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The open and generative nature of multimedia learning environments tends to 
cause cognitive overload in learners, and cognitive load is difficult for researchers 
to observe objectively because of its implicit and complex nature. Event-related 
potentials (ERP), a method of studying potential changes associated with specific 
events or stimuli by recording the electroencephalogram (EEG), has become 
an important method of measuring cognitive load in cognitive psychology. 
Although many studies have relied on ERP output measurements to compare 
different levels of cognitive load in multimedia learning, the results of the effect 
of cognitive load on ERP have been inconsistent. In this study, we used a meta-
analysis of evidence-based research to quantitatively analyze 17 experimental 
studies to quantitatively evaluate which ERP component (amplitude) is most 
sensitive to cognitive load. Forty five effect sizes from 26 studies involving 
360 participants were calculated. (1) The results of the studies analyzed in 
subgroups indicated high level effect sizes for P300 and P200 (2) Analyses of 
moderating variables for signal acquisition did not find that different methods of 
signal acquisition had a significant effect on the measurement of cognitive load 
(3) Analyses of moderating variables for task design found that a task system 
with feedback was more convenient for the measurement of cognitive load, 
and that designing for 3 levels of cognitive load was more convenient for the 
measurement of cognitive load than for 2 levels of cognitive load. (4) Analyses 
of continuous moderating variables for subject characteristics did not find 
significant effects of age, gender, or sample size on the results.
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1 Introduction

Multimedia learning has evolved with the proliferation of educational technology 
applications and increased opportunities to create multi-channel learning environments 
(Farkish et al., 2023; Liu et al., 2018; Mayer, 2006). The abundance of verbal and graphic 
information presented in teaching and learning through various technologies imposes a more 
complex and challenging cognitive load on learners. Educational researchers must employ 
advanced designs and techniques to assess cognitive load effectively (Çeken and Taşkın, 2022). 
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Event-related potential (ERP) technology is a measurement technique 
developed based on EEG, which is able to capture the learners’ EEG 
activity within a specific time window during the learning process, 
thus providing a time-series interpretation of the dynamic changes in 
the cognitive load (Kramer, 1991). However, related studies face 
certain challenges. Firstly, researchers used different ERP components 
and measured various brain regions. Secondly, exploration of 
cognitive load measurement under specific factors and technical 
conditions has led to variability in findings. Therefore, this study 
conducted a quantitative review using meta-analysis to integrate 
existing literature findings, quantitatively assess the validity of ERP 
components as a measure, and analyze the factors that May affect the 
experimental results.

2 Related work

2.1 Cognitive load and ERP technology

Multimedia learning environments offer learners a wealth of 
information and diverse learning experiences, accompanied by 
complex cognitive load challenges (Cavanagh and Kiersch, 2023; 
Mutlu-Bayraktar et al., 2019). Learners often grapple with information 
overload across various perceptual channels and cognitive dimensions 
when engaging with multimedia content that incorporates multiple 
elements such as text, images, sound, and interaction. This complexity 
necessitates the learner’s cognitive system to not only process 
increased information but also integrate and interact across different 
media, thereby intensifying the difficulty of the learning task (Trypke 
et al., 2023). In response to this challenge, event-related potentials 
(ERPs) emerge as a particularly advantageous physiological method 
for directly measuring cognitive load. By recording EEG signals, ERPs 
can capture a learner’s neuroelectrical activity within specific time 
windows during the learning process, providing a time-series 
interpretation of dynamic changes in cognitive load (Ghani et al., 
2020). The superiority of ERP in assessing cognitive load within 
multimedia learning environments is evident in several aspects. 
Firstly, ERP boasts high temporal resolution, enabling the tracking of 
rapid brain responses to various stimuli and revealing the temporal 
characteristics of learners’ processing of multimedia information. It 
accurately quantifies the distribution and temporal dynamics of 
cognitive load in learning tasks. Secondly, as a direct physiological 
measurement, ERP circumvents the limitations of subjective 
evaluation methods (Anmarkrud et al., 2019). Moreover, ERP proves 
sensitive to neural responses at varying levels of cognitive load, 
capturing changes in the brain at the millisecond level (Sun et al., 
2022). This positions ERP as an ideal tool for investigating learners’ 
cognitive load in multimedia learning environments, contributing to 
a comprehensive understanding of the cognitive challenges in the 
learning process and providing objective physiological guidance for 
optimizing multimedia learning design.

2.2 ERP components

ERP, in contrast to frequency domain analysis of EEG, involves 
averaging signals across multiple EEG channels while minimizing or 
eliminating unwanted EEG activity within a specified time window. 

