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Error-related potentials (ErrPs) have attracted attention in part because of their 
practical potential for building brain-computer interface (BCI) paradigms. BCIs, 
facilitating direct communication between the brain and machines, hold great 
promise for brain-AI interaction. Therefore, a comprehensive understanding of 
ErrPs is crucial to ensure reliable BCI outcomes. In this study, we investigated 
ErrPs in the context of the “guess what I  am  thinking” paradigm. 23 healthy 
participants were instructed to imagine an object from a predetermined set, 
while an algorithm randomly selected another object that was either the 
same as or different from the imagined object. We recorded and analyzed the 
participants’ EEG activity to capture their mental responses to the algorithm’s 
“predictions”. The study identified components distinguishing correct from 
incorrect responses. It discusses their nature and how they differ from ErrPs 
extensively studied in other BCI paradigms. We observed pronounced variations 
in the shape of ErrPs across different stimulus sets, underscoring the significant 
influence of visual stimulus appearance on ErrP peaks. These findings have 
implications for designing effective BCI systems, especially considering the 
less conventional BCI paradigm employed. They emphasize the necessity of 
accounting for stimulus factors in BCI development.
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1 Introduction

Non-invasive brain-computer interfaces (BCIs) translate user intentions, detected as changes 
in brain activity (e.g., electroencephalography (EEG) signal), directly into control signals for 
external devices without requiring muscle activity (Wolpaw et al., 2002; Abiri et al., 2019; 
Wolpaw et al., 2020). In this approach, the user’s mental effort generates specific patterns in brain 
signals that are recorded, classified, and translated into actionable commands (Wolpaw et al., 
2020). Despite significant advances in BCIs, only a few mental strategies have been demonstrated 
to produce detectable brain signal perturbations for effective control (Abiri et al., 2019).

In addition, BCIs face certain limitations that lead to errors in recognizing user intentions. 
These errors can be  caused by external factors, such as noise signals, insufficient spatial 
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resolution of the EEG, and suboptimal feature extraction and 
classification algorithms. Internal factors, such as low level of attention 
and difficulties in performing mental tasks, also contribute to these 
errors (Moore, 2003; Zhang et al., 2021). To address this challenge, 
researchers have incorporated verification procedures that monitor 
the user’s mental responses to BCI output. This includes the detection 
of specific EEG responses, namely error-related potentials (ErrPs) or 
feedback-related potentials, which are neural signatures indicating 
mental agreement/disagreement with the presented BCI output 
(Chavarriaga et al., 2014). Detection of error-related activity makes it 
possible to correct the BCI feedback, thereby improving BCI 
performance (Chavarriaga et al., 2014; Yasemin et al., 2023).

Although ErrPs are useful for improving BCI performance, 
validation mechanisms have their own limitations. First, the reliance 
on decoding mental responses to validate BCI feedback significantly 
increases the cognitive load, resulting in a more complicated 
interaction paradigm (Plass-Oude Bos et al., 2011; Lotte, 2012; Ke 
et al., 2015). Users must shift their focus between different tasks, such 
as visualizing movements and the task of cognitive confirmation of 
BCI output. In addition, the current BCI paradigm often exhibits a 
mismatch between the intended mental commands and the actual 
output of the BCI system (Wang et al., 2022). For example, scenarios 
where users control robot movements with a P300-based BCI by 
mentally counting visual stimuli flashes (Gillini et al., 2022) or by 
imagining tongue movements (Guo et  al., 2020) highlight this 
discrepancy. Such discrepancies demonstrate the lack of naturalness 
in brain-machine interaction.

To address these limitations, a new approach similar to 
reinforcement learning has been proposed in recent studies (Ferrez 
and Millán, 2005; Choi and Kim, 2019; Batzianoulis et al., 2021). In 
this paradigm, a user observes a robot’s behavior and controls it 
through mental approval or disapproval, which is detected by 
analyzing ErrPs. Consequently, this real-time feedback iteratively 
improves the robot’s performance. Unlike classical approaches that 
measure brain signals directly related to mental intent, in this new 
scenario, the computer presents various output options (e.g., different 
robot motion trajectories) and analyzes the neural responses to verify 
the validity of these potential outcomes (Batzianoulis et al., 2021). The 
validation process aims to determine whether the user agrees or 
disagrees with a suggested behavior of the machine or AI agent. If 
there is a conflict, the behavior is adjusted and the new option is 
tested. This approach is believed to provide a more natural user 
experience, similar to a cooperative interaction, through the principle 
of suggestion-confirmation/rejection (Ferrez and Millán, 2008; 
Omedes et al., 2018; Choi and Kim, 2019).

