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Applying Generative Artificial
Intelligence to cognitive models
of decision making

Tyler Malloy* and Cleotilde Gonzalez

Dynamic Decision Making Laboratory, Department of Social and Decision Sciences, Dietrich College,

Carnegie Mellon University, Pittsburgh, PA, United States

Introduction: Generative Artificial Intelligence has made significant impacts in

many fields, including computational cognitive modeling of decision making,

although these applications have not yet been theoretically related to each other.

This work introduces a categorization of applications of Generative Artificial

Intelligence to cognitive models of decision making.

Methods: This categorization is used to compare the existing literature and to

provide insight into the design of an ablation study to evaluate our proposed

model in three experimental paradigms. These experiments used for model

comparison involve modeling human learning and decision making based on

both visual information and natural language, in tasks that vary in realism and

complexity. This comparison of applications takes as its basis Instance-Based

Learning Theory, a theory of experiential decision making from which many

models have emerged and been applied to a variety of domains and applications.

Results: The best performing model from the ablation we performed used a

generative model to both create memory representations as well as predict

participant actions. The results of this comparison demonstrates the importance

of generative models in both forming memories and predicting actions in

decision-modeling research.

Discussion: In this work, we present a model that integrates generative and

cognitive models, using a variety of stimuli, applications, and training methods.

These results can provide guidelines for cognitive modelers and decision making

researchers interested in integrating Generative AI into their methods.

KEYWORDS

cognitive modeling, decision making, generative AI, instance based learning, natural

language, visual learning

1 Introduction

Cognitive models of decision making aim to represent and replicate the cognitive

mechanisms driving decisions in various contexts. The motivation for the design and

structure of cognitive models is based on various methods; some models focus on

the connection to biological processes of the brain, while others aim to emulate more

human-like behavior without a biological connection. However, these motivations are

not exhaustive or mutually exclusive. In fact, many approaches seek to reconcile these

objectives and integrate the various methods. This paper proposes a framework to

apply Generative Artificial Intelligence (GAI) research methods to cognitive modeling

approaches and evaluates the efficacy of an integrated model to achieve the varied goals

of decision modeling research.

Generative Models (GMs) are a category of AI approaches that generate data,

often corresponding to the input data type, covering textual, visual, auditory, motor, or

multi-modal data (Cao et al., 2023). GMs have shown remarkable advances, in various

domains, in the effective generation and representation of complex data, unattainable with

conventional methods (Bandi et al., 2023). The large space of research in GAI methods
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can be daunting for cognitive modelers interested in applying these

techniques to their models for various reasons. The complexity and

variety of these approaches are one of the motivations of this work,

where we additionally seek to provide insights on the methods for

applying GAI to cognitive models of decision making.

Although GMs have shown impressive success in various

data modalities relevant to decision science research, there are

significant concerns about their utilization (Bommasani et al.,

2021). This is due in part to the potential of biases present

in language processing and generating models such as Large

Language Models (LLMs) (Bender et al., 2021). Various lines of

research have suggested close connections to GMs and biological

processes in some contexts, such as Variational Autoencoders

(VAEs) (Higgins et al., 2021) and Generative Adversarial Networks

(GANs) (Gershman, 2019). However, there is a general lack of

understanding of how GMs integrate with decision making in

a biologically plausible manner. Due to this lack of clarity on

the relationship between GMs in decision making and biological

realism, careful consideration must be given when choosing

integrations with cognitive models aiming at reflecting biological

realities.

Previously, the integration of GMs with cognitive models of

decision making has been largely done on a case-by-case basis

aimed at satisfying the needs of particular learning tasks (Bates

and Jacobs, 2020; Malloy et al., 2022a; Xu et al., 2022), for a

complete list of these approaches, see the Supplementary material.

Consequently, there is an absence of a comprehensive framework

for potential methods to integrate GMs and cognitive models of

decisionmaking. Understanding the impact of different integration

methods is important, especially given the risks associated with

improper application of AI technologies, particularly new ones

within decision-making systems (Navigli et al., 2023) and the

broader social sciences (Bommasani et al., 2021). Thus, elucidating

these integration strategies has significant implications for ensuring

the responsible and effective deployment of AI in decision-making

contexts.

To address the challenges posed by GMs, one approach is to

construct an integration of GMs and cognitive models in a way

that allows for effective testing of component parts. This research

introduces a novel application of GAI research and cognitive

modeling of decision making, as well as a categorization of the

different features of past integrations. This categorization not

only aims at informing the design of future integrations, but also

provides a means of comparison between different integration

approaches. Based on this framework, we offer an ablation study

to compare the integration of GMs into cognitive models. This

method enables a thorough analysis of the individual components

of these integrations, shedding light on how different integration

methods affect behavior.

2 Related work

2.1 Cognitive architectures and
instance-based learning theory

Several Cognitive Architectures (CAs) have been developed

and applied to explain and predict reasoning, decision making,

and learning in a variety of tasks, including SOAR (Laird et al.,

1987), CLARION (Sun, 2006), and ACT-R (Anderson et al.,

1997). Among these, ACT-R has been the basis for many other

frameworks and theories that have emerged from the mechanisms

it proposes. In particular, Instance-Based Learning Theory (IBLT)

is based on an ACT-R mechanism that represents the process of

symbolic cognition and emergent reasoning to make predictions

frommemory and determine human learning and decision making

(Gonzalez et al., 2003).

Instance-Based Learning Theory (IBLT) is a cognitive approach

that mirrors human decision-making processes by relying on the

accumulation and retrieval of examples from memory instead

of relying on abstract rules (Gonzalez et al., 2003). IBL models

serve as tangible applications of IBLT tailored to specific tasks,

encapsulating decision contexts, actions, and rewards pertinent to

particular problem domains. These models learn iteratively from

previous experiences, store instances of past decisions, and refine

the results through feedback from the environment. Subsequently,

IBL models leverage this repository of learned instances to navigate

novel decision challenges. The adaptive nature of IBLmodelsmakes

them particularly effective in contexts characterized by variability

and uncertainty, as they can adapt flexibly to new situations by

drawing parallels with past encounters. In particular, IBL models

excel at capturing intricate patterns and relationships inherent in

human behavior, a feat often challenging for explicit rule-based

representations. Thus, IBLT stands as an intuitive framework to

clarify how humans assimilate knowledge from experience and

apply it to novel decision-making scenarios (Gonzalez, 2023).

