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Introduction: Psychedelic compounds such as LSD, psilocybin, mescaline, and 
DMT can dramatically alter visual perception. However, the extent to which 
visual effects of psychedelics consistently vary for different substances is an 
open question. The visual effects of a given psychedelic compound can range 
widely both across and within individuals, so datasets with large numbers of 
participants and descriptions of qualitative effects are required to adequately 
address this question with the necessary sensitivity.

Methods: Here we present an observational study with narrative self-report texts, 
leveraging the massive scale of the Erowid experience report dataset. We analyzed 
reports associated with 103 different psychoactive substances, with a median of 217 
reports per substance. Thirty of these substances are standardly characterized as 
psychedelics, while 73 substances served as comparison substances. To quantitatively 
analyze these semantic data, we associated each sentence in the self-report dataset 
with a vector representation using an embedding model from OpenAI, and then we 
trained a classifier to identify which sentences described visual effects, based on the 
sentences’ embedding vectors.

Results: We observed that the proportion of sentences describing visual effects 
varies significantly and consistently across substances, even within the group of 
psychedelics. We then analyzed the distributions of psychedelics’ visual effect 
sentences across different categories of effects (for example, movement, color, 
or pattern), again finding significant and consistent variation.

Discussion: Overall, our findings indicate reliable variation across psychedelic 
substances’ propensities to affect vision and in their qualitative effects on visual 
perception.
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Introduction

Visual perceptual effects are hallmark features of psychedelic substances. LSD and psilocybin 
are two “classical psychedelics” that have been administered to human research volunteers (Carhart-
Harris et al., 2016; Griffiths et al., 2006), and a great diversity of other psychedelic compounds serve 
as valuable research tools as well (Shulgin and Shulgin, 1997; Shulgin and Shulgin, 1991).
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Based on their particular chemical structures, different psychedelic 
compounds have distinct effects in the brain. To the extent that different 
psychedelics also alter visual perception in characteristic ways, a 
comparison of physiological and qualitative effects across many 
psychedelics would be a powerful way to study the neural processes 
underlying conscious visual experience. However, how psychedelic visual 
effects vary for different substances is a largely open question. Anecdotally, 
visual effects often range widely across individuals even for a specific 
psychedelic compound, so a controlled experiment involving 
administration of psychedelics to human participants would likely not 
have the sensitivity to effectively answer this question. Here we address 
this question by conducting an observational study of narrative self-report 
texts, leveraging the massive scale of the Erowid dataset.

Erowid Center archives narrative self-reported texts of experiences 
with psychoactive substances, submitted by users and accessible to the 
public at its website.1 In our study, we  analyzed experience reports 
associated with 103 different substances, with a median of 217 reports per 
substance. Thirty of the substances are generally recognized as 
psychedelics (some of which are also referred to as hallucinogens), while 
73 served as comparison substances in our analyses and include sedatives, 
stimulants, herbs, and other drug classes. We designated substances in our 
study as psychedelic if they are characterized as such in the Erowid 
experience report dataset and if they either belong to tryptamine, 
phenethylamine, or lysergamide chemical classes or include compounds 
from these classes.

To quantitatively analyze these semantic data, we associated each 
sentence with a text embedding vector representation, mapping its 
semantic information to a mathematical form. The text-
embedding-ada-002 model (OpenAI) (Greene et al., 2022) was used 
to generate vectors for each of the 2.2 million sentences in our text 
dataset. We then employed logistic regression to identify sentences 
describing visual subjective effects based on their vector 
representations. This analytical approach differs from previous text 
processing studies of the Erowid data set that relied primarily on word 
frequency-based or occurrence-based analysis methods (Mooseder 
et al., 2022; Nayak et al., 2021; Sanz et al., 2018; Zamberlan et al., 2018).

We observed that the proportion of sentences describing visual 
effects varies substantially and systematically across substances, even 
within the subset of psychedelic compounds. Next, we  manually 
identified a group of categories of visual experiences by surveying the 
full set of visual effect sentences. For each substance, we calculated the 
proportion of visual effect sentences within each defined experience 
category, and we  found that psychedelic compounds consistently 
differ in their profiles of visual effects.

Overall, our analyses demonstrate significant variation in psychedelic 
substances’ propensities to affect visual experience and other qualitative 
effects. Our findings also establish a new method for quantitative analysis 
and categorization of visual effects of psychoactive substances and other 
altered states of consciousness. The analysis method we describe here can 
be utilized in future studies to systematically characterize differences 
among psychedelic substances for various aspects of subjective experience. 
Our method also provides a foundation for future studies of psychoactive 
substances that relate physiological and biological measures to quantitative 
metrics of subjective experience, and our results indicate that the 

1 Erowid.org

neurotransmitter receptor activity patterns that mediate psychedelic 
visual phenomena are multifactorial.

Methods

Erowid experience vault: subjective 
experience report dataset

Erowid Center is a nonprofit organization whose mission is to 
provide accurate and unbiased information about psychoactive 
substances freely to the public via its website, Erowid.org (Erowid, 
1995–2023). Part of this mission involves informing website visitors 
about the acute effects of different psychoactive substances. The 
existing scientific literature on physiological and subjective effects is 
available on the Erowid website for a limited set of substances, but 
there are many more substances that people use recreationally, 
ceremonially, and medicinally whose effects have not been well 
characterized in experimentally controlled settings. Therefore, Erowid 
Center collects and maintains a publicly available archive of user-
submitted text reports of subjective experiences with 
psychoactive substances.

Any Erowid website user may freely submit a text report 
describing their experiences with a psychoactive substance. Users 
may also submit reports of experiences that are related to 
psychoactive substances or other altered states of consciousness, 
such as dreams, meditation, drug testing, and law enforcement 
encounters. For our study, we  excluded these reports from 
the analysis.