Building on this, we introduce a paradigm similar to the game 
“guess what I am thinking.” In this paradigm, the user imagines an 
object or a scene, and a second player (here represented by a machine 
algorithm) tries to guess the object by making assumptions. ErrPs are 
used as signatures of mental cues to confirm or reject the algorithm’s 
hypotheses. It is known that error-related EEG perturbations 
demonstrate high variability, which varies not only between 
individuals but also depending on the experimental paradigm 
(Iturrate et al., 2014; Abu-Alqumsan et al., 2017), error frequency and 
BCI outcome significance (Holroyd and Coles, 2002; LoTemplio et al., 
2023). The emotionality of the presenting stimuli affects the shape of 
ErrPs (Larson et al., 2006). Furthermore, it is well studied that cortical 
responses are influenced by context within which stimuli are presented 

(Wlotko and Federmeier, 2012), the presence of faces and emotions 
they express (Bötzel and Grüsser, 1989), and the aesthetic qualities of 
stimuli (de Tommaso et al., 2008). In light of the above considerations, 
we propose that the appearance of the stimulus may influence the 
responses evoked by correct and incorrect feedback in BCI. In this 
study, we aimed to analyze the spatiotemporal characteristics of ErrPs 
in this proposed collaborative paradigm.

In this study, we asked participants to play a game with a computer 
in which they imagined a particular picture from a set, and the 
machine, as explained to the participants, would guess the imagined 
picture by presenting it on a screen. Observing the machine’s response 
was expected to elicit specific EEG signatures of mental agreement or 
disagreement in the participants. Given the wide range of scenes and 
objects that can be imagined, we used four different visual stimulus 
sets with different appearance and semantics (objects, animals, emojis, 
and numbers). Our primary goal was to investigate the consistency of 
the shape of the ErrPs across these different visual stimuli when 
presented as a machine response in a BCI loop. We hypothesized that 
the shape of ErrPs would be affected by the distinct visual semantic 
content of the stimuli, rather than remaining invariant, despite 
evidence suggesting that ErrPs are relatively conservative in shape for 
different feedback types (Iwane et al., 2022). We expected ErrPs in the 
studied paradigm would not only be shaped by components related to 
the processing of observed errors (Ferrez and Millán, 2005; Xavier 
Fidêncio et al., 2022; Syrov et al., 2023) but also by the processing of 
the content of the visual stimuli themselves. Also, our paradigm 
presents not a homogeneous N-back (namely 0-back) type problem, 
but a constantly updating one, which is more similar to the actual 
interaction with BCI.

The results of this study may serve as a foundation for further 
advancement in the development of collaborative BCIs and 
significantly enhance our understanding of how feedback content 
affects ErrP shapes. It is crucial for researchers to recognize that, in 
addition to categorizing feedback as correct or incorrect, the content 
of stimuli may also influence ErrP shapes. Consequently, ErrP-based 
feedback validation procedures may be enhanced by considering the 
content and semantics of the stimuli.

2 Materials and methods

2.1 Participants and ethical considerations

A total of 23 healthy volunteers (11 males, mean age = 23 ± 4.5 years, 
right-handed) were recruited for this study. Eligibility criteria included 
the absence of self-reported neurological disorders, injuries, or other 
impairments of the nervous system. Detailed information about the 
research protocol was provided to all participants, and informed 
consent was obtained prior to participation in the study. The 
experimental design and procedures were reviewed and approved by 
the Ethics Committee of the Immanuel Kant Baltic Federal University.

2.2 Experimental design

To investigate ErrPs in the collaborative paradigm, the fake BCI 
paradigm was chosen, as its validity for studying human-machine 
interaction was detailed by Lynn et al. (2010), Évain et al. (2016), 
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Lopez-Sola et al. (2021). Following the approach of Lynn et al. (2010), 
participants underwent specific procedures to enhance their belief in 
working with a genuine BCI. All participants were novices to 
BCI. Prior to experimental sessions, during EEG cap preparation, 
participants dedicated 40 min to understanding the principles of BCI 
technology, capable of decoding mental states through brain signal 
processing. Participants were also informed they would use similar 
technology during the experiments, fostering confidence in working 
with a BCI predicting their imagined images.