In this research we selected IBLT due to its theoretical

connection to the ACT-R cognitive architecture and its wide and

general applicability to a multitude of tasks. IBL models have

demonstrated fidelity to human decision making processes and

have demonstrated their efficacy in various domains, including

repeated binary choice tasks (Gonzalez and Dutt, 2011; Lejarraga

et al., 2012), sequential decision-making (Bugbee and Gonzalez,

2022), theory of mind applications (Nguyen and Gonzalez, 2022),

and practical applications such as identifying phishing emails

(Cranford et al., 2019), cyber defense (Cranford et al., 2020), and

cyber attack decision-making (Aggarwal et al., 2022).

IBL models make decisions by storing and retrieving instances

i in memory M. Instances are stored for each decision made by

selecting options k. Instances are composed of features j in the

set F and utility outcomes ui. These options are observed in an

order represented by the time step t, and the time steps in which an

instance occurred is given T(i).

Each instance i that occurred at time t has an activation

value, which represents the availability of that instance in memory

(Anderson and Lebiere, 2014). The activation is a function of the

frequency of occurrence of an instance, its memory decay, the

similarity between instances in memory and the current instance,

and noise. The general similarity of an instance is represented by

summing the value Sij over all attributes, which is the similarity

of the attribute j of instance i to the current state. This gives the

activation equation as:

Ai(t) = ln

(

∑

t′∈Ti(t)

(t − t′)−d

)

+ µ
∑

j∈F
ωj(Sij − 1)+ σξ (1)
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The parameters that are set either by modelers or set to default

values are the decay parameter d; the mismatch penalty µ; the

attribute weight of each j feature ωj; and the noise parameter σ .

The default values for these parameters are (d = 0.5, µ = 1, ωj = 1, σ

= 0.25), which are based on previous studies on dynamic decision

making in humans (Gonzalez and Dutt, 2011; Lejarraga et al., 2012;

Gonzalez, 2013; Nguyen et al., 2023).

The probability of retrieval represents the probability that a

single instance in memory will be retrieved when estimating the

value associated with an option. To calculate this probability of

retrieval, IBL models apply a weighted soft-max function to the

memory instance activation values Ai(t) (Equation 1) giving the

equation:

Pi(t) =
expAi(t)/τ

∑

i′∈Mk
expAi′ (t)/τ

(2)

The parameter that is either set by modelers or set to its

default value is the temperature parameter τ , which controls the

uniformity of the probability distribution defined by this soft-max

equation. The default value for this parameter is τ = σ
√
2.

The blended value of an option k is calculated at time step t

according to the utility outcomes ui weighted by the probability

of retrieval of that instance Pi (Equation 2) and summing over all

instances in memoryMk to give the equation:

Vk(t) =
∑

i∈Mk

Pi(t)ui (3)

IBL models use this Equation (3) to predict the value of

options in decision-making tasks. These option blended values are

ultimately used to determine the behavior of the IBL model, by

selecting from the options currently available the choice with the

highest estimated utility. The specific notation for these IBL model

equations are described in the python programming package PyIBL

(Morrison and Gonzalez, 2024).

2.2 Generative Artificial Intelligence

Recent methods in Generative Artificial Intelligence (GAI)

have shown impressive success in a variety of domains in the

production of natural language (Brown et al., 2020), audio (Kim

et al., 2018), motor commands (Ren and Ben-Tzvi, 2020), as well as

combinations of these through multi-modal approaches (Achiam

et al., 2023). This is done through the training of GenerativeModels

(GMs) which take as input some stimuli, often of the same type as

the output, and learn to generate text, audio, and motor commands

based on the input and training method. In this work, we focus on

the processing of visual and natural language information through

the formation of representations achieved by GMs that are useful

for cognitive modeling.

Visual GMs form representations of visual information and

are originally structured or can be altered to additionally generate

utility predictions that are useful for decision-making tasks

(Higgins et al., 2017). These utility predictions generated by visual

GMs have previously been applied to the prediction of human

learning and decision making in contextual bandit tasks (Malloy

et al., 2022a), as well as human transfer of learning (Malloy et al.,

2023). Our approach is agnostic to the specific GM being used,

which means that it can be applied to comparisons of different

visual GMs to compare their performance.

2.2.1 Representing data with GMs
The first of two desiderata to integrate GM in cognitive

modeling of decision making was to relate models to biological

processes in humans and animals. Here, this is understood within

the context of representing data with GMs in a manner similar

to that represented in biological systems. Recent research on GM-

formed data representations has demonstrated close similarities

to biological systems (Higgins et al., 2021), motivating their

integration into cognitive models that are interested in similarity

to biological cognitive systems.

An example of such a GM that is used in this work is the

β-Variational Autoencoder (β-VAE) (Higgins et al., 2016, 2017)

which learns representations that have been related to biological

brain functioning, achieved by comparing the activity of individual

neurons in the inferotemporal face patch of Macque monkeys to

learned model representations when trained on images of human

faces (Higgins et al., 2021). The format of these representations

specifically is defined by a multi-variate Gaussian distribution

that is sampled from to form a latent representation, which is

fed through the decoder neural network layers to result in a

lossy reconstruction of the original stimuli. The training of these

models includes a variable information bottleneck controlled by

the β parameter. This information-bottleneck motivation of these

models has been associated with cognitive limitations that impact

decisionmaking in humans, resulting in suboptimal behavior (Bhui

et al., 2021; Lai and Gershman, 2021).

These representations have been related to the processing of

visual information from humans in learning tasks (Malloy and

Sims, 2022), as they excel in retaining key details associated with

stimulus generation factors (such as the shape of a ball or the age

of a person’s face) (Malloy et al., 2022b). Although we employ β-

VAEs in this work, there are many alternative visual GMs that are

capable of forming representations useful for decisionmaking. This

includes visual generationmodels including Generative Adversarial

Networks (GANs) and Visual Transformer (ViT) based models.

In our previous work, we performed a comparative analysis of

various integrations with an IBL model (Malloy et al., 2023) and

demonstrated that each can be effectively integrated with IBL to

produce reasonable human-like behavior, but that information-

constrained methods like the β-VAE are most accurate.

2.2.2 Decision making with GMs
The second of two desiderata to integrate GMs into cognitive

models of decision making is generating behavior that is similar to

biological systems. This possibility is most salient in cases where

GMs are capable of producing complex data, such as text, speech,

or motor commands, which alternative models are not equipped

to produce. However, in many cases making decisions in specific

contexts with pre-trained GMs can be difficult due to the large size

and training time of models such as BERT (Kenton and Toutanova,
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2019), GPT (Radford et al., 2018), and PaLM (Chowdhery et al.,

2023), as these models are not trained to explicitly make decisions.

Many recent approaches have applied GMs and their

component structures (such as transformers Chen et al., 2021

or variational autoencoders Higgins et al., 2017), directly to

decision making, in machine learning research. In Kirsch et al.