The ERP divides components according to their latency after stimulus 
onset, and is typically named according to their deflection direction 
and average expected latency (Kramer, 1991). However, the latency of 
ERP components is influenced by various factors, such as stimulus 
properties, task requirements, and individual differences. The length 
of latency does not necessarily directly reflect the cognitive significance 
of the component. Consequently, in addition to components identified 
within specific time windows (e.g., P3a, N2b), many ERP components 
are named based on their functions and features. Examples include 
RON (Readiness Potential), emphasizing its relevance to action 
preparation and execution (Berti and Schröger, 2003), MMN 
(Mismatch Negativity), highlighting its sensitivity to discrepancies 
between expected and actual stimuli (Kramer et al., 1995), and LPP 
(Late Positive Potential), denotes its positive potential characteristics 
and the post-stimulus phase in which it appears (Deeny et al., 2014). 
Although these metrics have been demonstrated to characterize 
different memory processing processes, their validity as measures of 
cognitive load is subject to debate. Therefore, it is crucial to quantify 
the effects of cognitive load on various ERP components and 
rationalize the system of ERP components as indicators of cognitive 
load as a whole.

Rolke et al. (2016) used EEG to measure the amplitude of ERP 
components such as the P300 while learners were performing a visual 
search task and showed that the amplitude of these components 
increased with increasing attentional engagement. Xu et al. (2020) 
analyzed the EEG of 10 participants during a task using a mental 
workload estimator developed based on EEG and ERPs, and 
concluded that the amplitudes of N100, P3a, and RON Decreased 
significantly with increasing MWL in the n-back condition. Aksoy 
et al. (2021) combined a virtual reality head-mounted display system 
with an electroencephalogram to measure ERP components such as 
P100 and P300, which were shown to be effective in describing the 
learner’s level of cognitive load when performing tasks using VR. In 
summary, ERPs are effective in measuring cognitive load in different 
multimedia learning environments. But at the same time, researchers 
have used many different ERP components, but which ones are most 
effective for measuring cognitive load in multimedia learning? This 
question needs to be addressed urgently.

2.3 Potential factors influencing the 
cognitive load of ERP measures

Recent studies employing ERPs for cognitive load assessment have 
highlighted various factors influencing the outcomes of measurements 
in multimedia learning environments. Given the diverse findings, 
further exploration is essential to identify the moderating factors 
affecting the validity of ERP measures for cognitive load. Beyond the 
primary focus on ERP components in this study, it was anticipated 
that numerous variables in the included studies could impact the final 
measurements. These variables fall into three categories: signal 
acquisition characteristics of the study, task design characteristics, and 
participants characteristics.

2.3.1 Signal acquisition
Based on our literature review, we analyzed three features of signal 

acquisition that May influence cognitive load measurements: brain 
region, electrode position and number of electrodes.
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Deeny et al. (2014) noted that ERP components from different 
brain regions contribute differently to measures of cognitive load, 
suggesting that there May be potential moderating effects of signal 
acquisition in different brain regions. Identifying regional 
differences is therefore important for accurate assessment of 
cognitive load.

Many studies have exclusively measured ERP components 
using data from midline electrode sites like Fz, FCz, Cz, Pz, etc. 
These middle line positions, as suggested by Eschmann et al. (2018) 
and Meltzer et  al. (2007, 2008), May offer more interpretative 
insights into cognitive processes compared to others. We therefore 
thought it necessary to explore whether the use of midline 
electrodes was more helpful than other electrodes in measuring 
cognitive load.

In addition, some studies have achieved unexpectedly positive 
experimental results by relying solely on ERP data from a single 
electrode or channel to interpret cognitive load (Sun et al., 2022). 
We therefore expected to compare the simple method of collecting 
data using a single electrode with the conventional method using 
multiple electrodes.

2.3.2 Task design
Various studies have employed diverse task designs to elicit 

cognitive load. We  investigated the impact of three task design 
variables on ERP measures of cognitive load: number of tasks, number 
of cognitive load levels, interactive of task systems, form of 
learning resources.

The distinction between single-task and multi-task designs plays 
a crucial role. While multi-task designs mimic cognitive load in daily 
life, offering a comprehensive understanding of brain activity during 
the processing of multiple tasks, single-task designs enable a clearer 
analysis of neural activity for specific cognitive tasks (Brunken et al., 
2003; Pashler, 1993; Schumacher et  al., 2001). Both have their 
advantages, so we  analyzed the number of tasks as a moderating 
variable to see whether cognitive load induced by multi-tasking is 
easier to measure than that induced by single-tasking in 
multimedia learning.