There were four consecutive runs for each participant, with 42 
trials in each run. Each trial in the experimental session comprised 
three stages: (1) Memorization period, the first presentation of a 
particular visual stimulus which participants were instructed to 
memorize; (2) Imagination period during which participants were 
encouraged to mentally reconstruct the image from the stimulus; (3) 
Feedback, the presentation of a visual stimulus that, as it has been 
instructed to the participants, is the result of a computer prediction of 
what picture the participants have imagined. The memorization 
period took 2 s, after which the stimulus image gradually disappeared 
for 2.2 s until it disappeared completely and the fixation cross appeared 
in its place. This lasted for 4.5 s (totaling the 6.7 s imagination period) 
until feedback. The feedback stimulus was presented for 3 s, then 
participants could advance to the next trial by pressing space on a 
keyboard. This was a self-paced approach that allowed participants to 
control the pace of the study by pressing a button to advance to the 
next trial start. If the button was not pressed, the next trial started 
automatically 15 s after the end of the previous trial. Feedback stimuli 
could be identical to the initially presented stimuli or different. During 
feedback, participants assessed whether it matched the initial stimulus, 
mentally agreeing or disagreeing with the computer’s “prediction”. The 
number of correct (mental response Yes) and incorrect (mental 
response No) feedback events was predetermined and amounted to 24 
and 18, respectively, resulting in an accuracy of 57.1% (total number 
of trials n = 42). The order of trials with correct and incorrect feedback 
was randomized for each run. The fake-BCI paradigm aimed to boost 
participant’s motivation. A visual representation of the experimental 
session design is presented in Figure 1.

2.2.1 Stimulus sets
The study used four different stimulus sets, each containing 

different types of visual stimuli. Each stimulus set was designed to 
represent different semantic domains: set#1 contained images of 
various everyday objects and tools (referred to as objects), set #2 
consisted of animal emojis (referred to as animals), set#3 contained 
numbers (referred to as numbers), and set#4 contained emojis 
depicting different facial expressions (referred to as emojis). Each set 
contained seven unique images with a black background. Further 
details on the composition of the stimulus sets can be  found in 
Appendix 1.

2.3 EEG data acquisition

EEG data were recorded using a BrainVision actiCHamp+ 
amplifier (Brain Products GmbH, Germany) with 64 active channels. 
The sampling rate was set to 1,000 Hz. The placement of the active Ag/
AgCl sensors followed the international 10/10 electrodes placement 
system. The TP10 channel position was used for the reference. To 

ensure optimal signal quality, the impedance between the electrodes 
and the skin was kept below 10 kΩ. During recording, a photo sensor 
was used to accurately mark the onset of stimulus presentation. A 
custom written Python script was used for stimulus presentation.

2.4 Data preprocessing and analysis

The raw EEG signal was downsampled to 500 Hz, then band-pass 
filtered in the 1–15 Hz range using a causal finite impulse response 
(FIR) filter. Interpolation of noisy channels was performed using the 
spherical spline method (Perrin et al., 1989). Independent Component 
Analysis (fastICA method) was applied to remove oculographic 
artifacts: the components highly correlated with Fp1 and Fp2 signals 
were excluded from the recording. The signal was then re-referenced 
using the common average reference (CAR) (McFarland et al., 1997). 
The preprocessed signal was then segmented into 900 ms epochs 
based on the photo sensor triggers. Each epoch started 100 ms before 
and ended 800 ms after the onset of the feedback stimulus. A baseline 
correction was applied using the time interval (−100; 0 ms).

In order to obtain ERPs related to mental (dis-)agreement, the 
epochs for each stimulus set were averaged separately according to the 
correctness of the feedback stimulus. In accordance with previous 
studies on ErrPs, which have localized the signal sources of these 
potentials (Falkenstein et al., 2000), we averaged epochs across the 
fronto-central channel group (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2). 
This also allowed us to improve the signal-to-noise ratio.