Erowid provides minimal guidelines and instructions for user-
submitted reports, emphasizing well-written descriptive information 
about the user’s experiences, including mindset and setting, dosage 
and timing, physical and mental effects, preparation and intention, 
insights gained, and problems encountered. Erowid Center volunteers 
review submissions and screen out reports that are obviously fictional 
or exaggerated and/or do not provide useful information.

Researchers partnering with Erowid Center can access report text 
and metadata via an application programming interface (API). For 
our study, we used the Erowid API to download complete subjective 
report text for all substances associated with at least 100 distinct 
reports that were published between June 13, 1995 and May 22, 2023.

Text preprocessing

We first preprocessed the text dataset in the Python programming 
language to prepare it for analysis. Initially, we employed the Beautiful 
Soup package (Richardson, 2007) to remove markup text that was 
used to format the reports for presentation on the Erowid website. 
Next, we  separated each report into its constituent sentences by 
splitting the text at period characters. This procedure included 
exceptions for period characters between two numeral characters that 
we assumed denoted decimal points and for adjacent period characters 
that we  assumed denoted ellipses. We  associated each resulting 
sentence with a sentence identification number and a report 
identification number, along with a substance label. Reports that were 
associated with more than one substance in the Erowid metadata were 
excluded from the dataset.

https://doi.org/10.3389/fpsyg.2024.1397064
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The final dataset comprised reports for 103 substances (total of 
39,586 reports; median of 217 reports per substance). The median 
number of sentences per report was 40, with a minimum of 1 and a 
maximum of 1,396. Table 1 summarizes the dataset at the level of 
individual substances. Substance names are presented in Table 1 and 
the following figures as they were entered in the Erowid experience 
report database verbatim. Supplementary Table  1 associates these 
Erowid database substance names with chemical names or 
other identifiers.

Text embedding vectors

To quantitatively analyze the semantic content of the experience 
report texts, we associated each sentence in the dataset with a text 
embedding vector. A text embedding is a mapping from character 
strings to vectors such that the semantic similarity of two strings is 
related to the mathematical similarity of the associated vectors. For 
sentence embedding, two sentences with similar meanings (e.g., “I 
sauteed the tofu” and “I braised the bean curd”) would be separated 
by a smaller Euclidian distance in vector space than two sentences 
with more different meanings (“I sauteed the tofu” and “The president 
enjoyed my cooking”).

For each sentence in the text dataset, we generated a corresponding 
embedding vector using the text-embedding-ada-002 model 
(OpenAI) (Greene et al., 2022). Text embeddings were computed with 
the OpenAI API over a period from July 10, 2023, to July 23, 2023. The 
text-embedding-ada-002 model associates any input text string with 
a 1,536-dimensional vector, and at the time of our analysis, it was the 
highest performing text embedding model available from OpenAI 
(Greene et al., 2022).

Visual effect sentence classifier

Erowid experience reports are unconstrained narrative reports 
that often contain information about a psychoactive substance user’s 
mindset and setting, context and motivation, methods of preparation 
and administration, etc., along with descriptions of various subjective 
effects. In order to systematically compare visual subjective effects 
across substances, we  needed to identify descriptions of visual 
subjective effects in narrative text, but our dataset was too large to 
allow manual evaluation of every sentence. We therefore developed a 
logistic regression classifier model to detect sentences that describe 
visual effects, based on their vector embeddings.

First, we created a set of labeled sentences to train the logistic 
regression model. We randomly sampled 10,000 sentences, without 
replacement, from the report dataset. For each sentence, we performed 
an OpenAI GPT-4 language model API call to label visual effect 
sentences. This GPT-4 API call used the following system prompt: 
“You are a model that identifies effects of psychoactive substances on 
visual experience (1) or not (0). Classify the following sentence. 
Respond only with 1 or 0. A 1 means that the sentence explicitly 
describes a visual effect.”

The user prompt for each API call was one of the 10,000 sampled 
sentences, generating a 1 or a 0 response for each of the sampled 
sentences. The API call temperature was set to 0.0 to minimize the 
possibility of unexpected (“creative”) responses to the prompt. Of the 

10,000 sampled sentences submitted to GPT-4 for labeling, 1,231 
(12.31%) were labeled as visual effect sentences, and 8,769 (87.69%) 
were labeled as not visual effect sentences.

To check the quality of the automated labeling procedure, 
we performed a manual review on a random sample of 100 of the 
sentences labeled by GPT-4 as 0 and 100 of the sentences labeled 
as 1. One of the investigators (S.N.) made a subjective judgment 
about whether each of these sentences were visual effect sentences 
or not, without knowledge of the labels assigned by GPT-4. All 
100 of the sentences that were labeled as “not visual effect” by 
GPT-4 were classified the same way by the manual review. 
However, 18 of the sentences that were labeled as “visual effect” 
by GPT-4 were classified as “not visual effect” by the manual 
review. We  therefore manually reviewed all 1,231 sentences 
labeled as “visual effect” by GPT-4, correcting the labels where 
necessary to reduce the false positive rate of our subsequent 
classifier training on the full data set. This resulted in a change of 
labels of 244 “visual effect” sentences to “not visual effect,” with a 
final count of 987 “visual effect” sentences and 9,013 “not visual 
effect” sentences.

We then used the Scikit-learn (Pedregosa et al., 2011) Python 
package to build a logistic regression classifier for our labeled 
training data. First, we  added the corresponding embedding 
vectors to the labeled sentence dataset. We  then trained the 
logistic regression on the embedding vectors, with each of the 
1,536 dimensions as an input variable, and the corresponding 
sentence label (“not visual effect” or “visual effect”) as the 
outcome variable.