(2023), the authors apply transformer models to learn generalizable

behavior that can be applied in a variety of reinforcement learning

(RL) domains, such as robotics (Brohan et al., 2023), grid-based

environments (Li et al., 2022), and video games (Reid et al., 2022).

Other approaches apply feedback to RL models through the

use of LLMs (McDonald et al., 2023; Wu et al., 2023), to

provide a similar model learning experience as methods such

as RL with human feedback (Griffith et al., 2013), without the

need to collect human judgements. Offline RL has also been

investigated through the integration of LLMs to reduce the need

for potentially computationally expensive online learning (Shi et al.,

2023). Beyond RL-based methods, some approaches draw some

inspiration from cognitive architectures by using a similarity metric

to a history of outputs to inform new choices such as the Generative

Agents approach (Park et al., 2023).

2.3 Integrations of generative models and
cognitive models in decision making

Previous research has explored numerous instances of

integrating GMs and cognitive models, but these efforts have

often been confined to single domains such as language, visual

processing, or motor control. Additionally, the integration of GMs

and cognitive models has typically been done for a single task

or set of closely related tasks, mainly used to address a specific

limitation within a cognitive model. These related applications

span a diverse range of domains, including prediction of human

transfer of learning (Malloy et al., 2023), phishing email detection

(Xu et al., 2022), motor control (Taniguchi et al., 2022), auditory

learning (Beguš, 2020), and multi-modal learning (Ivanovic et al.,

2018).

Integrating GMs and cognitive models can be done in various

ways: by replacing an existing functionality, enhancing a sub-

module, or introducing a novel ability to the model. For example,

LLMs have been proposed as potential knowledge repositories

within cognitive models. These repositories can be accessed when

relevant knowledge is required (Kirk et al., 2023), similar to

a human-generated repository of general knowledge such as

ConceptNet (Speer et al., 2017). In particular, ConceptNet has

previously been integrated into a cognitivemodeling framework for

tasks such as answering questions (Huet et al., 2021).

Another recent approach used LLMs to produce highly human-

like interactions between agents in a multi-player game involving

natural language communication (Park et al., 2023). Although this

model did not directly implement cognitive architectures, it did

use inspiration from several architectures that were previously

applied to multiplater games like Quakebot-SOAR (Laird, 2001)

and ICARUS (Choi et al., 2007). This was done by incorporating

a database of encodings of previously observed textual stimuli

and then comparing them based on similarity (Park et al., 2023).

Human-like language generation has also been investigated by

applying GM techniques (Friston et al., 2020).

Outside the context of language models, some work has

provided evidence for connections between human visual

information processing and Generative Adversarial Networks

(GANs) (Goetschalckx et al., 2021). Another method applied VAEs

to modeling working memory formation in a task that required

identifying the type of fault in a geological education task (Hedayati

et al., 2022). In social science research, GMs have been applied

on a range of tasks in replicating and reproducing well-studied

phenomena in human social behavior (Aher et al., 2023; Ziems

et al., 2023). In Hedayati et al. (2022), the authors employ a VAE

to form representations used by a Binding Pool (BP) model (Swan

and Wyble, 2014) to predict the categorization of visual stimuli.

2.3.1 Categories of integrating generative models
and cognitive models in decision making

Table 1 shows a selection of the most relevant previous

approaches to the integration of GM and cognitive models of

decision making and learning. A longer version of this analysis

of previous methods is included in the Supplementary material,

including some of the applications of GMs in decision science or

machine learning that did not directly utilize cognitive modeling or

did not predict human behavior.

Previous approaches are categorized based on the following

features: (1) Generative Actions: whether the GM is used to

generate the actions executed by the agent; (2) Generative

Memories: Whether the memory representations used by the

cognitive model are generated by a GM; (3) Stimuli Type: the

types of stimuli the GM is capable of processing; (4) Cognitive

Model Type: the type of cognitive model that is used as a base for

integration; (5) GM Type: the type of GM that is integrated into

the cognitive model; and (6) GM Training: Whether the GM is pre-

trained on a large existing corpus, as is done in foundation models,

or trained in a tailored manner to solve a specific modeling task.

These features for evaluating existing models are motivated in

part by The Common Model of Cognition (Laird et al., 2017), which

describes the commonalities that cognitive architectures such as

SOAR and ACT-R have in terms of their connections of different

cognitive faculties. The common model of cognition reviews the

history of cognitive model comparisons, based on their method of

producing actions, memories, types of perception items, and how

these faculties were connected.

Mitsopoulos et al. (2023b) propose an integration of GMs into

their “psychologically valid agent” framework, which is rooted

in ACT-R and IBLT. This framework has been instrumental

in modeling and predicting COVID masking strategies, as

demonstrated in their study on this topic (Mitsopoulos et al.,

2023a). Another architecture, CogNGen (Ororbia and Kelly,

2023), incorporates MINERVA 2 (Hintzman, 1984) as a short-

term memory module while performing other cognitive faculties

using both predictive coding (Rao and Ballard, 1999) and neural

generative coding (Ororbia and Kifer, 2022). The efficacy of this

architecture has been demonstrated in various grid-world tasks

(Chevalier-Boisvert et al., 2018), demonstrating improved success

in challenging escape-room style environments.
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TABLE 1 Comparison of previous applications of integrating GMs into cognitive models based on our proposed categorization.

Generative
actions

Generative
memories

Stimuli type Cognitive model GM type GM training

GINGER (proposed) ✔ ✔
Textual

or Visual
IBL

VAEs,

LLMs

Ad-hoc,

Pretrain

Mitsopoulos et al. (2023b) ✗ ✔ Textual ACT-R LLMs Pretrain

Malloy et al. (2023) ✗ ✔ Visual IBL
VAEs,

GANs
Ad-hoc

Malloy et al. (2022a) ✔ ✗ Visual RL VAEs Ad-hoc

Xu et al. (2022) ✗ ✔ Textual IBL LLMs Pretrain

Hedayati et al. (2022) ✗ ✔ Visual BP VAEs Ad-hoc

Higgins et al. (2021) ✔ ✗ Visual RL VAEs Ad-hoc

Bates and Jacobs (2020) ✔ ✗ Visual None VAEs Ad-hoc

Additional comparisons to models that are not applied to biological cognition are enumerated in an extended table in the Supplementary material. Green check marks indicate that a model or

method contains the related generative method. Red x marks indicate that a model or method does not contain the related generative method.

Connecting cognitive models with GMs to produce memory

representations of decision making tasks has been explored in

Malloy et al. (2023), which compared Generative Adversarial

Networks (GANs), Variational Autoencoders (VAEs) and Visual

Transformers (ViTs), in their ability to integrate with an IBL

model. This work was inspired by previous applications of GMs in

modeling biological decision making, such as Higgins et al. (2021).