Peak amplitudes were calculated using the following criteria: each 
peak was defined as the extreme value within a given latency range, 
and the mean peak value was taken within ±20 time samples around 
this value. Since we detected three pronounced peaks in No responses 
– an early positive peak and two peaks related to error-related 
negativity (ERN) and error-related positivity (Pe) – we  used the 
following latency intervals for peak amplitude estimation: the maximal 
value for the early positive peak was found in the 140–260 ms range, 
the minimal value for the ERN peak was found in the 200–340 ms 
range, and the maximal value for the Pe peak was found in the 
340–540 ms range, all in accordance with the stimulus onset. To obtain 
the corresponding values for Yes responses, the same latencies 
estimated from No responses were taken.

2.5 Statistical analysis

Before assessing the effects of feedback correctness and stimulus 
set on distinct components, we  analyzed the distribution of peak 
amplitude values for all three components. Since the data did not 
follow a normal distribution according to the Shapiro–Wilk tests, 
we used the Friedman test to identify the influence of the stimulus set 
factor on the amplitude of all identified ERP components in Yes and 
No responses.

Subsequently, peak amplitudes for all three components were 
compared between Yes- and No-trials for each stimulus set, separately, 
utilizing the Wilcoxon signed-rank test. The Bonferroni correction 
was applied by multiplying the p-values by the number of paired 
comparisons performed.

To comprehensively explore the spatio-temporal characteristics of 
components in feedback-related responses and determine whether their 
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appearance was significantly related to Yes/No categorization rather 
than the processing of stimulus content, we subtracted ERPs elicited by 
stimuli from the memorization period from the fake-feedback evoked 
activity. A spatio-temporal cluster-based permutation test with 10,000 
permutations (Maris and Oostenveld, 2007) was employed to assess the 
result of the subtraction with zero. This statistical analysis allowed us to 
identify clusters related to components specifically associated with 
participants’ mental agreement with computer guesses.

For the EEG data processing and statistical analysis, we used self-
written Python (v3.10) scripts utilizing the libraries MNE v1.5.0 
(Gramfort et al., 2013), NumPy v1.26.0 (Harris et al., 2020), and SciPy 
v1.11.0. (Virtanen et al., 2020).

3 Results

Analysis of ERPs related to Yes and No responses revealed distinct 
peaks between the two reactions, including the early positive peak, the 
negative ERN peak, and the late positive Pe peak. Figure 2A shows the 
curves for both Yes and No for all stimulus sets.

The results of the Friedman tests are presented in Table 1. The 
results demonstrated a significant effect of the stimulus set factor on 
the amplitude of the ERN component for No responses and on the 
amplitude of the Pe component for Yes responses.

Further, we compared the amplitudes of the revealed components 
between Yes and No responses separately for each set of stimuli.

Figure 2B shows the ERP curves for Yes and No responses for 
different stimulus sets, averaged over the group of channels. Detailed 
results for paired comparisons of ERP peaks for Yes and No responses 
are shown in Figure 3.

For the objects the most prominent ErrP peak was the ERN peak 
(W = 14; p = 0.00008), which appeared on average at around 266 ms, 
and the Pe peak (W = 18; p = 0.00018), which appeared at around 
386 ms. For the animals, the most prominent ErrP peaks were also the 
ERN peak (W = 12; p = 0.0002) and the Pe peak (W = 29; p = 0.0048), 
appearing at approximately 304 ms and 402 ms, respectively. For the 

numbers, the most prominent peaks were the early peak (W = 10; 
p =  0.00197) and the Pe peak (W =  4; p =  0.00032), appearing at 
approximately 192 ms and 406 ms, respectively. For the emojis all peaks 
were prominent, although the early positive (W = 24; p = 0.00851) and 
ERN peaks (W = 12; p = 0.0008) were more pronounced compared to 
the Pe peak (W = 32; p = 0.02836), which appeared at approximately 
178 ms (early positive peak), 308 ms (ERN) and 428 ms (Pe).

Thus, the early positive and ERN peaks were not robust to 
differences in stimulus material in the paradigm used, although the 
ERN occurred for 3 out of 4 stimulus sets (objects, animals, emojis) 
and the early positive peak occurred for the numbers and emojis. 
Although the significance levels for the Pe varied depending on the 
type of visual stimuli, it was the most stable component of the ErrP 
(Figure 2B).