We used an 80–20% train-test split procedure and undersampled 
the training set such that the number of “not visual effect” sentences 
matched the number of “visual effect” sentences (987 sentences). The 
prediction accuracy of this training procedure was 89.3%. Prediction 
accuracy is defined as the number of sentences for which the labels 
produced by the logistic regression classifier matched the labels in the 
training set, divided by the number of sentences in the test set.

We then used the trained classifier to predict the probability that 
each sentence in our full Erowid sentence dataset was a visual effect 
sentence. We manually reviewed a sample of classified sentences to 
assess whether the predicted probabilities generated by the classifier 
corresponded to our own judgments of “visual effect” versus “not 
visual effect” sentences.

Example sentences and their associated classifier probabilities are 
displayed in Table 2. We observed that the prediction probability was 
generally well correlated with our own certainty about whether a 
sentence described a visual effect. Based on our review, we chose a 
prediction probability threshold of 0.75 to classify a sentence as a 
visual effect sentence, aiming to limit false positives. The total number 
of visual effect sentences above this prediction probability threshold 
was 143,520, corresponding to 6.52% of the total number of sentences 
in the full data set.

In Figure 1, we display the prediction probability distribution for 
all sentences in the dataset and for a selection of individual substances. 
In general, most of the sentences have a prediction probability below 
0.5. This was expected, given that Erowid reports often describe many 
more aspects of a psychoactive substance experience than just visual 
subjective effects. We display the prediction probability distribution 
for the top four and bottom four number of reports (substances 
needed to have at least 100 reports in the data set to be included in our 
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TABLE 1 Summary of Erowid experience report text dataset.

Substance Number of 
reports

Mean 
sentences per 

report

Standard 
deviation

Minimum 
sentences per 

report

Median 
sentences per 

report

Maximum 
sentences per 

report

Cannabis 3,039 54.4 51.9 1.0 41.0 995.0

MDMA 2,507 56.7 58.6 1.0 42.0 979.0

LSD 2,488 80.0 82.8 1.0 59.0 1396.0

Salvia divinorum 2,450 54.4 44.0 1.0 44.0 498.0

Mushrooms 2,283 68.3 59.3 1.0 55.0 916.0

DMT 1,121 62.9 54.9 2.0 47.0 583.0

DXM 869 50.2 51.9 2.0 35.0 582.0

Mushrooms_P. cubensis 812 81.2 70.3 1.0 65.5 916.0

Cocaine 810 40.7 36.0 1.0 30.5 284.0

Ketamine 796 57.1 54.0 1.0 42.0 511.0

Morning Glory 647 59.4 50.7 2.0 47.0 520.0

Amphetamines 642 48.7 45.7 1.0 37.0 428.0

Kratom 594 39.6 44.4 1.0 30.0 428.0

2C-I 576 63.5 48.1 3.0 50.0 310.0

Methamphetamine 574 53.5 63.8 4.0 37.0 965.0

Syrian Rue 545 69.9 56.1 6.0 54.0 439.0

H.B. Woodrose 521 55.6 44.9 1.0 47.0 336.0

Nitrous Oxide 495 49.6 49.5 1.0 35.0 459.0

2C-B 469 61.1 47.2 4.0 50.0 389.0

2C-E 449 71.9 64.6 1.0 56.0 506.0

Heroin 430 50.1 43.8 2.0 39.0 399.0

Oxycodone 427 43.3 36.8 2.0 33.0 323.0

5-MeO-DMT 409 54.5 46.7 4.0 43.0 453.0

Alcohol 407 39.0 30.0 3.0 31.0 248.0

Pharms_Tramadol 403 31.3 32.3 2.0 22.0 388.0

Nutmeg 387 42.8 40.0 1.0 32.0 329.0

Pharms_Zolpidem 377 32.4 30.6 1.0 23.0 308.0

Diphenhydramine 375 48.6 37.5 1.0 39.0 228.0

Datura 353 53.6 42.9 1.0 40.0 303.0

Amanitas_A. muscaria 336 49.2 49.8 1.0 36.5 478.0

Hydrocodone 333 36.7 27.4 1.0 28.0 186.0

Pharms_Alprazolam 325 37.4 40.4 1.0 23.0 286.0

Caffeine 321 32.0 25.3 2.0 25.0 168.0

5-MeO-DiPT 320 49.8 38.2 3.0 37.0 249.0

4-AcO-DMT 316 76.0 53.7 7.0 62.0 361.0

AMT 313 59.0 50.1 4.0 44.0 410.0

Cacti_T. pachanoi 302 68.9 62.3 4.0 52.0 507.0

Alcohol_Beer_Wine 288 36.6 30.9 2.0 27.0 228.0

Alcohol_Hard 282 41.1 29.9 3.0 33.0 225.0

Pharms_Clonazepam 280 31.2 29.2 2.0 22.0 224.0

Kava 272 27.6 17.9 3.0 22.0 108.0

Pharms_Buprenorphine 256 33.0 33.7 1.0 24.0 277.0

Codeine 252 34.4 26.6 2.0 26.0 141.0

(Continued)
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TABLE 1 (Continued)

