** 0.29** 0.24**

Supramarginal G. −0.44** −0.45** 0.21** 0.25** 0.20** 0.18**

Insula −0.43** −0.43** 0.25** 0.22** 0.21** 0.19**

Cerebellum Cortex −0.51** −0.45** 0.23** 0.21** 0.27** 0.23**

Thalamus −0.58** −0.49** 0.41** 0.32** 0.29** 0.25**

Caudate −0.48** −0.41** 0.27** 0.24** 0.22** 0.18**

Putamen −0.50** −0.52** 0.32** 0.32** 0.25** 0.24**

Pallidum −0.41** −0.33** 0.23** 0.19** 0.20** 0.14*

Hippocampus −0.40** −0.38** 0.30** 0.29** 0.25** 0.23**

Amygdala −0.44** −0.34** 0.23** 0.27** 0.25** 0.21**

Accumbens Area −0.38** −0.46** 0.21** 0.24** 0.16* 0.25**

Brain Stem −0.21** 0.15* 0.12

*p-value<0.05; **p-value<0.001. Multiple comparison correction was implemented based on the Bonferroni (Family-Wise Error Rate) approach. Inf, inferior; Occ, occipital; Ant, anterior; 
Mid, middle; Sup, superior; G, gyrus.
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were divided into seven categories based on the parcellation of 
AAL-Atlas, including the frontal, parietal, temporal and occipital 
lobes, insula and cingulate, posterior fossa, and central structures 
(Rolls et  al., 2020), and seven separate models were designed 
and tested.

To elucidate the direct and indirect pathways, a path analysis was 
conducted to test whether structures and networks could mediate the 
relationship between age and working memory. As provided in 
Figure 1, which is relevant to the FDST, the results indicated that age 
through the frontal lobe (right medial orbitofrontal volume, left 
precentral volume; β = −0.01, p = 0.037; β = −0.01, p = 0.035), parietal 
lobe (right parietooccipital volume; β = −0.01, p = 0.005), temporal 

lobe (left amygdala; β = 0.01, p = 0.041), occipital lobe (left occipital 
middle volume; β = −0.01, p = 0.018), insula and cingulate (left 
posterior cingulate volume; β = −0.01, p = 0.005) and central structure 
(left thalamus; β = −0.03, p = 0.003) had an indirect effect on 
the FDST.

Also, the results of path analysis on the BDST, as provided in 
Figure 2, indicated that age through the temporal lobe (right superior 
temporal volume; β = 0.01, p = 0.017) had an indirect effect on the 
BDST. None of the resting state networks had an indirect effect on 
these tests. As a result, seven brain regions mediated the relationship 
of age with the FDST, and one brain structure mediated between age 
and the BDST.

FIGURE 1

The mediation model (path analysis) between the brain volumes, age, and the forward digit span task scores. The solid lines indicate the statistically 
significant paths, and the dashed line indicates non-significant paths. The path values show the standardized beta weights and p-values. Pink 
rectangles indicate significant mediating variables. The confidence interval (CI) indicates 95% confidence interval for the indirect and total effects.
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4 Discussion

4.1 Summary of the results

The purpose of this study was to determine which brain structures 
or resting-state brain networks mediate age-related differences in 
working memory. First, the correlation analysis between age and 
working memory tasks showed that there is a significant negative 
correlation between age and FDST and BDST, but no significant 
correlation was observed between age and the n-back task. Then, 
according to the Pearson correlation analysis, correlations between age 
and 80 brain structures were significantly negative, suggesting lower 
GMVs with increasing age. In addition, there was a significant 
correlation between age and three networks (anterior default mode 
network, left frontal network, and salience network). In the next step, 
the correlation analysis showed that there is a relationship between 56 
and 31 gray matter volumes with forward and backward digit span 
tasks, respectively. Furthermore, we found that none of the resting 
state networks had a significant correlation with working 
memory tasks.

Finally, the mediation analysis showed that the GMV in the right 
medial orbitofrontal, left precentral, right parietooccipital, left 
amygdala, left middle occipital, left posterior cingulate and left 
thalamus mediate the age-related differences in the forward digit span 

task. Furthermore, GMV in the right superior temporal mediated the 
age-related differences in the backward digit span task. Neither of the 
resting-state networks had an indirect effect on the forward and 
backward digit span tasks.