Many studies have designed controlled experiments with more 
than two groups to measure cognitive load (Daffner et al., 2011; Deeny 
et al., 2014; Folstein and Van Petten, 2011). We expect to find out 
whether multiple group experiments are more favorable for 
measurement. Therefore, in order to determine the necessity of a task 
with multiple load levels, we analyzed the number of load levels as a 
moderating variable.

Research has shown that increased learner interaction with the 
learning system can be effective in managing cognitive load (Darejeh 
et al., 2022; Paas et al., 2004). The presence or absence of interactivity 
in task systems is another critical factor. The absence of feedback May 
heighten cognitive load due to self-doubt or lead to cognitive idleness, 
as learners lack cues for the next step in the task, influencing 
experimental results (Clark, 1994). We  therefore conducted a 
moderation analysis by considering whether the task system used by 
participants was interactive or non-interactive.

Imhof et al. (2011) found that sequential pictures and dynamic 
videos stimulate learners’ cognition differently and are likely to affect 
valid measures of cognitive load. Therefore, it is necessary to 
determine which of the two forms of learning materials is more 
appropriate for measuring cognitive load.

2.3.3 Participants characteristics
In addition, we analyzed the moderation of gender and age of the 

participants in the study, as Friedman (2003) and Güntekin and Başar 
(2007) have shown that gender and age have an effect on EEG. Finally, 
we also analyzed the effect of sample size on the results of cognitive 
load measurements, which could avoid small sample effects that could 
be detrimental to our study.

In this quantitative review of studies, we comprehensively review 
empirical studies from different databases on the use of ERPs to 
measure cognitive load in multimedia learning, investigating the ERP 
components used in these studies as well as other variables involved 
in the experimental treatment. The following research questions were 
developed accordingly:

RQ1 Which ERP components are more effective in measuring 
cognitive load?

RQ2.1 How do characteristics of signal acquisition affect measures 
of cognitive load?

RQ2.2 How do characteristics of task design affect measures of 
cognitive load?

RQ2.3 How do participant characteristics affect measures of 
cognitive load?

RQ3 Did publication bias influence our findings?

3 Materials and methods

3.1 Literature screening and inclusion

In order to ensure the quality and quantity of the original 
literature, authoritative English databases such as Web of Science, 
EBSCO, Science Direct, and Google Scholar were selected for the 
literature search. The combined logical search statement is 
TS = (workload or cognitive workload or working memory or mental 
workload) AND TS = (ERP or ERPs or event related potentials) AND 
TS = (learning or learner or student) Duplicate documents are 
removed after the search is completed.

After removing duplicates, studies were screened by title and 
abstract to exclude those that did not meet the inclusion criteria. 
When the abstract did not provide enough information, the study had 
to be screened in full text. Finally, articles with ineligible data were 
excluded according to the screening criteria, and studies that met all 
inclusion criteria were included in the meta-analysis.

3.2 Data collection

We extracted the following information from each study and 
coded it using Microsoft Excel: sample size, age, gender, ERP 
components, electrode position (Is it all on the midline), brain regions, 
number of tasks, number of levels of cognitive load, interaction, type 
of learning material.

3.3 Calculation of effect size

We conducted our analyses using the Comprehensive Meta-
Analysis (CMA) software version 3.0, which is specifically designed 
for conducting meta-analyses. Following Rosenthal and DiMatteo 
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(2001)’s recommendation, we selected the correlation coefficient (r) 
as the effect size. CMA software automatically transforms the effect 
size r into Fisher’s Z, bringing the distribution of r closer to a normal 
distribution and extending the range of values over the entire real 
number axis. Consequently, our study adopted the correlation 
coefficient, r, as the effect size for quantifying the impact of each ERP 
measure on cognitive load. According to Cohen (2016)’s criteria, the 
effect size r between 0.10 and 0.30 is defined as a small effect, 
between 0.30 and 0.50 as a medium effect, and above 0.50 as a 
large effect.

3.4 Heterogeneity test and elimination

Heterogeneity was quantified as the percentage of variation in 
effect size (i.e., the I2 statistic), with values of 75% and above 
indicating high heterogeneity, 50 to 75% indicating moderate 
heterogeneity, and 25–50% indicating low heterogeneity (Higgins 
and Green, 2008). We also assessed this by means of the chi-square 
test (Cochran’s Q statistic). Considering the diversity of the studies 
included, a high degree of heterogeneity between studies is expected, 
plus the sample sizes for each frequency of the study are not 
sufficiently large, it would be irresponsible to use random effects 
values to calculate the results for each indicator, with the risk of 
overestimating the size of the effect (Cooper et al., 2019). Therefore, 
if the heterogeneity I2 was >50% when performing the assessment 
of each indicator, we would first perform a sensitivity analysis, use 
the leave-one-out method to exclude studies with excessive 
heterogeneity, and use a fixed-effects model to derive the 
final results.