Substance Number of 
reports

Mean 
sentences per 

report

Standard 
deviation

Minimum 
sentences per 

report

Median 
sentences per 

report

Maximum 
sentences per 

report

2C-T-7 246 54.2 42.3 1.0 43.0 329.0

25I-NBOMe 244 69.1 43.9 7.0 59.0 328.0

Dimenhydrinate 243 51.4 35.5 3.0 44.0 263.0

Methoxetamine 243 63.9 70.7 3.0 43.0 527.0

Pharms_Methylphenidate 240 47.0 57.0 2.0 31.0 428.0

Mimosa tenuiflora 236 81.6 65.7 7.0 63.5 583.0

DPT 235 62.8 44.6 2.0 50.0 224.0

Inhalants 220 36.6 60.3 3.0 27.0 853.0

GHB 217 40.4 39.8 5.0 28.0 325.0

Modafinil 210 34.2 32.4 3.0 25.5 266.0

Huasca Combo 203 76.7 52.6 9.0 61.0 338.0

Products_Spice-Like Smoking 

Blends

197 52.3 44.8 4.0 39.0 316.0

Methylone 194 58.4 49.2 3.0 46.5 305.0

Ayahuasca 193 103.5 86.4 7.0 81.0 568.0

Pharms_Bupropion 190 36.3 36.0 2.0 25.0 240.0

Pharms_Gabapentin 186 30.3 26.0 2.0 23.0 184.0

2C-T-2 177 54.2 47.2 6.0 39.0 280.0

Pharms_Venlafaxine 176 29.3 27.9 4.0 22.0 214.0

Methadone 164 35.2 37.0 4.0 23.0 259.0

Morphine 157 36.7 36.1 3.0 27.0 305.0

4-Methylmethcathinone 156 52.5 84.5 4.0 35.0 995.0

Tobacco 154 35.4 37.9 3.0 22.5 241.0

MDA 148 52.4 30.9 6.0 44.0 158.0

Calea zacatechichi 147 31.3 24.6 3.0 25.0 178.0

Poppies_Opium 146 41.7 37.2 7.0 32.0 299.0

Banisteriopsis caapi 145 82.1 63.6 4.0 65.0 443.0

Melatonin 143 22.7 19.0 1.0 16.0 134.0

Pharms_Paroxetine 142 31.1 27.1 2.0 22.0 195.0

Crack 140 37.4 33.0 1.0 27.0 238.0

Pharms_Quetiapine 137 28.3 27.0 3.0 19.0 148.0

Cannabis_Hash 137 50.3 43.6 7.0 37.0 248.0

Lotus_Lily_Nymphaea 

nouchali var. caerulea

137 33.8 24.7 2.0 26.0 133.0

5-MeO-AMT 137 52.2 40.2 2.0 43.0 269.0

Pharms_Pregabalin 136 28.2 21.3 3.0 21.5 107.0

Absinthe 133 30.0 21.0 3.0 25.0 119.0

25C-NBOMe 128 66.8 50.1 7.0 52.0 281.0

Smarts_Phenibut 125 43.1 38.1 4.0 34.0 263.0

Damiana 124 23.1 20.2 4.0 18.0 119.0

Pharms_Diazepam 124 41.7 38.7 3.0 30.5 224.0

1P-LSD 122 74.7 58.2 2.0 62.5 348.0

PCP 122 44.8 30.7 6.0 36.0 157.0

(Continued)
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FIGURE 1

Histograms of the relative frequency distribution of prediction probability values for selected substances. For each subplot, prediction probability values 
are represented along the horizontal axis, and relative frequency is represented along the vertical axis. Because the different substances have different 
numbers of sentences in their total experience report data, the vertical axis scales are normalized so that the maximum frequency value is plotted at 
the top of each subplot. The red line in each subplot depicts the overall distribution of prediction probabilities for the entire dataset. Prediction 
probability values were calculated by the trained logistic regression classifier model for each sentence in the dataset.

TABLE 1 (Continued)

Substance Number of 
reports

Mean 
sentences per 

report

Standard 
deviation

Minimum 
sentences per 

report

Median 
sentences per 

report

Maximum 
sentences per 

report

Catnip 121 22.2 17.1 3.0 17.0 133.0

Valerian 118 25.8 25.6 2.0 19.0 177.0

4-HO-MET 116 73.1 48.1 1.0 61.0 275.0

Cacti_T. peruvianus 115 87.5 114.2 4.0 63.0 977.0

Pharms_Fentanyl 114 33.4 26.3 2.0 26.0 141.0

2C-C 114 59.1 51.7 6.0 39.5 294.0

5-MeO-MIPT 114 61.8 45.2 8.0 47.0 225.0

MDPV 113 39.8 36.6 5.0 26.0 185.0

Etizolam 113 41.7 48.0 3.0 29.0 307.0

Pharms_Lorazepam 109 38.1 36.0 2.0 26.0 184.0

JWH-018 106 50.4 41.6 5.0 40.0 246.0

Sceletium tortuosum 104 30.5 30.0 6.0 23.0 201.0

Wormwood 104 27.7 19.4 3.0 25.5 119.0

DOC 104 87.5 64.8 7.0 69.0 373.0

Pharms_Sertraline 104 32.6 27.5 5.0 24.0 156.0

Mescaline 104 86.8 92.7 8.0 65.0 654.0

Brugmansia 103 58.1 40.7 2.0 44.0 162.0

Piracetam 103 37.6 41.9 4.0 26.0 369.0

Huasca Brew 102 85.3 64.6 13.0 66.0 362.0

Substances are listed in descending order of the number of reports for each substance.
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analysis) (Figure  1). We  observed that the general shape of the 
probability distributions is similar across substances, with most 
variation across substances occurring in the upper end of the 
distribution. This variation is further explored below.

Categorizing visual effects

In this study, we assessed whether experience reports from users 
of psychedelic and other psychoactive substances consistently vary in 
their descriptions of visual effects. To conduct this analysis, we first 
extracted those sentences describing visual effects from the original 
subjective reports using the trained logistic regression classifier. 
We  created a new visual effect sentences dataset consisting of all 
sentences whose classifier prediction probability was at least 0.75, 
along with their substance labels and their embedding vectors. 
We then used the embedding vectors to quantitatively analyze the 
distributions of types of visual effects across substances.