Figure 4 depicts the distinctions between No-ERPs and Yes-ERPs 
for each stimulus set, including the average difference at electrode 
FCz (Figure 4A). The topographies presented illustrate the signal 
distribution for each identified peak (Figure 4B). The early positive 
peak was most prominent in the fronto-central channels (Figure 4B, 
leftmost topographic projection), with an average latency of 185 ms 
from stimulus onset. The amplitude and latency of the early positive 
peak vary slightly depending on the stimulus set, with the largest 
differences observed for the numbers, as noted during the analysis of 
ErrPs in individual sets. The ERN peak showed a fronto-central 
spatial distribution with a slight right lateralization (Figure  4B, 
topographic projection in the middle). This peak was usually 
observed approximately 300 ms after stimulus onset. The shape of the 
ERN peak remained consistent across the three stimulus sets but 
tended to show a delayed onset and reduced amplitude for the 
numbers. The spatial distribution of the Pe (Figure 4B, rightmost 
topographic projection) demonstrates a tendency to appear in 
fronto-central channels, similar to other components. On average, 
this peak was observed approximately 400 ms after the 
feedback presentation.

In Figure 5A, Yes and No responses are juxtaposed with ErrPs 
triggered by simple picture presentation during the memorization 

FIGURE 1

Experimental design. The gradient green bar illustrates the stimulus presentation sequence used in the experimental session. Initially, the first stimulus 
(e.g. a duck) was displayed for 2  s (memorization period). Then, over the next 6.7  s, the first stimuli gradually dissolved into a fixation cross (imagination 
period). After a 6.7  s interval from the onset of the first stimulus, the feedback was presented for 3  s. If the feedback image matched the initial stimulus 
(indicating a Yes response), participants were expected to mentally agree with the feedback presented. Conversely, if there was no match (indicating a 
No response), participants were instructed to mentally disagree with the feedback. After the feedback presentation, participants were given control to 
continue the experimental procedure by pressing a button on the keyboard (self-paced design).
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period. The figure exhibits a notable overlap between No-ERPs and 
ERPs associated with stimuli from memorization trials. To scrutinize 
the impact of components related to mere image content processing 
on ERPs associated with Yes/No categorization during computer 

response perception, we conducted a subtraction of memorization-
related ERPs from those related to Yes and No responses (Figure 5B). 
This method allowed us to pinpoint peaks specifically linked to error 
and correct outcomes processing by eliminating potentially 
contaminating components. For statistical validation of the resulting 
peaks on the subtracted curves, a non-parametric spatio-temporal 
permutation test was employed.

The results of the Friedman tests revealed an effect of the stimulus 
set factor on the ERN peak amplitude in No responses, and late positive 
component peak amplitude in Yes responses. Its instability was also 
confirmed by analyzing the results of Wilcoxon signed-rank tests for 
each individual stimulus set. Our findings indicate that only Yes 
responses exhibited significant differences from the ERPs of 
memorization trials. Conversely, No responses showed no significant 

FIGURE 2

(A) Yes (on the left) and No (on the right) responses for each stimuli type objects, animals, numbers and emojis (orange, blue, purple and green lines, 
respectively). For No responses, early peak, ERN and Pe peaks are allocated in a group of channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2) electrodes. 
(B) Grand average (N  =  23) ErrPs for every stimulus set in a group of channels (F1, Fz, F2, FC1, FCz, FC2, C1, Cz, C2). Orange solid line represents Yes 
responses, blue solid line – No responses, black solid line – difference curve.

TABLE 1 Friedman tests results for the Yes and No responses between 
different stimuli for each ERP component (early peak, ERN, Pe).

Early peak ERN Pe

F p F p F p

No 0.11247 0.27978 0.18000 0.04300 0.09400 0.43000

Yes 0.02493 2.10182 0.01607 2.46485 0.20111 0.02840

p-values were corrected using the Bonferroni method. Significant comparisons are 
highlighted in bold italics.
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clusters according to permutation testing. Spatio-temporal clusters 
derived for the Yes responses reveal two peaks: a slight negative 
deflection with a latency of approximately 200 ms after the stimulus 
onset, succeeded by a positive peak within the time interval 
corresponding to the ERN deflection on the ErrP curve (~250–400 ms 
after the stimulus onset). These peaks exhibit similar shapes and 
spatial characteristics across all stimulus sets, underscoring their 
specificity for processing correct feedback. Interestingly, no clusters 
were found for the numbers, consistent with the findings that this 
stimulus set did not show significant differences between Yes and No 
responses within the time window related to the ERN peak.