Another approach which has incorporated LLMs with instance

based learning was presented in Xu et al. (2022), which involved

LLM model representations of phishing emails used to predict

human decision making in an email categorization task.

3 Proposed model

3.1 Generation INformed by Generative
Environment Representations (GINGER)

In this work, we propose a method that integrates GMs into

both the action and memory generation of a cognitive agent based

on IBLT. This integration of GMs and IBL models can process

either textual or visual information which is achieved by leveraging

Variational Auto-Encoders or Large language Models. The result

is a method of Generation INformed by Generative Environment

Representations (GINGER).

In Figure 1, we outline a general schematic of our proposed

GINGER model. The first step of this process is for the GM

model input to be processed by the model. In the experiments

used for this work, this includes textual and visual information,

but could be applied to others. From this input, the GM produces

some model output and representations of the model input that

is used as the memory of the GINGER model. This is used by

the cognitive model, either as a part or as the whole of the state

representation. From these two action prediction methods, the

GINGER model produces two action outputs, which are resolved

based on the specifics of the environment, such as averaging for

utility prediction.

There are two optional connections betweenGMs and cognitive

models that are not investigated in this work and are instead left for

future research. The first is the connection from the model output

to the action being performed. While the generation of utility

predictions is always informed by cognitive model predictions (by

training the actions based on cognitive model predictions), it is also

possible to include the GM output (text, motor commands, etc.) as

the whole or a part of the action performed. Secondly, the cognitive

model and GM can optionally be connected from the cognitive

model into the GM input, such as by using predictions from the

cognitive model as a part of the GM input (e.g., as the prompt

of a LLM) to inform how representations and outputs should be

formed.

3.1.1 Generative actions
The first part of the GINGER model name, “generation

informed by” refers to the sharing of utility predictions made by

the cognitive model when training the utility prediction of the

generative model. Action generation is accomplished by directly

generating utility predictions that are used in decisionmaking tasks

to determine the action with the highest utility based on a specific

stimulus. This can be achieved in two different ways depending on

whether the GM is a pre-trained foundation model or an ad-hoc

trained model for a specific task.

In the case of ad-hoc trained models, the models themselves

have been adjusted to generate utility predictions and are

trained using the cognitive model. For instance, a β-Variational

Autoencoder (β-VAEs) model which typically produces

reconstructions of original stimuli can be adjusted to additionally

predict utility, as was done in previous methods (Higgins et al.,

2017; Bates and Jacobs, 2020; Lai and Gershman, 2021; Malloy

et al., 2022a). Then, instead of training the model to predict actions

based on reward observations from the environment, it is trained to

match the predictions of the cognitive model. β-VAEs are trained

to produce as accurate reconstructions as possible, given the size

of the latent representation and its informational complexity,

measured by KL-divergence, which is penalized through the β

parameter. This means that adjusting the β parameter to individual

cognitive abilities can result in more human-like predictions of

actions based on model representations (Bates and Jacobs, 2019,

2020; Malloy et al., 2022b).

In the case of pre-trained or foundation models, the models

cannot be easily adjusted after training prior to integration with

cognitive models. For that reason, when integrating pre-trained
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FIGURE 1

Comparison of our proposed GINGER model (bottom right) and an ablation of three alternative IBL based models. In the top-left is the basic IBL

model which predicts decision making in visual or text based tasks in terms of hand-crafted attributes to produce actions. In the bottom-left is the

Generation INformed by IBL model, which makes predictions of actions using a neural network that takes as input generative model representations

and is trained according to an IBL model (dashed line). The top-right shows the Generative Environment Representation model, which makes

predictions using an IBL model that uses features defined by the generative model. Finally, the full GINGER model combines these two approaches,

predicting actions by evenly weighing GINIBL and GERIBL action predictions.

LLMs or other foundation models, our GINGER approach uses

representations learned by thesemodels as input to a separate utility

prediction neural network. The structure and precise training

of these models is left to the discretion of cognitive modelers

according to the demands of the learning task under investigation.

In our work, we use a simple 2 layer fully connected network with

64 units to predict the utility associated with these representations.

See the Supplementary material for more details on this training

approach.

3.1.2 Generative memories
The second part of the GINGER name, “generative

environment representations”, refers to the creation of stimuli

representations that are created based on the requirements of the

learning task to capture the stimuli type of interest. This reliance

on representations formed by GMs allows for either total reliance

on representations, or adding the representation as an additional

feature. When applying these representations to IBL, we determine

the similarity Sij in the calculation of the activation function (see

Equation 1) through an integration of a similarity metric defined

by the training of the GM SimGM as follows:

Ai(t) = ln

(

∑

t′∈Ti(t)

(t − t′)−d

)

+ µ
∑

j∈F
ωj(Sij − 1)+ σξ

Sij = SimGM(p(zi|ki), p(z|k))

(4)

Formally, GMs process some input x, which can be visual,

textual, auditory, or multi-modal input, and produce some output

y based on that input. During this generation, these models form

representations of the input z that can vary in structure, such as

the multivariate Gaussian distributions used by β-VAEs or word

vector embedding used by LLMs. In our model, we consider the

option or part of the option relevant for modeling k to be the

input to the GM. This allows for the formation of representations

z based on these options. The similarity of options can be instead

calculated based on these representations of current options p(z|k)
and representations of options stored in the IBL model memory

p(zi|ki). The similarity of these representations is defined by the

training method of the GM, used as a metric of similarity (SimGM).

In some GMs such as conversational LLMs, the output y is

trained to match with subsequent textual tokens in a conversation

or other language domain. In other types of GMs like Variational

Autoencoders the models are trained such that the output y

is as close to the input x as possible given the information

constraint imposed by the model. These two types of models are

used in our comparison of different methods of integrating GMs,

but alternative GM structures and training methods can also be

integrated with our proposed modeling approach.

The generation of internal representations is a requirement in

a sense for GMs as they must form some representation z based on

the input x in order to process it. As with the model output y, the

structure of these internal representations z varies between different

GMs. In the case of LLMs, these internal representations are

structured as word vector embeddings. This allows for measures of

similarity (SimGM in Equation 4) based on cosine similarity, which

is conceptually similar to a high-dimensional distance metric.

In the case of β-VAEs, these representations take the form of

high-dimensional Gaussian distributions which are sampled from
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and fed through the subsequent layers of the model to form the

reconstructed version of the original stimulus. With these types of

representations, it is possible to measure similarity in terms of the

KL-divergence of these representations.