Embedding vectors translate semantic similarity of sentences into 
mathematical distance in vector space. We  therefore used the 
embedding vectors to quantify, for each substance, the proportion of 
sentences that describe particular categories of visual effects. To 
determine the categories of visual effects to be analyzed, we surveyed 
the full visual effect semantic space by projecting the embedding 

vector dataset into two dimensions using uniform manifold 
approximation and projection (UMAP), a dimensionality reduction 
method optimized to maintain the global and local structure of high-
dimensional data that have nonlinear variation (McInnes et al., 2018).

The UMAP 2-D projection of the embedding vectors facilitates 
assessment of how different visual effect sentences are semantically 
related to one another and identification of prototypical visual effect 
sentences representing distinct regions of the visual effect sentence 
space. Specifically, one of the authors (SN) surveyed the 2-D UMAP 
of visual effect sentences by densely sampling and reading sentences 
across the projection to explore the semantic space. Based on this 
survey, the same author (SN) then manually generated prototypical 
sentences to reflect common types of visual effect descriptions 
encountered. This process is illustrated in Figure  2, and the 
prototypical sentences we  generated as seed sentences for further 
analysis are listed in Table 3.

To quantify any given substance’s likelihood of causing 
different visual effects, we  calculated the proportion of that 
substance’s visual effect sentences that contained embedding 
vectors within a distance threshold of each seed sentence. 
We  defined a distance threshold of 0.55, based on a survey of 
subjective report sentences and their vector distances from the 
seed sentences. We  determined that this threshold value is the 
approximate distance above which sentences are no longer 

TABLE 2 Examples of Erowid subjective report sentences and visual effect logistic regression prediction probabilities.

Sentence Probability

Would I repeat the experience? 0.12

It’s felt like ten seconds and it’s felt like two years. 0.24

But the chill of winter is still in the air- old father death breathing rebirth into the spring breeze. 0.33

There was an incredible sense of loneliness and intense pain there. 0.44

I feel like I am walking crazily, I have to concentrate really hard to feel like I am walking normally. 0.51

The metal poison feeling was gone, but I was think, heavy and separated from my body, like watching myself move but unable to control or know 

where I would go. 0.57

He started to bark and as he did his voice would start to echo and as my sense took in the noise I began to dissociate. 0.61

I felt an extreme apartness from everyhting around me except the natural world. 0.62

I looked to my left where they were banging but I could not see them at all. 0.68

But the rest was an infinity of thick white feathers, and I had a strong connection to each of them. 0.69

I would look at a painting I normally woulnd’t look twice at (in fact one I looked at I had never looked at for the previous 20 years we had it) and was 

mystified. 0.71

As this started to happen I lost myself in almost a separate reality. 0.72

Then, some very weak hallucinations - fond memories of an unknown place that really did not exist - came up in my head and I layed there, 

remembering them for what felt like the entire night. 0.74

again if I look to the side when I’m moving forward I get extremely disoriented. 0.77

Because the bizarre visual features seemed to make it worse, I turned off the light and got into bed. 0.82

I also think now that many of my visual problems stemmed from an effect of the drug that made me unable to see pictures or visual input as a ‘whole’ 

picture (as we usually perceive what we are looking at) instead of a collection of many millions of small details. 0.82

The rest of the day consisted of seeing the sky change colors, water boiling and burning and sometimes seeing a man with a knife yelling at me. 0.84

From there my eyes really changed. 0.85

Everything in my vision became a circular blur, a tunnel, around everything but a tiny hole where my eyes were focused. 0.97

Sentences are listed in ascending order of prediction probability. A probability of 0 indicates that the model is certain that the input sentence does not describe a visual effect, and a probability 
of 1 indicates the opposite. We designated a probability of 0.75 as the threshold for classifying whether a sentence is a visual effect sentence or not.
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semantically similar enough to the seed sentence to justify being 
labeled as an instance of that category of visual effect. Figure 2 
illustrates this distance calculation method for a two-dimensional 

UMAP projection (although the quantitative analysis involves 
computing distance over all 1,536 dimensions). Figure 3 illustrates 
the full analysis method with a flowchart.

FIGURE 2

(A) Two-dimensional UMAP projection of all visual effect sentence embedding vectors. Each point corresponds to a single visual effect sentence, and 
colors denote different substances. The locations of some example sentences are indicated with arrows. (B) Illustration of visual effect categorization 
and calculation method. Seed sentences (listed in Table 3) were created to represent different regions of the visual effect vector space. Each visual 
effect was defined as the area within a threshold distance of a seed sentence vector. The proportions of visual effect sentences that fell within each 
category were then compared across substances. The black circles overlaid on the 2-dimensional point clouds demonstrate our procedure for 
categorizing visual effect sentences by calculating distances from seed sentence vectors (the center of each circle) and setting a distance threshold. 
Note that the analysis was conducted in the original 1,536-dimensional vector space, and the two-dimensional projection with overlaid circles/visual 
effect categories shown here is for illustration purposes.
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To test for statistical significance of differences among psychedelic 
substances in their profiles of visual effect sentence categories, 
we performed a permutation test using a statistic that measures the 
differences across substances in their respective associations with seed 
sentences. This test statistic T quantifies the average inter-substance 
variability in relation to each seed sentence. Specifically, for each seed 
sentence, the mean absolute difference between the sentence proportion 
values was computed for all pairwise comparisons of substances, thereby 
quantifying the dispersion of each substance’s association with that seed 
sentence. This process was repeated for each seed sentence, and the value 
of the test statistic is the overall mean of these differences. This measure 
summarizes the variation among substances in their associations with 
the spectrum of visual effect categories.