4 Discussion

While ongoing endeavors to leverage ErrPs for BCI control have 
predominantly concentrated on enhancing spelling technologies 
relying on P300 and other evoked potentials (Dal Seno et al., 2010; 

Cruz et al., 2017), an equally noteworthy alternative is to consider 
ErrPs as the primary control EEG signal (Batzianoulis et al., 2021). 
Through establishing a framework of continuous interaction between 
the user and the “AI agent” via a suggestion-confirmation/rejection 
dialogue, our fake-BCI paradigm strived to recreate a real BCI user 
experience. Participants were tasked with memorizing a visual 
stimulus and providing a mental Yes or No response based on whether 
the computer-presented feedback stimulus matched the memorized 
one. In line with existing literature, our study confirmed that incorrect 
stimuli induced error-related ERPs characterized by a negative peak 
around 300 ms, followed by a subsequent positive deflection 
(Falkenstein et al., 2000; Glazer et al., 2018).

An early positive peak with a latency of approximately 150–250 ms 
was evident across all stimulus sets in both Yes and No responses. 
However, the numbers and emojis stimulus sets showed significant 
differences between Yes and No responses in this component. This 
may be due to differences in detail and color. We interpret numbers 
and emojis as simple, mostly monochromatic stimuli with few details, 

FIGURE 3

Comparisons between the peak amplitudes of ERP components for No (blue) and Yes (orange) responses across different stimulus sets. Horizontal 
lines within the boxes correspond to the median values, boxes – to the interquartile range and [Q1-1.5*IQR; Q3  +  1.5*IQR] range is shown by whiskers. 
Black circles represent mean values for the group. Colored dots represent individual values. Corrected p-values are shown for the Wilcoxon signed-
rank test with Bonferroni correction.
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and according to a previous study by Michie et al. (1999), less detailed 
stimuli are easier to process and integrate. Our results suggest that 
visual attention systems are more responsive to simple stimuli in the 
BCI framework. Consequently, the task of comparing two visually 
simple stimuli can elicit signatures of image comparison even in the 
early stages of stimuli integration.

The negative peak observed in the No responses around 300 ms 
after the feedback stimulus, classified as the ERN, mainly manifested 
in the fronto-central group of channels. The spatial distribution and 
latency of this peak align with findings from previous neuroimaging 
studies focused on error processing (Gehring et al., 1993; Gehring and 
Fencsik, 2001), which associated this activity with detecting 
discrepancies between expected and actual outcomes (Bellebaum and 
Daum, 2008; Glazer et al., 2018). In our study, the amplitude of this 
negative deflection was greater in No-trials, whereas Yes-trials 
exhibited a positive deflection within the same latency range. As a 
result, the difference curve obtained by subtracting Yes-trials from 
No-trials revealed a distinct negative peak in the ErrP curve (Figure 3). 
This ErrP profile has been observed in paradigms involving both user 
behavioral errors and BCI errors (Ferrez and Millán, 2005). The ERN 
is known to be sensitive to various factors, including error probability 

(Ganushchak and Schiller, 2008) subject motivation, task salience, and 
the perceived cost of error (Lynn et al., 2010). For instance, Hajcak 
et al. (2005) and Rawls et al. (2020) demonstrated that high motivation 
conditions lead to increased amplitude and latency of the ERN 
compared to low motivation conditions, particularly for high-value 
trials. Additionally, both the ERN and the feedback-related negativity 
(FRN) show larger amplitudes with increasing reward size (Hajcak 
et al., 2005), irrespective of whether the reward is positive or negative 
(Gehring and Fencsik, 2001).

Several studies have reported larger ERN amplitudes when 
semantically similar stimuli were presented (Herrmann et al., 2004; 
Rawls et  al., 2020), indicating the influence of stimulus 
characteristics and semantic salience on ErrP shape. In this study, 
we delved more deeply into this field and demonstrated that distinct 
stimuli exert a pronounced influence on the shape of ErrP. The 
observed significant effects of the stimulus set factor on the ERN in 
No responses suggest that the semantic characteristics of the visual 
stimuli may have an influence on this component. This influence 
may be attributed to several factors. First, Falkenstein et al. (2000) 
and Coles et  al. (2001) proposed that the ERN is related to the 
processes of comparing two stimuli and their underlying 

