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Stochastic heuristics for
decisions under risk and
uncertainty

Leonidas Spiliopoulos* and Ralph Hertwig

Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany

Models of heuristics are often predicated on the desideratum that they should

possess no free parameters. As a result, heuristic implementations are usually

deterministic and do not allow for any choice errors, as the latter would require

a parameter to regulate the magnitude of errors. We discuss the implications

of this in light of research that highlights the evidence supporting stochastic

choice and its dependence on preferential strength. We argue that, in principle,

the existing models of deterministic heuristics should, and can, be quite easily

modified to stochastic counterparts through the addition of an errormechanism.

This requires a single free parameter in the error mechanism, whilst otherwise

retaining the parameter-free cognitive processes in the deterministic component

of existing heuristics. We present various types of error mechanisms applicable

to heuristics and discuss their comparative virtues and drawbacks, paying

particular attention to their impact on model comparisons between heuristics

and parameter-rich models.
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1 Introduction

Heuristics, though there are many varying definitions of them, viewpoints (cf.

Gigerenzer and Goldstein, 1996; Kahneman and Tversky, 1996) and different classes

(Mousavi and Gigerenzer, 2017), are typically defined as models with clearly spelled-

out cognitive processes. Their aim is to describe and approximate the actual processes

as opposed to as-if models of behavioral outcomes, such as optimization theories (e.g.,

Bayesian decision theory, expected utility maximization). Another aspect of models of

heuristics is that they eschew complex calculations that overtax human abilities and they

ignore some of the available information (Gigerenzer and Gaissmaier, 2011), yet often

still may manage to outperform significantly more complex models (e.g., Gigerenzer and

Brighton, 2009; Katsikopoulos et al., 2010). Beyond the evidence from the lab, heuristics

often perform very well in the field (Şimşek, 2013; Katsikopoulos et al., 2021) including

the business world as even CEOs rely on heuristics to navigate exceptional uncertainty

(e.g., see the overview in Mousavi and Gigerenzer, 2014). Another feature of models of

heuristics is that they are usually constructed without free parameters to be estimated from

data; in essence, they are deterministic models. This is particularly true of fast and frugal or

ecologically rational heuristics (see Gigerenzer et al., 1999, 2011; Todd et al., 2012, and

a comparative discussion of how ecological rationality is considered in economics and

psychology; Mousavi and Kheirandish, 2014). This contrasts the majority of choice and

inference models that include free parameters (e.g., expected utility model, cumulative

prospect theory, and drift-diffusion models). There are several reasons for eschewing

free parameters, perhaps the most important one is that they risk to unduly increase
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the flexibility of a model, thereby accounting for many different

data patterns including noise. If the data is noisy or the training

data limited, flexible free-parameter models are vulnerable to

over-fitting to the noise in the data, thereby resulting in worse

out of sample predictive performance than models without free

parameters (e.g., see Gigerenzer and Brighton, 2009).

Fully deterministic models of heuristics, however, also exact

a cost. They make it difficult to model both between-participants

and within-participant heterogeneity. People are known to invoke

different cognitive process across one and the same task, and the

same person may switch to different processes even within the

same class of task, depending on contextual factors such as time

pressure (e.g, Svenson andMaule, 1993; Spiliopoulos andOrtmann,

2018), incentives (e.g., Payne et al., 1997) or task characteristics

(e.g., choice difficult; see Brandstätter et al., 2008). Flexibility in the

use of heuristics, both across individuals and within an individual

and across environments, is inherent to the notion of the adaptive

decision maker (Payne et al., 1997), and the adaptive tool box of

heuristics as the basis of adaptive behavior (Gigerenzer et al., 2011).

Given the unavoidable between-participants heterogeneity and the

theoretically postulated within-person flexibility across properties

of the choice environment, how can deterministic models of

heuristics be allowed some flexibility without falling into the trap

of too much flexibility? In the interest of full disclosure, we are

sympathetic to a parameter-free approach (e.g., Spiliopoulos and

Hertwig, 2020). Even if only to explore howmuch predictive power

deterministic models have. Nevertheless, in this manuscript we are

predominantly interested in a type of stochasticity arising within

a person and within a task from errors in cognitive processes, to

which no cognitive model, not even heuristics, are immune.