Formally, T is defined as:

 ( ) ( ) ( )
1, 2 ; 1 2

1 2 , 1 , 2
1s S d d D d d

T V s d V s d
S D D∈ ∈ ≠

 
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∑ ∑

Where:

 - S is the set of all seed sentences,
 - D is the set of all substances,
 - V(s,d) represents the value (the proportion of subjective report 

sentences below the distance threshold) for seed sentence s and 
substance d,

 - ∣S∣ and ∣D∣ represent the number of seed sentences and 
substances, respectively.

In this equation, the inner sum represents the mean absolute 
difference between all pairwise comparisons of substances for seed 
sentence s. The outer sum is the average of these mean differences 
across all seed sentences.

We created seed sentences that reflected categories of visual effect 
sentences that we frequently encountered while manually reviewing 
the list of visual effect sentences, arranged by their semantic similarity 
in the 2-D UMAP projection. Therefore, the generation of seed 
sentences was a top-down, rather than data-driven, process. In future 
work, a data-driven method for identifying visual effect categories 
without manual classification would allow for a more objective 
analysis of systematic differences among psychedelic substances’ visual 
effects. However, for the present study, we reasoned that manually 
identified visual effect categories that exhibited statistically significant 
differences would allow testing for differences in the visual subjective 
effects among psychedelic substances.

Results

We observed that the proportion of visual effect sentences varies 
significantly by substance (Figure 4). Using a chi-square procedure, 
we rejected the null hypothesis that across all sentences in the report 
dataset, substance and prediction probability vary independently, X2 
(114, N = 2,246,254) = 72,912, p < 0.001. The strength of association 
between substance and prediction probability, measured by Cramér’s 
V, was 0.180, indicating a small-to-moderate association. Psychedelic 

TABLE 3 Seed sentences for visual effect categorization analysis.

Visual effect category Seed sentences used for 
analysis

Pattern I saw geometric patterns.

I saw kaleidoscopic patterns.

I saw fractals.

I saw patterns.

I saw repetitions.

Movement I saw things breathing.

I saw things morphing.

I saw things drifting.

I saw things waving.

I saw things melting.

I saw things flowing.

I saw tracers and trails.

Color I saw colors.

I saw colors changing.

Colors were beautiful.

I saw rainbows.

I saw colors I had never seen before.

Entities I saw entities.

I saw aliens.

I saw angels.

I saw demons.

I saw elves.

I saw God.

Global visual alterations My vision was blurry.

My vision was sharpened.

Everything looked dark.

Everything looked bright.

I saw a bright light.

Distortion Everything was distorted.

I saw things in my peripheral vision.

I saw a distorted face.

I saw cartoons.

I saw things get bigger.

I saw things get smaller.

I saw things change in size.

Affect I saw beauty.

What I saw scared me.

Other I experienced synesthesia.

I saw a tunnel.

I saw things when I closed my eyes.

I could not tell what was real.

We generated these sentences as being prototypical for the different categories of visual 
effects that we observed in the full set of visual effect sentences, and we then used them as 
seed sentences for analysis of visual effect categories.
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compounds tend to have a much higher proportion of visual effect 
sentences than any other drug category. We performed a two-sample 
t-test comparing the proportion of visual effect sentences for 
psychedelic versus non-psychedelic substances and found that 
psychedelic compounds have a significantly higher proportion of 
visual effect sentences (p < 0.001).

The proportion of visual effect sentences also varied significantly 
by substance when analyzing only psychedelic substances (Figure 5), 
X2 (29, N = 931,858) = 5,771, p < 0.001. The strength of the association 
between psychedelic and prediction, measured by Cramér’s V, was 
0.078, indicating a small association.

The analyses displayed in Figures 4, 5 demonstrate reliable variation 
of the proportion of visual effects sentences across all substances and 

across psychedelic substances. In addition, we conducted a categorization 
analysis (see Methods) that showed that the proportions of different 
categories of visual effects vary across psychedelic substances. These 
results are displayed as a clustermap of proportions of categories of visual 
effect sentences, with seed sentences and substances arranged according 
to their dendrogram distances (Figure 6). Each leaf of the dendrogram 
represents one observation (a row or a column of the heatmap). Branches 
connect the leaves, and the number of branch crossings that must 
be traveled between two leaves represents the dissimilarity between those 
two leaves within the category (sentences or psychedelic substances) 
(Figure 6).

We defined dissimilarity between two substances or two seed 
sentences as the Euclidean distance between their proportion vectors. 

FIGURE 3

Flowchart of method for calculating visual effect distributions across substances from the Erowid experience report dataset.
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The resulting clustermap reveals three distinct groups of seed 
sentences over all substances: relatively high, moderate, and low 
proportion values (Figure 6). These three clustermap groups do not 
map directly onto the seed sentences categories that we manually 
determined. For example, the high proportion clustermap group 
contains Color, Movement, and Pattern seed sentences, but these 
sentence categories are also found in the other two groups (Figure 6).

By visual inspection, the longest branches in the dendrogram for 
the seed sentences can be  used to distinguish three groups. The 
clustering of seed sentences into these three groups suggests that 
variation in the overall proportion values across substances is the most 
important factor for clustering the seed sentences. In contrast, the 
dendrogram for the psychedelics does not reveal clearly distinct 
substance groups to the same extent as the dendrogram for the seed 
sentences (Figure 6). The substance dendrogram suggests that there 

are three major clusters of psychedelic substances, but the lengths of 
the branches that separate the three substance clusters are shorter than 
the corresponding branches for the three seed sentence clusters, 
suggesting that the dissimilarity of proportion values in the three 
clusters is less for the substances than it is for the seed sentences.