When conducting moderator variable analyses, we analyzed all 
included studies as a whole, as we wanted to be able to guide specific 
data collection and experimental design as a whole. Moderator 
variable analyses in this study examined the effect of a variable (integer 
or continuous) on the strength or direction of the relationship between 
cognitive load and measured outcomes (Rosenthal and 
DiMatteo, 2001).

For publication bias measures we  used Egger regression and 
funnel plots, and if publication bias was shown to exist, we used trim 
and fill methods (Duval and Tweedie, 2000) to calculate bias-corrected 
estimates of the mean effect. The number of missing sample sizes was 
estimated to inform future quantitative studies. Our findings were 
considered to be  more robust if there was no significant 
publication bias.

4 Results

After removing duplicates, 877 records were found in the database 
and reference list searches. The 130 remaining documents after 
abstract screening excluded measurements that did not include any 
ERP component or did not conduct controlled experiments by 
controlling for different levels of cognitive load. A detailed assessment 
of the full text of 59 studies identified additional studies that were not 
included because of the following criteria: insufficient data (23); no 
use of multimedia technology (11); not in English (3); other reasons 
(5). In the end, a total of 17 records met the inclusion criteria to 
be included, see Figure 1 for the process.

4.1 Literature screening results

The choice of peak amplitude or mean amplitude in this 
review depends on which of the two of them better measures 
differences in levels of cognitive load in Specific studies. In 
addition to amplitude, four studies were included on latency, 
which has been widely shown to judge cognitive processing ability 
(Goodin, 1990; Ford et al., 1980). Sample characteristics, coded 
moderator variables and effect sizes are shown in Table  1. In 
addition, because these studies were conducted at the university 
level, we did not code the stage of the participants, instead coding 
for age.

After the effects are standardized, the combined overall ERP effect 
size r = 0.47 [0.41, 0.53] (I2 = 27.1%, Q = 60.3). A fixed effect size model 
was used because the heterogeneity was within acceptable limits 
(I2 < 50%). It shows that overall ERP components measuring cognitive 
load have moderate effect sizes.

4.2 ERP component

RQ1 Which ERP components are more effective in measuring 
cognitive load?

The study was analyzed by grouping the studies according to the 
different ERP components, and the effect size of each ERP component 
as a measure of cognitive load was calculated, as shown in Table 2. 
Indicators that lacked sufficient sample size to support them (k < 3) 
could not be judged to be valid, and a forest plot of valid indicators is 
shown in Figure 2.

4.2.1 P300
Studies that used the P300 to measure cognitive load (k = 15) 

showed high levels of combined effect sizes, r = 0.53 [0.32, 0.63], 
p < 0.05, suggesting that P300 amplitudes in the high cognitive load 
task were significantly lower than P300 amplitudes in the low cognitive 
load task. Heterogeneity was low, Q = 20.41, p = 0.118, 𝜏2 = 0.28, 
I2 = 31.4%.

In subgroup calculations of electrode site effect sizes, r = 0.55 
[0.42, 0.66] (k = 10) for the multiregional electrode group and r = 0.52 
[0.21, 0.73] (k = 5) for the parietal electrode group, with a 
non-significant moderating effect (Q = 0.30, p = 0.843).

4.2.2 P200
The combined effect size for studies measuring P200 (k = 4) 

r = 0.55 [0.35, 0.70], p < 0.05, suggesting that P200 amplitudes were 
significantly lower in the high cognitive load task than in the low 
cognitive load task. Heterogeneity was not significant, Q = 0.7, 
p = 0.87, I2 = 0. Limited by the small number of studies on P200, 
there were no valid data from subgroup calculations of electrode 
site effect sizes or precise conclusions to be  drawn from 
related studies.

4.2.3 P300 latency
The combined effect size for studies measuring P300 latencies 

(k = 3) r = 0.43 [0.16, 0.64], p < 0.05, suggesting that P300 latencies were 
significantly longer in the high cognitive load task than in the low 
cognitive load task. Heterogeneity was not significant (Q = 0.27, 
p = 0.87, I2 = 0).
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4.2.4 N200
The combined effect size of studies (k = 5) using the N200 to 

measure cognitive load was not credible, r = 0.18 [0.02, 0.36], 
p = 0.076 > 0.05. Impact analyses by leave-one-out identified 1 study 
that was considered an outlier (Wei and Zhou, 2020). Withdrawing it 
resulted in an increase in mean effect size and a Decrease in 
heterogeneity, r = 0.38 [0.17, 0.55], Q = 0.73, p > 0.10, 𝜏2 = 0.03, I2 = 0%.