In both cases, these GMs provide a meaningful representation

of the model input, as well as a method of comparing these

representations to other inputs. This is highly relevant for

integration with an IBL method since the similarity of instances

needs to be calculated to determine a memory activation, which

is easily achieved through the use of the existing similarity metric

required by the training of the GM itself. The next sections on

generative action production and generative memory production

will further detail how the representations formed by GMs are used

in the IBL cognitive model, as well as how the IBL and GM are

integrated in an interdependent manner that affords improvements

to both models.

4 Model ablation

This work proposes a comparison of different methods of

integrating GMs into cognitive models or architectures, through an

ablation study comparing the categorizations described in Table 1.

To do this, we use the Instance-Based Learning (IBL) model of

dynamic decision making (Gonzalez et al., 2003). As opposed to a

comparison of our proposed model against a highly similar model

that instead is based on a different cognitive model or GM, or has

a different method of integrating GMs and cognitive models, we

are interested in providing insight to cognitive modelers interested

in applying GMs to their own approaches, and as such adopt an

ablation analysis of GINGER.

This ablation is based on the two key features of GINGER,

the ‘Generative Environment Representations’ which are related

to the generation of cognitive model memory representations,

and the ‘Generation Informed’ by cognitive models, allowing for

the actions selected by GMs to take information from cognitive

models. Ablating away the generative environment representations

results in a model that only uses generation informed by cognitive

models (GIN). Ablating away the generation informed by cognitive

models results in a model that only uses generative environment

representations (GER). Finally, ablating both away results in

the baseline Instance Based Learning (IBL) model which makes

predictions using hand-crated features of tasks.

These four models (GIN, GER, GINGER, and IBL) form

the baseline for our ablation comparisons in three experimental

contexts involving different types of stimuli and complexities. The

following sections detail these experiments as well as comparisons

of the performance of the proposed model and the ablated versions.

Participant data from these experiments and all trained models,

modeling result data, and code to replicate figures is collected into

a single OSF repository.1

4.1 Contextual bandit task

The experiment was originally conducted at the Niv

Neuroscience Lab at Princeton University (Niv et al., 2015).

1 https://osf.io/m6qc4/

Participants were presented with three options, each distinguished

by a unique combination of shape, color, and texture. Shapes

included circular, square, and triangular forms; colors ranged from

yellow, red, and green; and textures were dotted, wavy, and hatched

(see Figure 2A). In every trial of the task, all of the 9 possible

features appeared once within each option, ensuring that there will

always be an option of each color, shape and texture. The features

within the options were randomized to prevent repetitions in each

position (left, middle, right). Participants had 1.5 seconds to make

their selection, followed by a brief display (0.5 seconds) of the

chosen option and the feedback showing the point reward (0 or 1).

Then a blank screen was displayed for 4–7 seconds before the next

stimulus.

During a single episode of the task, one of the nine features

is selected as the feature of interest, and selecting the option with

that feature increases the likelihood of receiving a reward. Episodes

lasted approximately 20-25 trials before transitioning to a new

feature of interest. The reward in this task is probabilistic, and

selecting the feature of interest results in a 75% chance of receiving

a reward of 1 and a 25% chance of receiving a reward of 0. When

selecting one of the two options without the feature of interest

resulted in a 25% chance of receiving a reward of 1 and a 75%

chance of observing a reward of 0. Given the three possible options,

the base probability of selecting the option with the feature of

interest was 1/3.

4.1.1 Cognitive modeling
The contextual bandit task serves as a benchmark to compare

the three approaches to integrating GMs into cognitive decision-

making models. This simple task is useful to ensure that all

integrations of GMs in cognitive modeling accurately capture

human learning in basic learning scenarios. In Figure 2B, we

present a visual representation of the GINGER model, which

uses visual stimuli associated with one of the three options as

input. First, this stimulus is fed into the GM. In this task, a

modified version of a β-Variational Autoencoder is used to further

predict the utility associated with stimuli based on the internal

representations generated by the GM.

For the baseline IBL model, choice features consisted of shape,

color, and texture. For each type of feature, the similarity metric was

defined as 1 for identical features and 0 for all other features. The

GER model used the β-VAE model representation as an additional

feature with a unique similarity metric. The similarity metric

of this additional feature was the β-VAE model representation

distribution KL-divergence. The GIN model used the baseline IBL

model to predict utilities of stimuli options and trained the utility

prediction network using these values. The full GINGER model

combined these two approaches of the GIN and GERmodels in this

task. All four ablation models used the same predefined parameters

for noise, temperature, decay, and as mentioned previously.

4.1.2 Methods
The experimental methodology is reproduced from the original

paper; for additional details, see Niv et al. (2015). This study

involved 34 participants (20 female, 14 male, 0 non-binary)

recruited from Princeton University, all aged 18 or older. Data

from 3 participants were incomplete and thus not analyzed, and
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FIGURE 2

In (B–D), Blue is the IBL model, Orange is the Generative Environment Representation IBL model, Green is the Generation Informed by IBL model

and Red is the full Generation INformed by Generative Environment Representation IBL model. (A) Example of the stimuli shown to participants when

making a decision on which of the features is associated with a higher probability of receiving a reward. (B) Schematic of the input of a single stimuli

option into the generative and cognitive model making up the full GINGER model. The colored lines indicate the remaining connections of the

ablated versions of the models. (C) Learning rate comparison of human participants and four ablated model versions in terms of probability of

correctly guessing the option containing the feature of interest. (D) Average model di�erence to participant performance calculated by mean

residual sum of squares for each participant. Error bars represent 95% confidence intervals.

another 6 participants were removed due to poor performance.

Participants had a mean age of 20.9 years and were compensated

at a rate of $20 per hour. This experiment was approved by the

Princeton University Institutional Review Board. The experiment

was not preregistered. Participant data is accessible on the Niv Lab

website.2

To evaluate the performance of the 4 model ablation of

our proposed GINGER model, we compare the probability of a

correct guess on each trial within an episode. Figure 2C shows the

comparison between participant andmodel performance regarding

the probability of selecting the option containing the feature of

interest across trials 1–25. This graphical representation facilitates

the visual comparison of the learning of which feature is associated

with a higher probability of observing a reward, and the average

performance at the end of each episode.

In addition to the trial-by-trial comparison of model and

participant performance depicted in Figure 2C, our aim is to

compare the overall similarity between them. This is done by

measuring the difference in model performance with individual

2 https://nivlab.princeton.edu/data

participant performance using the mean residual sum of squares

RSS/n where n is the number of participants and RSS =
∑n

i=1(yi−
p(xi))

2. This difference is calculated for each participant and trial

within an episode and across all episodes in the experiment. These

values are correlated with the Bayesian Information Criterion (BIC)

calculated in terms of the residual sum of squares (RSS) as BIC =
n ln(RSS/n) + kln(n) since all four models have 0 fit parameters

(all are default values). The resulting values are averaged across all

participants and presented in Figure 2D. Error bars in Figure 2D

denote the 95% confidence intervals of the model difference from

participant performance across each participant and trial of the

task.