We defined a test statistic T that quantifies the extent to which 
psychedelic substances differ from one another in the strength of their 
associations with seed sentences (see Methods). For the dataset of 
visual effect sentences, T = 0.0165. We then created a null distribution 
by shuffling the substance labels in this dataset and recalculated T for 
the proportion values derived from the shuffled-label dataset.

We performed this shuffling and T calculation procedure 10,000 
times to generate a distribution of T values that could be expected 
under the null distribution that there is no association between 
substance and visual effect profile. We then calculated the p-value as 

FIGURE 4

Proportion of visual effect sentences for each psychoactive substance. Substances are color coded by drug class.
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the proportion of permuted T values that were greater than or equal 
to the observed T value. This p-value was less than 0.001, indicating 
significant consistent variation across psychedelic substances in their 
relationships with seed sentences.

Discussion

We found that experience reports for different psychedelic substances 
vary in their proportions of different categories of visual effect sentences 
(Figure  6), suggesting that the profiles of visual effects for a given 
psychedelic are multifactorial. This would provide support for the patterns 
of receptor activation underlying the perceptual effects of psychedelics 
also being multifactorial, rather than being reducible to action at a single 
type or subtype of neurotransmitter receptor.

The 2A subtype of serotonin (5-hydroxytryptamine, or 5-HT) 
receptors (5-HT2A receptors) has been proposed to mediate the 
subjective effects of psychedelics. Classical psychedelics like DMT, 
LSD, psilocybin, and mescaline are sometimes termed serotonergic 
psychedelics because of their affinity for 5-HT receptors, particularly 
the 2A subtype (Nichols, 2016). The 5-HT2A receptor subtype has 
been described as necessary for some effects of classical psychedelics, 
including subjective ratings of complex visual imagery and increased 
visual cortical excitability (Kometer et al., 2013; Preller et al., 2018; 
Quednow et al., 2012). In addition, 5-HT2A receptors are densely 
expressed in visual cortex (Beliveau et al., 2017).

Our results are consistent with the notion that activation of the 
5-HT2A receptor does not solely dictate psychedelic visual 
phenomenology. If psychedelics varied only in their binding affinities 
or activation levels of 5-HT2A receptors, the intensities of their effects 
could be expected to vary across psychedelic substances as a function 

FIGURE 4 (Continued)
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of dose. However, in this case, the profiles of subjective effects would 
be more consistent across different psychedelic substances, especially 
for two substances with similar binding affinities and functional 
activations of the 5-HT2A receptor. In contrast, our results suggest that 
different psychedelics have characteristically different distributions of 
visual subjective effects and that there is a statistically significant 
association between these profiles of effects and the 
corresponding substances.

Results from studies employing the 5-HT2A receptor antagonist 
ketanserin have been interpreted to mean that activation of this 
receptor subtype may be necessary for the characteristic psychoactive 
effects of psychedelics (Kometer et  al., 2013; Preller et  al., 2018; 
Quednow et  al., 2012). However, several non-psychedelic 5-HT2A 
receptor agonists have been identified. For example, lisuride and 
ergotamine are analogs of LSD that have been previously described as 

non-psychedelic because their subjective effects do not resemble those 
typically associated with psychedelics (González-Maeso et al., 2007; 
Pieri et al., 1978). However, these drugs are 5-HT2A receptor agonists 
at levels comparable to those of their psychedelic congeners, as 
assessed by functional measures of receptor activation (Bonhaus et al., 
1997; Egan et al., 1998). The existence of non-psychedelic 5-HT2A 
receptor agonists indicates either that 5-HT2A receptor activation 
alone is insufficient to cause visual effects, or that there is a threshold 
of receptor activation that must be reached to produce psychedelic 
effects in a particular signaling pathway or population of neurons 
(Wallach et al., 2023).

Furthermore, recent evidence indicates that ketanserin, in 
addition to being an antagonist for the 5-HT2A receptor subtype, also 
has moderate affinity for the 5-HT2C receptor subtype, as well as 
moderate to high affinity for several adrenergic and histamine 

FIGURE 5

Proportion of visual effect sentences for each psychedelic substance. Psychedelic substances are color coded by drug class.
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FIGURE 6

Clustermap of visual effect sentence proportions for each psychedelic substance. For each seed sentence, we calculated the proportion of visual 
effect sentences for each psychedelic substance that fell within a distance threshold in embedding vector space. This proportion quantifies the 
strength of association between report sentences and a given seed sentence and is visualized using the color map on the right of the figure. This map 
combines heatmap and dendrogram methods, displaying the hierarchical clusters among substances and visual effect sentences. In the dendrograms, 
the total branch distance between two leaves (seed sentences or substances) indicates dissimilarity between those two leaves. Substance labels are 
color coded by psychedelic chemical class, and seed sentence labels are color coded by sentence category.
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receptors (Casey et  al., 2022). Therefore, the profile of receptor 
activation across multiple serotonin receptor subtypes and other types 
of neurotransmitter receptors, rather than just the level of activation 
of 5-HT2A receptors, is likely to determine the full set of subjective 
effects of any given psychedelic compound.

We observed that the proportion of visual effect sentences in the 
full dataset of experience reports varies significantly across all 
substances (Figure 4) and for the category of psychedelic substances 
(Figure 5). This variation represents differences across substances in 
their propensity to cause visual effects relative to other types of effects. 
Notably, psychedelics had significantly greater proportions of visual 
effect sentences than non-psychedelic substances, even though they 
also generally tended to have greater number of sentences per 
experience report in general (Table 1). Erowid experience reports are 
unconstrained and unprompted, and it is therefore likely that 
description of an effect in a given report reflects how salient or 
memorable that effect was for the report’s author.