4.2.5 P100 and N100
Few studies have measured cognitive load using the P100 (k = 3) 

and N100 (k = 3), with a combined effect size of r = 0.28 [0.01, 0.51], 
p = 0.036 for the P100, and r = 0.39 [0.11, 0.62], p = 0.007 for the N100. 
Both showed a Decreasing trend in peak amplitude as cognitive 
load increased.

LPP, N300, P3a, P3b, RON and SPCN could not be  analyzed 
separately due to insufficient sample size (k < 3), but their contributions 
to the overall ERP effect sizes were still statistically significant.

4.3 Moderation variables analysis

4.3.1 Signal acquisition
RQ2.1 How do characteristics of signal acquisition affect measures 

of cognitive load?
We analyzed the three characteristics of brain regions (Q = 3.264, 

p = 0.515), whether there were midline electrodes (Q = 0.26, p = 0.611) 
and the number of electrodes (Q = 0.08, p = 0.775) and found that none 

of these moderating variables were statistically significant (see 
Table 3).

4.3.2 Task design
RQ2.2 How do characteristics of task design affect measures of 

cognitive load?
We analyzed the effect of the characteristics of the task design on 

the measurements, as shown in the table, the four characteristics of 
the task system with interactivity (Q = 4.840, p = 0.028), the number 
of tasks performed (Q = 0.536, p = 0.464), the number of levels of 
cognitive load (Q = 8.64, p = 0.004), and the type of learning material 
(Q = 2.009, p = 0.366). The effect sizes of task system with interactivity, 
and tertiary cognitive load level were found to have high effect sizes 
between groups. The effect size of the task system with interactivity 
(r = 0.58) was larger than that of the task system without interactivity 
(r = 0.43); the effect size of the level of tertiary cognitive load 
(r = 0.56) was significantly higher than that of the level of secondary 
cognitive load (r = 0.39), and both of them contributed the vast 
majority of the between-groups heterogeneity (Q = 0.833, p = 0.004) 
(see Table 4).

4.3.3 Participant characteristics
RQ2.3 How do participant characteristics affect measures of 

cognitive load?
As the included ERP studies were all mixed sex and could not 

be grouped, Meta-regression analyses were attempted with female/all 
ratio as a covariate, and the results were not significant (p = 0.579, 

FIGURE 1

PRISMA study collection flow diagram.
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TABLE 1 Characteristics of the included literature.

References Sample 
size

Age
Mean (SD) 

[range]

Gender ERPs Region Midline
M/O

Electros 
S/M

Task S/M Load 
levels

Interaction
Y/N

Learning 
resource

r

Aksoy et al. (2021) 21 23.6 (2.1) 

[20–28]

Mixed (7 F) N100 Multiple O M S 2 N Picture 0.010

Mixed (7 F) P100 Multiple O M S 2 N Picture 0.306

Mixed (7 F) P300 Multiple O M S 2 N Picture 0.381

Mixed (7 F) P300latency Multiple O M S 2 N Picture 0.463

Begum et al. (2014) 30 30.4 – P300 Parietal M S S 2 N Picture 0.279

P300 Parietal M S S 2 N Picture 0.302

Berti and Schröger 

(2003)

10 [19–26] – P3a Frontal M S S 2 N Audio 0.199

RON Frontal M S S 2 N Audio 0.347

MMN Frontal M S S 2 N Audio 0.804

Berti (2008) 12 20 [19–21] Mixed (10 F) MMN Multiple M M S 2 N Picture 0.303

Mixed (10 F) N2b Multiple M M S 3 N Picture 0.287

Mixed (10 F) P3a Multiple M M S 3 N Picture 0.287

Combs and Polich 

(2006)

16 19.2 (1) Mixed (8 F) P3b Multiple M M S 3 Y Audio 0.203

Daffner et al. (2011) 37 [18–30]  

[65–85]

– N200 Multiple O M S 3 N Picture 0.363

18 P300 Multiple M M S 3 N Picture 0.418

19 P300 Multiple M M S 3 N Picture 0.461

16 P300latency Multiple O M S 3 N Picture 0.328

Deeny et al. (2014) 18 26.6 [21–38] Mixed (11 F) P200 Frontal M S S 2 Y Video −0.482

P200 Central Mi S S 3 Y Video 0.657

P200 Parietal M S S 3 Y Video 0.478

P300 Parietal M S S 3 Y Video 0.558

LPP Parietal M S S 3 Y Video 0.498

Folstein and Van 

Petten (2011)