FIGURE 4

(A) Grand average (N =  23) of ErrPs (data presented for FCz channel). Color lines represent single stimulus sets, the black solid line corresponds to 
average value across all stimulus sets. Shaded area corresponds to the peaks’ time ranges used for statistical analysis and topographic mapping. 
(B) Topographic localization for three peaks observed on the ErrP curve.
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representations. Our findings may indicate distinct processing of 
semantically diverse stimuli, meaning that for different feedback 
stimuli, outcome evaluation is associated with retrieving visually 
and semantically different images from memory. Secondly, prior 
research has emphasized the role of emotional content in stimulus-
induced ErrPs (Wlotko and Federmeier, 2012), suggesting that 

emotionally salient stimuli could influence error processing and 
corresponding EEG responses. In contrast, the Friedman test 
revealed that the amplitude in Yes responses within the ERN latency 
was not affected by the stimulus set factor, probably because the 
neural processes of verification in Yes responses are less influenced 
by the stimulus content or its valence.

FIGURE 5

Differences between Yes/No-related ERPs and ERPs evoked by stimuli presented in memorization trials. (A) ERP curves from Fz and Cz channels for all 
stimulus sets. (B) Result of subtracting memorization-related ERPs (Memo ERPs) from Yes/No-related ERPs. ERPs from the Cz channel. Blue lines 
represent ERPs elicited during memorization trials. (C) Results of the spatio-temporal permutation test for three out of four sets (objects, animals, 
emojis). On the left side of each panel, the topographic distribution of the F-statistic averaged over the time interval associated with the significant 
cluster; white circles indicate channels belonging to the cluster. On the right side, curves obtained by subtracting the memorization-related ERP from 
the Yes responses, averaged over all channels in the cluster. The shaded areas indicate the time interval during which significant differences were 
found.
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Following the ERN, we observed a positive peak with a latency of 
approximately 400–500 ms. We interpret this peak as the Pe, which is 
known to be  larger for error events and associated with error 
awareness and subsequent behavioral correction (Endrass et al., 2007; 
Glazer et al., 2018; Pyasik et al., 2022). Typically, the Pe can be divided 
into early (frontally localized) and late (posterior) components, with 
the latter primarily associated with behavioral adjustments (Pyasik 
et al., 2022). Although we did not specifically focus on the separation 
of Pe components in our study, the fronto-central spatial distribution 
of the observed Pe suggests that the early Pe component predominated 
in our paradigm.

Our analysis demonstrated that the Pe component exhibited a 
distinct pattern in No responses. However, it did not show changes 
related to the stimulus set factor. In contrast, the positive components 
of the same latency in Yes responses demonstrated significant 
variability influenced by this factor. This suggests that ERN is more 
reactive to the visual content of erroneous stimuli, while Pe in No 
responses could reflect higher-level processes of integration, 
acceptance, and adaptation of error consequences (Ullsperger et al., 
2014; Iwane et al., 2022).

Regarding the positive component with a latency range 
corresponding to Pe in Yes responses, we attribute this potential to 
activity similar to the feedback-related correct response positivity 
described by Cockburn and Holroyd (2018). These authors 
associate this potential with reward prediction error (RPE) 
systems, which are strongly related to the level of attention and 
salience of feedback stimuli (Walsh and Anderson, 2012). The 
observed effects of stimulus set factor on this late positive 
component in Yes-trials may be  explained by differences in 
attractiveness of the different visual stimuli used. However, since 
our paradigm did not include explicit reward stimuli, we discuss 
this finding and its association with RPE with caution and 
acknowledge its speculative nature.

It is interesting that within the same experimental paradigm, some 
stimulus sets demonstrated the presence of both ERN and Pe (objects, 
animals, emojis), whereas in the numbers only Pe component was 
present. Our findings suggest that the presence of ERN is not a 
mandatory indicator of error awareness, aligning with a previous 
review (Xavier Fidêncio et al., 2022) reporting variable differences in 
the ERN and Pe across individuals. Some participants exhibited a 
virtually absent Pe while the ERN was prominent. Enriching the 
evidence for intersubject variability of Pe and ERN (Xavier Fidêncio 
et al., 2022), we described in this study that the frequency of error-
related components in ERP curves can vary depending on the 
appearance of the stimuli used. It is important to emphasize, especially 
for future practical applications, that the observed differences in ErrPs 
across different stimulus sets make it challenging to effectively transfer 
classification algorithms for ErrP detection into a BCI loop: algorithms 
trained on a specific stimulus set may not generalize well to other 
stimulus sets.