Our findings of multifactorial visual effect profiles and varying 
propensities to cause visual effects across psychedelics, together with 
pharmacological evidence of different psychedelic compounds’ 
varying binding affinities across neurotransmitter receptor types 
(Jensen and Roth, 2008), suggest the importance of activation of 
multiple types of neurotransmitter receptors to account for the 
phenomenology of any given psychedelic compound. This possibility 
has been previously described in the literature. For example, it has 
been hypothesized that activation of 5-HT1A receptors may have larger 
effects on central visual processes than 5-HT2A/2C receptor activation 
(Nichols, 2000). However, there is currently no clearly established link 
between receptor types/subtypes and propensities for visual 
psychedelic effects or types of visual effects. Other possible 
mechanisms that could lead 5-HT2A agonists to have differing visual 
effects include agonist-directed trafficking (Berg et al., 1998), various 
forms of biased agonism, and activity of metabolites of ingested 
psychedelic substances.

Based on Cramér’s V values, there was a small-to-moderate effect 
size for the variation of proportion of visual effect sentences across all 
substances, and a small effect size when the analysis was limited to 
psychedelic substances. The larger effect size in the all-substance 
analysis is driven by the varying propensities of different drug classes 
to cause visual effects, with psychedelics being the most likely, and 
opioids being the least likely, to cause visual effects (Figure 4).

Our study demonstrates the utility of analysis of large-scale 
narrative self-report data in the study of the phenomenology of 
psychoactive substances. Individual substances can cause wide 
ranging and highly variable visual effects both within and across 
individuals, so large and high-quality data sets (such as Erowid’s 
Experience Vaults) are needed to accurately derive the visual effect 
probability distributions for different substances and to have the 
statistical power to meaningfully compare them to one another. To our 
knowledge, our study is the first to quantitatively demonstrate that 
different psychedelic substances result in different types of 
visual experiences.

The approach of quantitatively studying semantic text data that 
we describe here represents a methodological advance, combining the 
strengths of natural language processing and qualitative analysis of 
text. We  used a text embedding model (text-embedding-ada-002; 

OpenAI) (Greene et al., 2022) to map sentences to vectors in a way 
that translates semantic similarity among sentences to mathematical 
similarity among vectors, and we  used the GPT-4 large language 
model (OpenAI) to automate the creation of a labeled training set for 
our sentence embedding vector classifier.

By combining text embedding and large language models, 
we  identified visual effect sentences in the Erowid dataset at 
scale, with minimal research costs, and without concerns about 
human interrater reliability. This text analysis pipeline—
associating all of the text units (e.g., sentences) in a dataset with 
embedding vectors, automating the creation of a training set, and 
performing classification to label all text units—has many 
potential applications in the analysis of psychoactive substance 
experience reports and in other fields.

It is possible that non-pharmacological differences between drug 
experiences could have contributed to differences in the visual 
experience reports we analyzed. First, the relative salience of different 
aspects of the visual effects could vary according to non-visual 
influences, such as cognitive alterations. In future work, the analysis 
method we  describe in this study can be  extended to non-visual 
aspects of the psychedelic experience to examine this possibility. 
Second, contextual factors and population differences also contribute 
to the experience reports. If different substances are statistically 
associated with different sets and settings associated with the 
experience, or different populations of experience report authors, 
such differences might manifest as variation in visual effects in our 
results. These challenges are inherent to observational studies 
conducted with self-reported descriptions of self-administered 
psychedelic substances. In future work, our analysis method could 
be applied to research studies in which set, setting, and population 
are more controlled.

In future work, our method for analyzing the visual subjective 
effect profiles of psychedelics can be  used in conjunction with 
biochemical and physiological measures like receptor binding affinity, 
functional activation of receptors, and brain activity. In general, effects 
of psychedelics on conscious experience and global brain activity 
cannot be directly reduced to binding affinity measures. Different 
compounds binding to the same receptor can cause different patterns 
of neural activations for a variety of reasons, including affinity 
differences, nonlinear effects, threshold effects, and whether the 
binding is agonistic or antagonistic. Nonetheless, the method of 
quantitatively measuring psychedelics’ subjective effects that 
we  describe here can be  combined with biochemical, anatomical, 
physiological, and psychological measures to further investigate the 
actions of psychedelics in the brain and the biological bases of 
conscious visual experience.

Conclusion

Much remains to be understood about how activation levels of 
different neurotransmitter receptor types/subtypes contribute to 
visual perception and how psychedelics interact with these classes of 
receptors to affect subjective experience. Moreover, at the level of 
neural circuits and brain networks, the mechanisms of action of 
psychedelic substances are still largely unknown. Even so, patterns of 
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receptor binding affinities or actions on individual neurons are 
insufficient to fully characterize the perceptual and cognitive effects of 
psychedelics. A compelling explanation of how psychedelics affect 
brain activity must not only describe their actions on individual 
neurons but also how changes in the patterns of activity across 
populations of neurons are linked to perceptual and cognitive effects.

This latter question remains a mystery, but there are several theories 
being developed that seek to explain the acute effects of psychedelics on 
perception and cognition and their long-term effects on personality, 
worldview, and mental health status (Carhart-Harris and Friston, 2019; 
Vollenweider and Preller, 2020). Our study contributes to these efforts by 
highlighting the need to account for the roles that multiple types of 
neurotransmitter receptors play in brain activity.

Finally, our study suggests that psychedelics can be  used as 
effective tools to study basic questions in psychology and neuroscience, 
such as how patterns of activity in visual cortex relate to different 
features of visual experience. Future studies can correlate measures 
such as receptor binding, brain activity, and phenomenological reports 
across psychedelic substances to disentangle heterogenous biological 
contributions to the panoply of conscious visual experience.
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