4.2 Working memory alters with age

Consistent with our hypothesis, age negatively correlated with the 
score in the forward and backward digit span tasks. The present results 
are consistent with prior literature relating age and working memory 
(Fabiani, 2012; Gajewski et al., 2018). Bosnes et al. (2022) found that 
working memory performance of healthy older adults is associated 
with the process of aging well. Similarly, in a study to investigate 
age-related changes in spatial working memory (Klencklen et  al., 
2017), two groups of adults aged 20–30 and 65–75 were compared. 
The results found that older adults performed less well on working 
memory tasks than younger adults.

Also, our research showed that there is no correlation between the 
age and performance of the participants in the one-back test. 
Consistent with the results, Cansino et al. (2013) investigated how the 
difficulty of a working memory task may affect age-related decline. 
They used the N-back task with two levels of difficulty in their research 
and showed that with increasing age, working memory accuracy 

FIGURE 2

The mediation model (path analysis) between the brain volumes, age, and the backward digit span task scores. The solid lines indicate the statistically 
significant paths, and the dashed line indicates non-significant paths. The path values show the standardized beta weights and p-values. Pink 
rectangles indicate significant mediating variables. The confidence interval (CI) indicates 95% confidence interval for the indirect and total effects.
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decreased in 2-back tasks compared to one-back tasks. However, 
Mattay et al. (2006) showed that older subjects performed as well as 
younger subjects in the one-back task, and therefore it can 
be concluded that the effect of aging on working memory is dependent 
on the cognitive load of the task, and thus, when the cognitive demand 
of a task decreases, it is less affected with increasing age.

4.3 Age differences in brain measures

The present study showed that most volumes of gray matter in 
different brain structures have a negative correlation with aging. 
Consistent with our result, previous studies also have reported brain 
changes with age (Driscoll et al., 2009; Giorgio et al., 2010; Huang 
et al., 2015; Jockwitz et al., 2017; Varangis et al., 2019). For example, 
by examining the differences in brain volume among four groups of 
male and female older adults, Farokhian et al. (2017) found that GMV 
in the frontal, insular, and cingulate cortices was reduced in older 
adults compared to younger adults in both genders.

In the network-level analysis, we  found that activity in three 
resting state networks, including the anterior default mode network, 
left frontal network, and salience network were correlated with aging. 
Consistent with our findings, studies have shown that increasing age 
is associated with a diminished activity in the ant-DMN and 
post-DMN networks (Damoiseaux et al., 2008; Jones et al., 2011; Koch 
et al., 2010; Sambataro et al., 2010). In addition, consistent with our 
result, studies have shown age-related changes and abnormalities in 
the frontal (Fujiyama et  al., 2016) and salience (He et  al., 2014) 
networks in normal aging. Also, a recent systematic review of large-
scale resting-state networks in aging found that the brain of older 
adults is less efficient and modular at rest (Deery et al., 2023). Overall, 
the variations seen in brain gray matter volume during normal aging 
may explain the difference in cognitive performance among 
older individuals.

4.4 The mediation effect on brain measures

At the cerebral level, correlation analysis revealed that worse 
performance in working memory is associated with significantly 
smaller GMV in multiple brain structures, especially in the frontal, 
temporal, and parietal regions. These regions are known to be involved 
in the working memory performance (Emch et al., 2019; Nissim et al., 
2017; Rottschy et al., 2012). Finally, the path analysis results showed 
that the frontal lobe (right medial orbitofrontal volume, left precentral 
volume), parietal lobe (right parietooccipital volume), temporal lobe 
(left amygdala), occipital lobe (left middle occipital volume), Insula 
and cingulate (left posterior cingulate volume) and central structure 
(left thalamus) mediate adult life span differences in the forward digit 
span task. Furthermore, we  found that the temporal lobe (right 
superior temporal volume) mediates adult life span differences in the 
backward digit span task.

Consistent with our result, Nissim et al. (2017) in a research aimed 
at determining the neural correlates of reduced working memory 
performance in the frontal lobes, compared two groups of healthy 
elderly people with high and low working memory in terms of cortical 
thickness and cortical surface area. The results showed that the cortical 
surface area in the medial orbital frontal gyrus, inferior frontal gyrus, 