The desideratum of models of heuristics to avoid free

parameters has consequently led to the majority of heuristics

being implemented as deterministic, for instance, choosing a single

option with certainty. This is because allowing for stochastic choice

through errors inadvertently requires a free parameter to modulate

the magnitude of errors. It is not clear how to avoid this without

the arbitrary choice of such an error value that would not be fitted

to data and likely not representative of its true value. We argue

that the science of heuristics needs to seriously consider the pros

and cons of the existing strict adherence to no free parameters

(see also, Ortmann and Spiliopoulos, 2023), and allowing flexibility

in perhaps the most important place, namely, with respect to

stochastic choice arising from errors.

We will argue that transitioning toward some flexibility offers

several opportunities, including methodological improvements

particularly in model comparisons. Furthermore, modifying

heuristics so that they are able to predict a strength of preference

over options, rather than a deterministic choice will increase the

empirical content of heuristics and make themmore falsifiable. We

will discuss how this will level the playing field when comparing

flexible models with free parameters against models of heuristics,

as current practices involving deterministic models of the latter

may be problematic. Given the strong procedural foundations

of heuristics, one can consider errors in a more principled and

structured way than is possible with as-if behavioral models.

This is because the clearly defined and transparent processes in

heuristics suggest how errors come about and constrain the error

distributions, whereas with as-if models it is harder to arrive at a

priori reasonable constraints.

Let us briefly define some terms that are used throughout.

We will think of models as consisting of two components: the

first one is indispensable and is the core deterministic component;

the second one represents an error-mechanism (or stochastic)

component and is often referred to as a choice rule. A deterministic

model always chooses one of the available options with certainty

(i.e., probability 1.0), wholly rejecting all other options (i.e.,

probability zero)—this choice distribution is discrete. Continuous

choice distributions, in contrast, imply that at least one choice is

made with a probability greater than zero and less than one. As

mentioned before, most implementations of models of heuristics

are deterministic; in this manuscript we will refer to them as

deterministic models of heuristics, as opposed to stochastic models

of heuristics that permit continuous choice distributions. Finally,

a flexible behavioral model is one that has free parameters in the

core component that are typically estimated from data. That is,

according to our terminology, a model without free parameters in

the core but with an error mechanism that includes one or more

free parameters, is not a flexible model. For our purposes, such

models are stochasticmodels of heuristics.

Models with free parameters are inferred from data using an

estimation technique, which requires the specification of a loss

function, e.g., mean-squared-deviation or a likelihood function.

To avoid issues of flexible models over-fitting empirical data, we

only consider model performance out-of-sample as derived from

a performance metric. Such metrics may also be discrete (as the

prediction is an extreme choice of 0 or 1) or continuous—note,

discreteness or continuity of the metric refers to each individual

choice, not to the average metric applied over many choices.

For example, consider a metric such as the percentage correct

predictions that is the average of the values of 0 (if a choice was

not correctly predicted) or 1 (if it was). At the individual choice

level, this is discrete, but the final metric constructed from the

average of these values is continuous. We refer to this metric as

discrete, to differentiate it from another metric that may make

probabilistic (continuous) individual predictions, say that one

option is chosen with probability 0.8 and the other 0.2, but which

again when averaging over choice predictions would also return a

final continuous measure.

Models consist of various processes ranging from information

search to information integration and each process may be prone

to error. We refer to the final process that leads to a choice, as the

valuation stage and it typically involves the comparison of a set of

values, one for each of the options available—errors that happen

during this stage are referred to as valuation errors. Earlier processes

will also often involve numerical comparisons, but typically these

numbers would not represent a final valuation—these are coined

procedural errors.

The manuscript is structured as follows. First, we briefly

overview the overwhelming evidence that points to significant

stochasticity in choices and how it relates to a decision maker’s

strength of preference over the available options. We then proceed

with methodological arguments for stochastic models of heuristics,

highlighting some of the problems that may arise if analyzes are

based solely on deterministic variants. In a subsection, we will
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deal specifically with issues that may arise in model comparisons

between flexible models and heuristics if the latter are not

modeled as stochastic. Having laid the foundations for why we

consider stochastic models of heuristics to be important, we lay

out a classification of applicable error mechanisms. The ensuing

comparative discussion about the advantages and shortcomings of

each will allow us to make practical recommendations about their

implementation. We will illustrate these by presenting possible

stochastic variants of the popular maximin heuristic. Our emphasis

throughout is on models of choice heuristics under risk and

uncertainty. Yet, our arguments are easily translated to models of

heuristics in general. Last but not least, let also emphasize that

the question of whether, and how, to incorporate flexibility in

deterministic models of heuristic models has been discussed before

(see Rieskamp, 2008; Schulze et al., 2021); we will discuss this work

below.