4.1.3 Results
The initial comparison of model learning to participant

behavior focuses on the probability of correct guesses as the trial

number within increases, as shown in Figure 2C. Comparing the

speed of learning to participants reveals that models that include

the generative action selection (GIN and GINGER) demonstrate

the fastest learning. Compared to the two versions of the GINGER

Frontiers in Psychology 08 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1387948
https://nivlab.princeton.edu/data
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Malloy and Gonzalez 10.3389/fpsyg.2024.1387948

model (IBL and GER) that do not make direct predictions of utility

based on GM representations exhibit slower learning rates. This

shows that in learning tasks that require fast updating of predicted

utilities, directly predicting these values from GM representations

and selecting actions accordingly results in more human-like

learning progress.

The second set of results illustrated in Figure 2D, compares

the average difference in model performance to participants

performance. Among the four models compared, the GINGER

model has the lowest deviation from participant performance and

a performance difference similar to the GIN ablation model, which

relies on predictions of utility derived from GM representations.

The IBL and GER models, which make predictions based on hand-

crafted stimuli features (IBL) and GM representations (GER), show

the highest difference to participant performance. The unique

feature of the GINGER model involves predictions of utility

partially influenced by the GM-formed stimulus representation

related to the IBL model’s use of the features. However, by directly

predicting utility based on representations, both the GINGER and

GIN models are able to quickly update utility predictions.

In summary, the modeling results demonstrate that each

approach to incorporating GMs in predicting human learning

is viable, as none of the models performs worse than the IBL

model, which does not use a GM. However, models that perform

actions selected by the GM exhibit more human-like learning

trends (Figure 2C) and a closer similarity to human learning

(Figure 2D).While leveraging GM representations aims to improve

generalization, the simplicity of this task imposesminimal demands

on generalization, meaning that the speed of learning is more

relevant in producing human-like learning. The next experiment

paradigms will introduce an explicit generalization requirement for

participants. This will enable a comparison of ablated models in a

task where generalization performance is more important.

4.2 Transfer of learning task

This decision-making task involves learning the values

associated with abstract visual stimuli and transferring that

knowledge to more visually complex stimuli. Previous research

comparing the IBL and the GER model demonstrated improved

performance in transfer of learning tasks by introducing generative

representations to the IBL model (Malloy et al., 2023). The higher

performance of the GER model and its closer resemblance to

human performance compared to the standard IBL model, raises

questions about how our proposed GIN and GINGER models

compare in replicating human-like behavior in this transfer of

learning task.

In this task, generalization performance is more relevant than

learning speed in evaluating participants and cognitive models.

This is due to the increase in task complexity over time. Initially,

participants engaged in a contextual bandit task focused only

on the shape feature (Figure 3A Left). After 15 trials the task

complexity increases with the introduction of the color feature

(Figure 3A Middle). Transitioning to the color learning task

requires participants’ ability to transfer knowledge from the shape

learning task to determine the optimal option. This demands

generalization from past experience to make future decisions in a

related but not totally equivalent context. After these 15 trials of

the color learning task, participants are introduced to the texture

learning task (Figure 3A Right) which is similar to the structure of

the first learning experiment (Niv et al., 2015).

4.2.1 Cognitive modeling
The design of IBL baseline model features was identical to the

first experiment, including the use of the shape, color, and texture

features, baseline parameter values, and binary similarity metrics.

One difference between this task and the previous one is that

the GIN and GINGER utility prediction modules are only being

trained using one portion of the data set at a time, first shape, then

shape-color, then shape-color-texture. This means that predicting

utility associated with a representation requires a high degree of

generalization to adequately transfer from one task to the other.

4.2.2 Methods
160 participants (86 female, 69 male, 2 non-binary) were

recruited online through the Amazon Mechanical Turk (AMT)

platform. All participants were over the age of 18 and citizens of

the United States of America. Participants had a mean age of 40.5

with a standard deviation of 11.3 years. Participants were required

to have completed at least 100 Human Intelligence Tasks (HITs) on

AMT with at least a 95% approval on completed HITs. Six of the

160 recruited participants failed to submit data or failed to complete

the task within a 1 hour limit, and were excluded from analysis. All

results and analysis are done using the remaining 154 participants.

Participants received a base payment of $4 with the potential

to receive a bonus of up to $3 depending on their performance in

the task. The mean time to complete the task was 16.9 minutes,

with a standard deviation of 5.8 minutes. This experiment was

approved by the Carnegie Mellon University Internal Review

Board. The experiment protocol was preregistered on OSF.

Experiment preregistration, participant data, analysis, model code,

and a complete experiment protocol are available on OSF.3 For a

more complete description of experimentmethods, seeMalloy et al.

(2023).

Participant’s performance in this task can be measured in

their ability to transfer knowledge from one learning task to

the subsequent learning tasks. Three commonly used metrics for

performance in transferring learned knowledge to subsequent tasks

are jumpstart, asymptotic, and episodic performance (Taylor and

Stone, 2009). Jump-start performance is defined as the initial

performance of an agent on a target task. In the contextual

bandit experiment used in this work, the jumpstart performance

is calculated as the average of the first third observed utility

in trials after the task switches. Asymptotic performance is

defined as the final learned performance of an agent in a target

task. In the transfer of learning experiment, the asymptotic

performance is calculated as the average of the final three reward

observations of participants. Episodic Performance is defined

as the average performance over an episode; this measure is

analogous to the total reward metric commonly used. This

3 https://osf.io/mt4ws/
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FIGURE 3

In (B–F), Blue is the IBL model, Orange is the Generative Environment Representation IBL model, Green is the Generation Informed by IBL model,

and Red is the full Generation INformed by Generative Environment Representation IBL model. (A) Example stimuli of one block of 15 trials for the

shape, color, and texture learning tasks, adding to a total of 45 trials. (B) Performance of the model against human participants on each of the three

learning tasks shown in (A). (C) Comparison of GINIBL and human learning across the three learning tasks. (D) Comparison of GINGER and human

learning across the three tasks. (E) Comparison of GERIBL and human learning across the three learning tasks. (F) Comparison of accuracy between

model predicted learning and human performance calculated by mean residual sum of squares. Error bars represent 95% confidence intervals.

value is calculated as the average of the observed utility. These

measures are used to compare model difference to participant

behavior, and averaged over to produce the results shown

in Figure 3F.