16 – Mixed (6 F) P300 Multiple O M S 3 N Picture 0.652

P300latency Multiple O M S 3 N Picture 0.480

P300 Multiple O M S 3 N Picture 0.505

N200 Multiple O M S 2 N Picture 0.795

Ke et al. (2016) 16 22.63 (1.9) 

[19–27]

Mixed (7 F) N200 Multiple O M M 2 N Picture 0.440

RON Multiple O M M 3 N Picture 0.460

(Continued)
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References Sample 
size

Age
Mean (SD) 

[range]

Gender ERPs Region Midline
M/O

Electros 
S/M

Task S/M Load 
levels

Interaction
Y/N

Learning 
resource

r

Pratt et al. (2011) 15 [18–30] Mixed (8 F) P100 Occipital O M M 3 N Picture 0.589

P300 Multiple O M M 3 N Picture 0.456

Rolke et al. (2016) 20 24.6 (4.4) 

[19–35]

Mixed (15 F) N100 Multiple O M S 2 N Picture 0.702

Mixed (15 F) N200 Multiple O M S 2 N Picture 0.255

Mixed (15 F) N2latency Multiple O M S 2 N Picture 0.595

Mixed (15 F) SPCN Multiple O M S 2 N Picture 0.379

Mixed (15 F) P300 Multiple O M S 2 N Picture 0.604

Shaw et al. (2018) 12 28 Mixed (1 F) P300 Multiple M M M 2 Y Picture 0.575

Sun et al. (2022) 24 21.5 (1.27) 

[19–27]

Mixed (13 F) P200 Frontal M M S 2 Y Picture 0.546

Mixed (13 F) N300 Frontal Mi M S 2 Y Picture 0.659

Mixed (13 F) P300 Parietal O M S 2 Y Picture 0.855

Suzuki et al. (2005) 12 22.5 (2.5) Mixed (4 F) P300 Multiple M M S 2 Y Video 0.441

Watter et al. (2001) 13 20.7 Mixed (8 F) P300 Multiple O M S 4 N Picture 0.626

Wei and Zhou (2020) 25 20.68 (1.91) Mixed (15 F) P100 Occipital O M M 2 N Picture 0.061

Mixed (15 F) N200 Frontal M S M 3 N Picture 0.535

Mixed (15 F) P300 Parietal M S M 2 N Picture 0.403

Xu et al. (2020) 10 [20–26] Mixed (4 F) N100 Multiple M M S 2 N Picture 0.332

Midline M/O = Electrodes on the midline or in other positions; Taks S/M = Single or Multiple tasks; Electros S/M = Single or Multiple Electros; Interactions Y/N = Interactions or Noninterference; r = Pearson correlation coefficient (Effect size).

TABLE 1 (Continued)
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N100

N200

P100

P200

P300

0.28[0.01,0.28](k=3)

0.55[0.35,0.69](k=4)

0.54[0.42,0.64](k=15)

P300latency 0.43[0.16,0.64](k=3)

0.39[0.11,0.62](k=3)

0.38[0.17,0.55](k=4)
r

favour measurement

FIGURE 2

Forest plot of ERP components that effectively measure cognitive load.

R2 = 0); nor were the results of meta-regression analyses of sample size 
(p = 0.313, R2 = 0.03) mean age (p = 0.929, R2 = 0) as a covariate, as 
shown in Table  5. In the analyses of sex ratio as a continuous 
moderator variable, three studies without a sex description were 
removed (Begum et al., 2014; Berti and Schröger, 2003; Daffner et al., 
2011); in the analyses of age as a continuous moderator variable, the 
median of the age range was used for the studies that lacked a 
description of the mean age, which Daffner et al. (2011)‘s study was 
removed due to the large age span.

4.4 Publication bias

RQ3 Did publication bias influence our findings?
The funnel plot formed by the effect sizes of the ERP primary 

literature selected for this study was evenly distributed on the left and 
right with Z = 0.51 as the axis of symmetry, indicating that the selected 
primary literature publication bias was acceptable, as shown in 
Figure 3. Meanwhile, the test results of Egger’s regression method 
showed that t = 0.60, p = 0.55 > 0.05, indicating that the selected 
original literature publication bias is not significant, so the results of 
this study are robust.

5 Discussion

In our study, we summarize articles that have investigated ERP 
components as well as event-related potential metrics under different 
cognitive loads. Firstly, our meta-analysis quantified the overall effect 
of cognitive load on the ERP components, followed by group analyses 
of the P100, P200, P300, P300Latency, N100, and N200 components, 
respectively. A number of moderating variables were found that 
affected the magnitude of the effect size. The remaining indicators that 
lacked sample size support and insignificant moderating variables are 
not discussed further.