Notably, we did not find ERN components within No responses 
for the numbers, which was unexpected given the clear distinctions 
between correct and incorrect stimuli within this set. Previous studies 
(Herrmann et  al., 2004; Hajcak et  al., 2005) have shown that the 
amplitude of ErrPs tends to increase as the error approaches correct 
performance. Therefore, we  initially expected to find pronounced 
ErrPs for the numbers. This lack of pronounced disagreement 

reactions may be due to the short semantic distance between numbers, 
causing even erroneous numbers to be perceived as less distinct and 
thus not eliciting strong disagreement reactions.

Differences in the subjective attractiveness of stimuli across sets, 
influencing participant motivation, could explain the varied 
prominence of ErrP components. For example, participants may have 
found certain sets, such as the objects, more appealing and easier to 
visualize during the memorization interval than the numbers. 
However, since we  did not conduct any surveys or assessments 
regarding the subjective attractiveness of the stimulus sets, we cannot 
provide direct evidence for this hypothesis.

It’s worth considering the impact of semantic connections among 
pictures within each stimulus set on the observed ErrPs. Specifically, 
errors in the numbers might be  semantically closer to the correct 
answers compared to the erroneous stimuli in the objects and animals. 
Previous studies have reported a relationship between the amplitude 
of the ERN and the subjective distance between the error and the 
correct output (Hajcak et al., 2005; Hill, 2009; Spinelli et al., 2018; 
Iwane et al., 2022).

Our hypothesis posited that the shape of ErrPs could be influenced 
by the content of the stimuli, contributing to differences in ErrPs 
across the stimulus sets in our study. The objective of this study was to 
determine the extent to which the components associated with the 
object of attention modulate neural responses of agreement and 
disagreement. It was hypothesized that the ErrP waveform represents 
a mixture of picture-related visual potentials and Yes/No-
related components.

To thoroughly investigate this hypothesis, we  performed an 
additional analysis by subtracting the ERPs obtained during the 
memorization period from the Yes-/No-ERPs (Figure 5). The results 
show a high degree of similarity between the memorization ERPs and 
the Yes-/No-ERPs: during the ERN latency, both the memorization 
ERPs and the No-related ERPs show a negative deflection, although 
the No-related peak is more pronounced. A similar trend is observed 
for Pe, with the positive peak in this latency range also present in the 
ERPs recorded in memorization trials. At the same time, the Yes-ERPs 
differ significantly from the memorization-related responses. 
Permutation cluster-based tests indicated significant differences 
between Yes- and memorization-related ERPs within the time range 
where the ERN was described in No responses. On the other hand, 
No-ERPs did not show significant differences from memorization-
ERPs. This suggests that the cortical responses in No reactions are 
highly modulated by responses to stimulus content. These findings 
align with the results of the Friedman test, which indicate that the 
amplitude of the ERN varies depending on the specific stimuli 
presented. The subtraction of memorization-ERPs from Yes-ERPs 
revealed a consistent pattern of negative and positive peaks in all 
stimulus sets. These peaks were most pronounced in the fronto-
central area. The negative component in correct trials we found may 
be similar to previously described ERN-like activity, as identified by 
Coles et al. (2001) in correct trials. Coles et al. raised questions about 
the validity of theories specifically associating the ERN with error 
processing. The study proposed that output processing may be more 
strongly elicited by correct trials, potentially contaminating the ERN 
deflection in averaged ErrP. Our finding is also in line with the theory 
that the ERN-like activity primarily reflects a comparison between the 
representation of the correct answer and the actual output process, 
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rather than solely being an indicator of error detection resulting from 
this process (Cruz et al., 2017). Given that this comparison process is 
also necessary for correct responses, it is plausible that the ERN is 
present in correct responses as well.

5 Conclusion

We want to highlight that previous studies have concentrated on 
error-related responses, whereas our findings indicate that there is also 
a need for further investigation into responses to correct inputs. The 
verification process is also conducted in correct trials. The results 
revealed that Yes-related potentials had components related to 
outcome processing that were invariant to stimulus content. This 
suggests that correct trials may provide insight into error processing 
cortical networks and could be  highly valuable for practical 
application. Our results may be  useful in the development of 
generalized classifications for ErrP detection in a zero-calibration 
approach across different paradigms (Cruz et al., 2018, 2022; Iwane 
et  al., 2022), where the effects of stimulus scene on ErrPs should 
be taken into account.
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