4.2.3 Results
To assess transfer of learning for the three measures, we

averaged the similarities between human and model performance

in jumpstart, episodic, and asymptotic performance in the three

learning tasks. This aggregation yields a single metric, providing

a holistic evaluation of the fit between the model and human

transfer of learning performance. This similarity is based on

average residual sum of squares RSS/n calculations for each of the

three measures of transfer of learning measures. This integrated

measure of congruence is shown in Figure 3F, to facilitate a

comparison across the four models. Importantly, these accuracy

metrics are computed for each participant individually, ensuring

the understanding of performance across the sample. Additionally,

the same connection between average residual sum of squares and

BIC can be made as in the first experiment, since again there are no

fit parameters.

As in the contextual bandit task in Experiment 1, we first

compare the four models by their speed of learning, and the

similarity to human performance, shown in the four plots

(Figures 3B–E). This is done for each of the three learning tasks

that increase in complexity as the experiment progresses. This

comparison shows that the GER and GINGER models have

learning trend more similar to humans in the color and texture

tasks compared to the IBL and GIN models. This is likely because

of the fact that the representations of visual information used by

the GER and GINGER models as features of the IBL model allow

for improved generalization, which is a key feature of improving

transfer of learning ability.

Comparatively, the IBL and GIN models show more human-

like learning on the simple shape learning task before the transfer

of learning ability becomes relevant. This mirrors the human-like

learning achieved by these two models in the first experiment,

but because the majority of this task relies more on generalization

capability rather than the speed of learning, the end result is that

the GER and GINGER models are better fits to human learning

averaged across the entire experiment.

The next comparison of model performance is shown in

Figure 3F which captures an aggregate average of the three transfer
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of learning metrics previously discussed. Overall, the IBL model

is far more distant from human performance than the three

ablation models. The GER and GIN models are about equally

distant from human performance, as the GER model has relatively

higher performance on the two transfer tasks while GINmodel had

better performance on the first task. The GINGER model, which

combines the more human-like behavior on the first task observed

by the GIN model, and the two transfer tasks by the GER model,

produces the most human-like learning on average.

4.3 Phishing identification task

Phishing messages are emails that contain attempts to obtain

credentials, transmit malware, gain access to internal systems,

or cause financial harm (Hong, 2012). An important aspect

of preventing these phishing emails from negatively impacting

individuals and companies is through training programs to

help people identify phishing emails more successfully (Singh

et al., 2020). Cognitive models have been applied to predict and

improve email phishing training (Singh et al., 2019; Cranford

et al., 2021). The phishing email identification task is used to

compare the ablation of our proposed model in how relevant

each of its attributes is in conditions that include complex natural

language stimuli.

We use a data set of human judgments on the phishing

identification task (Figure 4A) that was originally collected in

Singh et al. (2023) and is publicly available. The phishing

identification task involved the presentation of phishing or

safe emails. Participants indicated their guess as to whether

the emails were safe or dangerous, their confidence rating,

as well as a recommendation of an action to take when

receiving this email, such as checking the link, responding to

the email, opening an attachment, etc. (Singh et al., 2023).

These details are described more fully in the section on

experimentation methods.

4.3.1 Cognitive modeling
The baseline IBL model for this task used binary hand-

crafted features coded by human experts (Figure 4B) including

mismatched sender, requesting credentials, urgent language,

making an offer, suspicious subject, and a link mismatch. The

other main difference in cognitive modeling of this experiment

with the previous two is that a LLM model is used to form the

representations used both as a feature of the task and directly

trained to predict utilities.

These representations are embeddings of textual inputs formed

by the OpenAI GPT based model “text-embedding-ada-002”. At

the time of writing, this was the only text embedding model

available on the OpenAI Application Programming Interface. This

model generates representations of text inputs in the form of a

vector of 1536 floating point numbers. The IBL similarity metric

for these representations is calculated with the sklearn python

package cosine similarity function, a commonly used metric when

comparing sentence embeddings from large language models (Li

et al., 2020).

Due to the high baseline performance of humans in this task, as

a result of their experience in reading emails and their experience

with phishing warnings, we use a random sampling of 10% of

emails to pre-train all models under comparison. This allows for

a more realistic comparison of the performance of these models in

reflecting human decision making in this type of task.

4.3.2 Methods
The experimental methods for this analysis are detailed

in full in Singh et al. (2023). 228 participants were recruited

online through the Amazon Mechanical Turk (AMT) platform.

Participants were required to have completed at least 100 Human

Intelligence Tasks (HITs) on AMT with at least a 90% approval

rate. All participants were over the age of 18. Participants have a

mean age of 36.8 with a standard deviation of 11.5 years. Four of the

228 participants failed attention checks and were excluded from the

analysis. Participants were paid a base rate of $6 with the potential

to receive a bonus of up to $3 depending on their performance. The

mean time to complete this experiment was 35 minutes.

Experiment data were made available on request from the

original authors and obtained by us after request. This experiment

data included participant judgments in the task as well as the 239

emails that were classified by the researchers based features that

were relevant to determine if the emails were phishing, referred

to as spam, or non-phishing, referred to as ham. These features

included whether the sender of the email matched the claimed

sender; whether or not the email made a request of credentials;

whether or not the subject line was suspicious; whether an offer was

made in the email body; whether the tone of the email used urgent

language; and finally whether a link in the email matched the text

of the link. Textual data and email features are available on OSF4

and participant data are contained in our previously mentioned

combined repository (see text footnote1).

Participants’ performance in this task can be measured in

their ability to correctly identify phishing emails as phishing, and

ham emails as ham. Splitting this classification by the type of

email shown to participants allows for a comparison between the

different amounts of phishing and ham emails that were shown

to participants during the experimental conditions. Ideally, an

accurate model of human learning in this task would be similar to

human data for each of these types of categorization.

Accurately reflecting differences in experience with the

identification of phishing emails from participants can be a

difficult task for cognitive models. In IBL models, this could

be done by using a set of different models with varied initial

experiences with phishing and ham emails, which would result

in differences in accuracy for categorizing these two types of

email. However, to highlight the differences in ablation analysis,

we do not differentiate the experience of models individually to

better fit human performance, and instead use the same base-level

experience across all models under comparison.

4 https://osf.io/sp7d6/
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FIGURE 4

(A) Example email shown to participants and multiple choice and confidence selection from Singh et al. (2023). (B) Example of expert human coding

of email features. In (C–G), blue is the IBL model, orange is the GER model, green is the GIN model, and red is the GINGER model. Darker shading

represents phishing emails, and lighter shading represents non-phishing ham emails. The four graphs on the bottom left show the performance of

the models compared to human participants in correctly predicting ham and phishing emails. The error bars represent 95% confidence intervals. (C)

IBL model performance compared to human participants. (D) Performance of the GER model compared to human participants (E) GIN model

performance compared to human participants. (F) GINGER model performance compared to human participants. (G) Average di�erence in human

participant performance on both ham and phishing email identification across each of the four models. This is calculated by the mean residual sum

of squares. Error bars represent 95% confidence intervals.