5.1 ERP components

5.1.1 P300
P300 component is the most used ERP component and is widely 

used to assess cognitive load in single-task paradigms as well as multi-
task paradigms (Kestens et al., 2023). The studies included in this 
meta-analysis that used the P300 amplitude to measure cognitive load 
all reported that it Decreased as cognitive load increased, and a high 
level of effect sizes (r = 0.54 > 0.50), coupled with the fact that it is well 
grounded in sufficient research (k = 15) to be judged as the preferred 
ERP indicator for measuring cognitive load.

5.1.2 P200
P200 component is a positive component of the ERP at the frontal-

central scalp position (Zuckerman et al., 2023). Studies have looked at 
the amplitude of the P200 and found that it consistently Decreases with 

TABLE 2 ERP components effect size statistics.

Measurement index Number of 
studies

Effect size Lower limit Upper limit Z p

Positive wave P300 component P300 15 0.54 0.42 0.64 7.62 0.00

P3a 2 0.25 −0.23 0.63 1.02 0.31

P3b 1 0.20 −0.33 0.64 0.74 0.46

P300latency 3 0.43 0.16 0.64 3.05 0.00

P200 4 0.55 0.35 0.69 4.97 0.00

P100 3 0.28 0.00 0.51 2.10 0.04

SPCN 1 0.38 −0.70 0.08 1.65 0.10

LPP 1 0.50 0.04 0.78 2.12 0.03

Negative wave N200 component N200 4 (5–1) 0.38 0.17 0.55 3.50 0.00

N2b 1 0.29 −0.74 0.34 0.89 0.38

N200latency 1 0.60 0.21 0.82 2.82 0.01

MMN 2 0.60 −0.09 0.90 1.74 0.08

N100 3 0.39 0.11 0.62 2.69 0.01

N300 1 0.66 0.35 0.84 3.62 0.00

RON 2 0.42 0.01 0.71 2.01 0.04
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increasing cognitive workload (Deeny et al., 2014; Sun et al., 2022). It 
also has a high level of effect size in our results (r = 0.55 > 0.50), so it can 
also be used as a preferred measure of cognitive load.

5.1.3 Other ERP components
Almost all other ERP components had moderate effect sizes in the 

analyses (0.30 < r < 0.50), and P100 had low effect sizes (0.10 < r < 0.30). 
However, they can still be used as alternative indicators to measure 
cognitive load in multimedia learning environments, serving to 
complement the experimental data in several ways.

P300 peak latency measures the speed of information processing 
therefore the latency of the P300 component also shows a direct 
relationship with cognitive load (Sergeant et  al., 1987). The three 
studies included in this review all found that as cognitive load 
increased, P300 peak latency also increased (Aksoy et  al., 2021; 
Daffner et al., 2011; Folstein and Van Petten, 2011). To some extent, 
this suggests that P300 latency can be a good measure of cognitive load.

N200 component is the negative ERP component at the central 
parietal position of the scalp (Sur and Sinha, 2009). Goodin (1990) 
were the first to report an increase in the latency of the N200 with 
increasing cognitive workload. However, in four studies, Ke et  al. 
(2016) found that N200 amplitude Decreased with increasing 
difficulty, suggesting that N200 is not a stable indicator of performance. 
Additionally, the research on its peak latency N200latency is very 
understudied (k < 3).

N100 component is a short latency ERP component that is 
produced primarily by the frontal cortex (Sur and Sinha, 2009). A 
similar Decrease in N100 amplitude was observed in all three included 
studies. The results of Kramer et al. (1995) also suggest that N100 
amplitude Decreases with increasing cognitive workload.

P100 May be  influenced by attention-driven, top-down 
modulation of visual processing (Gazzaley, 2011). In conditions of 
high cognitive load, P100 amplitude Decreased. Of the three studies 
we included, Pratt et al. (2011) increased cognitive load by performing 
a dual task, which was indeed more experimentally significant than 
the other two studies. To some extent, this suggests a more favorable 
triggering effect of the P100  in tasks affecting the allocation 
of attention.

5.2 Moderator variable

In the analysis of signal acquisition method characteristics as 
moderating variables, none of the three moderating variables were 
found to be statistically significant. This means that in the included 
experiments, different electrode numbers, electrode locations or 
electrode areas caused insignificant or offsetting changes in the 
measured ERP components. This suggests that we  can modestly 
simplify our signal acquisition operations under the constraints of 
experimental equipment or time, and that we can measure substantial 

TABLE 3 Moderation analysis of signal acquisition as variable.