and superior frontal gyrus is significantly reduced in subjects with a low 
performance in working memory. In another study, Schulze et al. (2011) 
aimed to investigate working memory performance in healthy elderly 
using multimodal imaging techniques, comparing two groups of young 
adults (20–30 years of age) and the older (60+ years of age). The results 
showed a negative correlation between gray matter volume and reduced 
working memory performance in older adults. Also, the results showed 
that with increasing working memory load and increasing age, a 
significant increase in activation was observed in the left dorsal and 
ventral lateral prefrontal cortex. In another study, greater activity in the 
dorsolateral prefrontal cortex was observed in younger adults than in 
older adults during memory retrieval, which suggests that the 
dorsolateral prefrontal cortex mediates the age-related decline in 
working memory performance (Rypma and D’Esposito, 2000). Mattay 
et al. (2006) also showed lower performance with increased working 
memory load in older people compared to younger ones, and at the 
same time, showed less activity in the prefrontal regions. A recent study 
also reported that increasing age is associated with a linear decrease in 
the neural activation during spatial working memory performance in 
the related regions (Archer et al., 2018). In general, with a decrease in 
behavioral performance in the active memory, the neural activity in the 
related areas decrease, and with an increase in behavioral performance, 
the neural activity increases in the same areas in a corresponding manner.

Consistent with our results, studies have specifically reported 
age-related decreases in gray matter volume in the neocortex, 
including prefrontal, parietal, and temporal cortices (Giorgio et al., 
2010), as well as deep structures such as the thalamus (Fama and 
Sullivan, 2015) and amygdala (Zanchi et al., 2017). The weakening of 
these regions, which can be the neural substrates of cognitive function 
(Smith et al., 2023), may be the basis of the observed differences in 
working memory. For example, MacHizawa et al. (2020) showed in a 
study that a greater volume of gray matter in the left lateral occipital 
region is associated with better visual working memory performance. 
It has also been reported that memory performance in older adults is 
significantly related to the gray matter volume of the middle frontal 
gyrus and several regions of the temporal lobe (Van Petten et al., 
2004). Inconsistent with our results, Piras et al. (2010) reported that 
there is no significant relationship between thalamic gray matter 
volume and WM performance. In contrast, Van De Mortel et  al. 
(2021) reported a reduction in thalamus volume as one of the earliest 
signs of cognitive decline in Mild cognitive impairment. It should 
be  noted that our study aimed to identify for the first time the 
mediating role of gray matter volume in certain areas of the brain in 
the relationship between age and working memory.

It is important to highlight that in our work differential brain 
structures mediate the relationship between age and the forward 
versus backward digit span task. One explanation for the differential 
brain structures between forward and backward digit span is that 
these two tasks require different cognitive demands. Overall, the 
backward digit span involves more spatial processing and higher 
cognitive control compared to the forward digit span. For example, 
the backward digit span is associated with greater activation of the left 
occipital visual area, left prefrontal cortex, right dorsolateral prefrontal 
cortex, frontal eye field, frontal operculum cortex, anterior insular 
cortex, and dorsal anterior cingulate cortex (Donolato et al., 2017). In 
our work, the right superior temporal volume mediates the 
relationship between aging and the backward digit span task. One 
possible interpretation for our finding is the involvement of this region 
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in processing both object- and space-related information. Therefore, 
its role in the backward digit span task is to be expected.

5 Limitations

The present study has a number of limitations. First, two tasks 
(n-back task and digit span test) were adopted to evaluate working 
memory. It is noteworthy that the selection of different tasks may 
produce different results. To measure working memory more 
accurately, it is suggested to use various working memory tasks both in 
terms of difficulty level and type (visual and verbal) in future studies. 
Moreover, in the present study, resting-state networks and voxel-based 
morphometry were used to investigate the neural correlates related to 
working memory. It is suggested that multimodal brain imaging 
measures can be  used in future studies to obtain a more accurate 
measure of neural correlates related to working memory. Thirdly, 
considering that the cross-sectional study does not provide any 
information about the changes in gray matter volume and the decrease 
of working memory over time, it is suggested that future studies use a 
longitudinal approach to investigate the extent of GMV changes 
corresponding to working memory. Also, we tested the mediation role 
of the variables, although selecting an approach for actually testing the 
causality between the measures would be preferable.

In summary, we successfully demonstrated that GMV in multiple 
brain structures mediate age-related differences in working memory 
performance. Our findings go beyond previous research on age-related 
WM decline. WM as an executive function is crucial for learning, 
working, and managing daily life. Our results are consistent with the 
reports regarding the decrease in GMV with age and its effect on 
cognitive performance such as working memory. In general, our 
results support the view that some specific brain structures can be the 
basis of specific cognitive functions. We conclude that identifying 
brain structures mediating the relationship between age and working 
memory may provide an opportunity for early detection of individuals 
at risk for age-related memory decline, as well as an opportunity to 
design strategies aimed at reducing or preventing age-related 
memory decline.
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