4.3.3 Results
In this experiment, each of the four ablation models predicted

the same emails shown to participants, in the same order. The

ablation models used the values of the baseline parameters for all

the parameters of the IBL model. Therefore, the total number of

model runs was equal to the number of participants for each type

of model ablation. Models were trained using a reward function

of 1 point for correct categorization and 0 points for incorrect

categorization. For the GIN and GER models, the utility prediction

based on representations was done using the representation input

of size 1536 followed by two layers of size 128 and finally

an output of size 1. More details of this are included in the

Supplementary material.

The performance of the GIN model is unique in that it predicts

similarly high performance in the early and later trial periods

for both types of emails (Figure 4E). This direct utility prediction

based on representations can approach high accuracy from only

a few examples. This is true for both phishing and ham emails,

while humans display lower accuracy overall, and a large difference

between accuracy in these two types of emails. It would be possible

to reduce this training for the GIN model alone, however, this

would mean that the GIN model is using less experience than the

other models.

In general, taking an approach to fitting the training time

of generative actions to human performance can be difficult

for large representations sizes, as it requires multiple training

periods that are computationally expensive. This is demonstrated

by the difference in similarity with the results of human learning

demonstrated by the GIN model. This is a key difference between

the phishing email identification task, where the representation

size is 1536, compared to the earlier tasks that used β-VAE model

representations of size 9. However, these representation sizes are

not considered to be a variable or fit parameter in any of themodels.

Thus, the same connection between the average residual sum of

squares and BIC can be made as in the first experiment, since again

there are no fit parameters.

The GINGER model has the highest accuracy to human

performance (Figures 4C–G), as a result of it making predictions
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using both the GM and the email representations that are fed

into an IBL model. This demonstrates the benefits of combining

generative actions and generative memory formation, for tasks

with complex natural language stimuli. This is especially true for

tasks like this one where participants are likely to have previous

experience from which they are drawing, as opposed to the two

previous abstract tasks. This is because optimizing the GIN model

alone to fit human participant performance is computationally

expensive and the IBL and GER models are not able to learn the

task quickly enough.

5 Discussion

This research proposes a model that demonstrates the

benefits of integrating GMs and cognitive modeling and their

potential applications. These techniques open new avenues in the

investigation of human learning that were previously inaccessible

to cognitive modelers. GAI has had a significant impact across

many fields of study, motivating its application in cognitive

modeling, especially in decision-making processes. However,

before integrating GMs into cognitive models to represent and

predict human decision making, it is important to investigate

the relative impact that different methods of integration have on

different tasks.

The GINGER model proposed in this work demonstrates

the integration of GMs with cognitive models of decision

making, such as IBL. Our approach demonstrates the accurate

prediction of human learning and decision making across three

distinct experimental paradigms, directly compared to real human

decisions. These experiments encompass a diverse range of

stimuli, spanning visual cues and natural language that varied

in complexity, from learning abstract rewards to detecting

phishing attempts in emails. The application of our GINGER

model across these domains resulted in an improvement over

traditional cognitive modeling techniques, clearly demonstrating

the potential benefits of incorporating GMs into cognitive

modeling frameworks.

In addition to our GINGER model, we developed a

categorization approach that can be used to compare and

relate different approaches to integrating GMs into cognitive

modeling of decision making. Before current research, there

were many applications of GMs in cognitive modeling, although

typically this was done in a case-by-case manner to allow for use

in a specific learning domain. Here, we compare the integration

of GMs in cognitive modeling in six dimensions, including action

generation, memory generation, stimuli, cognitive model type,

generative model type, and training method.

This categorizationmotivated an ablation study to compare our

proposed model with alternative versions that contained generative

actions and memory and did not contain them. Additionally,

the three experiment paradigms were chosen to further test the

remaining categories of our analysis, to investigate the varied

stimuli types, GM types, and training methods. The result is a

comparison of model performance that spans many degrees of

our proposed categorization. The first experimental comparison

demonstrated faster and more human-like learning from models

that produced decision predictions directly by GMs (GIN and

GINGER). However, this faster learning was observed in a relatively

simple task, raising the question of the potential benefits of

GM memory formation (GER and GINGER) in more complex

environments.

The second comparison of models through experimentation

extended the analysis in the first experiment by introducing

a generalization task that required transfer of learning. This

is a useful comparison for our proposed model, as one of

the often cited benefits of applying GMs to cognitive models

is improved generalization. This raised the question of which

method of integrating GMs would be more relevant for improving

performance and the similarity to human participants in this task.

The high generalizability of models that utilized GM memory

representations confirmed this expectation, demonstrating the

ability of cognitive models that integrate GM representations in

reflecting human-like generalization.

In the third and final experimentation, we investigated the

potential differences of our proposed modeling method when

handling complex natural language in a phishing identification

task. Comparing the performance of models with that of human

participants in this task demonstrated a large difference between

categorization accuracy for phishing and ham emails, which was

difficult for the models to replicate. Previously, only cognitive

models that used GM representations of textual information,

such as phishing emails, have been used to predict human-like

learning, but these results demonstrate that a combination of

directly predicting values and GM representations is best for this

type of task.

Overall, these results from the model comparison provide

insight into the design of integration of generative modeling

methods with cognitive models. Each of our experiments

investigated a different area of human learning and decision

making modeling and made important conclusions about how

best to integrate GMs. Although the applications of our model

comparison are broad, they do not represent every possible

application of GMs to cognitive modeling. As demonstrated by

our categorization, there are remaining stimuli types, generative

models, and cognitive models that could be compared. One

potential future area of research would be the application of multi-

modal models and a comparison of learning with humans engaging

in a multi-modal decision task.

While GMs have demonstrated a high degree of usefulness in

cognitive modeling, the impact that they have on society at large

has been called into question, as noted previously. One potential

issue with the use of a model similar to one of the ones we used in

the experiment on predicting how participants respond to phishing

emails is that it could be used to improve the quality of phishing

email campaigns. This is exacerbated by the potential to use

GMs themselves to generate phishing emails. One potential future

area of research is investigating how we can best mitigate these

potential GM missuses. This could be done by tailoring phishing

email education to the individual through the application of a

model similar to the one we propose, which can allow students to

experience phishing emails generated by GMs and learn from them.
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