Moderator 
variable

Group by Number of 
studies

Effect 
size

Lower 
limit

Upper 
limit

Z p Q p

Electrodes S 12 0.456 0.338 0.560 6.86 0.000 0.08 0.775

M 33 0.427 0.397 0.547 10.44 0.000

Position Midline 23 0.455 0.366 0.536 8.95 0.000 0.26 0.611

Other 22 0.489 0.583 0.495 7.94 0.000

Regions Multiple 28 0.445 0.363 0.520 9.56 0.000 3.26 0.515

Frontal 7 0.552 0.402 0.674 6.22 0.000

Parietal 7 0.510 0.293 0.677 4.22 0.000

Occipital 2 0.325 −0.256 0.734 1.10 0.269

Central 1 0.657 0.274 0.860 3.05 0.002

TABLE 4 Moderation analysis of task design as variable.

Moderator 
variable

Group by Number of 
studies

Effect 
size

Lower 
limit

Upper 
limit

Z p Q p

Tasks Single 8 0.423 0.269 0.555 5.042 0.000 0.54 0.464

Multiple 37 0.481 0.410 0.546 11.67 0.000

Load levels 2 25 0.387 0.298 0.469 7.96 0.000 8.64 0.004

3 19 0.559 0.476 0.632 10.95 0.000

4 1 0.626 0.114 0.875 2.32 0.020

Learning resource Picture 35 0.459 0.390 0.522 11.59 0.000 2.01 0.366

Video 6 0.427 0.412 0.711 5.78 0.000

Audio 4 0.413 0.033 0.689 2.12 0.034

Interaction Interactive 11 0.584 0.462 0.684 7.80 0.000 4.84 0.028

Noninterference 34 0.427 0.355 0.495 10.43 0.000
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FIGURE 3

Funnel plot for testing publication bias.

results by acquiring only the brain regions most relevant to the 
purpose of the experiment. This statement is not absolute, however, 
and although these three moderating variables did not show 
significance, this does not preclude them from playing an important 
role under specific experimental conditions or tasks. Therefore, 
further research May need to consider other factors or explore the 
effects of these variables in more detail.

In the analyses where task design features were used as 
moderating variables larger effect sizes were found for tertiary 
cognitive load levels than for secondary cognitive load levels. 
Experiments that set a level three cognitive load can generate 
more data and can verify the robustness and consistency of the 
experimental results by comparing multiple sets of data, thus 
increasing data complexity and reproducibility, and thus 
calculating a higher effect size. Analyses on whether the task 
system was interactive or not found higher effect sizes for task 
systems with interactivity. It has been shown that increasing 
learner interaction with the learning system can be effective in 

managing cognitive load (Darejeh et al., 2022; Paas et al., 2004). 
Therefore, the design or selection of the task system needs to 
provide timely feedback to the learners to prevent “cognitive 
idling” or attentional drift, which May threaten the accuracy of 
the experimental results.

In the analyses of subject characteristics as continuous moderating 
variables no significant effects of gender, age, and sample size on the 
measurement results were found. Preliminarily, it can be concluded 
that these subjects’ factors do not significantly affect the measurement 
results in the actual study of multimedia learning.

6 Limitations and future work

The lack of adequate sample sizes for some measures to support 
their effect sizes is likely due to the fact that some researchers only 
report measures that show statistically significant differences, which 
prevents the validity of some measures from being confirmed. The 

TABLE 5 Meta-regression analysis of participants’ characteristics as covariates.

Moderator 
variable

Covariate Coefficient Standard 
error

95% lower 95% upper Z 2-sided p

Gender Intercept 0.464 0.151 0.168 0.759 3.07 0.002

Female/ALL 0.147 0.265 0.372 0.666 0.55 0.579

R2 = 0 Q = 0.31

Sample size Intercept 0.640 0.134 0.377 0.9037 4.76 0.000

Sample size 0.001 0.006 −0.019 0.006 −1.01 0.313

R2 = 0 Q = 1.02

Age Intercept 0.448 0.384 −0.306 1.201 1.16 0.244

Average age 0.001 0.016 −0.031 0.033 0.06 0.953

R2 = 0 Q = 0
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lack of sample size is compounded by the fact that there is a lot of 
specificity in the waveforms within the time window of the ERPs and 
the tendency for the measurements to be  trivial. Therefore, it is 
necessary to design cognitive load elicitation tests to induce different 
degrees of cognitive load in subsequent studies, and use them as a 
basis for extracting and constructing ERP components, or even 
multimodal measures, in order to effectively characterize learners’ 
cognitive load.
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