2 Arguments for stochastic heuristics

2.1 Decision making is stochastic

There is strong evidence in favor of the proposition that

choice is inherently stochastic—see Rieskamp (2008) for a detailed

discussion. In choice under risk, participants presented with

identical lotteries under risk often make different choices when

repeatedly responding to them (Hey, 2001; Mata et al., 2018).

Some choice theories such as cumulative prospect theory are

often amended by adding a choice rule that accommodates such

errors. The underlying cognitive processes that may underlie

choice behavior are also error prone or noisy, for example,

memory retrieval and attention. Consequently, some theories are

constructed to be inherently stochastic by nature, such as evidence

accumulation models of behavior (e.g., Ratcliff, 1988; Busemeyer

and Townsend, 1993; Usher and McClelland, 2001), where the

accumulation process itself is stochastic, but the final step of hitting

a decision threshold is error free (i.e., the choice corresponding to

the threshold is chosen with certainty).

Choice stochasticity from the viewpoint of an observer (such

as researchers) may also be attributed to other causes. Even if a

deterministic decision-maker were to exist, to an observer that

does not have access to the exact states of all variables entering

the decision processes, choices will appear stochastic due to the

(unobservable) latent variables. This is analogous to the example of

a die roll being essentially deterministic, yet appearing as stochastic

to observers that do not have access to the exact initial conditions

and physical values. The argument for extending choice models

to be stochastic is therefore not just one of modeling realism

(due to internal noisy cognitive processes), but is also related to

the methodology of model estimation: How unobservable latent

variables are accounted for, even indirectly, is important.

Ultimately, the research goal may dictate whether adding an

error mechanism is desirable or not. If it is solely for prediction,

then a deterministic heuristic with no free parameters may be

preferable and adequate. Of course, the allure of deterministic

models of heuristics is that they are powerful exactly because

no data is needed for them to make behavioral predictions. A

caveat is that if there is heterogeneity among decision makers or

a decision maker flexibly uses different heuristics, then one would

need empirical data to obtain an estimate of the proportional

use of different heuristics. On the other hand, for robust model

comparisons we believe it is advisable to accept the addition

of free parameters in the error mechanism, whilst retaining the

hallmark of models of heuristics—a deterministic and parameter-

free model core. In model comparisons, ignoring errors risks being

problematic as the models are essentially misspecified.

2.2 Preferential strength a�ects choice
consistency

Choice consistency in a wide variety of tasks is a monotonically

increasing function of the (absolute) relative strength of preference

of an option over the remaining options. That is, errors are

increasingly more likely and more substantial when options are

relatively similar in their valuations. At a cognitive level, this

can be understood in terms of just-noticeable differences or

signal detection theory. Error-mechanisms and choice rules have

a long history in cognitive psychology (Thurstone, 1927; Mosteller

and Nogee, 1951; Luce, 1959) and economics (McFadden, 2001).

The choice rules most often used in the literature are based

on exactly this monotonicity assumption, e.g., logit and probit

choice rules. In drift-diffusion models the magnitude of the drift

is derived from the evidence in favor of each option, and the

higher the magnitude of the drift rate, the more extreme the

choice predictions and, correspondingly, the higher the choice

consistency. Independent of specific parametric forms, empirical

evidence for a strong monotonic relationship between consistency

and preferential strength in choice under risk and intertemporal

choice is presented in Alós-Ferrer and Garagnani (2021, 2022).

Further indirect evidence of the important role of preferential

strength is evident from the finding that response times are typically

longer the closer the valuation of the options is (Moffatt, 2005;

Chabris et al., 2009; Spiliopoulos, 2018; Spiliopoulos and Ortmann,

2018; Alós-Ferrer and Garagnani, 2022).

Flexible models have been implemented with error-

mechanisms more often than models of heuristics for several

reasons. In flexible models, options typically receive some absolute

value in the final valuation stage. From here it was but a small

step to consider preferential strength and how this may map

to continuous choice probabilities. An example of this is the

expected utility of each prospect in a pair of lotteries, which is

typically translated into a probability distribution over options

using an error mechanism that is a function of option valuations.

Perhaps the hesitation in considering stochastic models of

heuristics is the concern that it requires one of two things: (a)

complex parametric forms to calculate continuously-valued

option valuations in combination with a choice rule and/or (b)

multiplicative integration of probabilities and outcome values in

contrast to the simpler comparative and logical operations found

in models of heuristics (e.g., comparison of magnitudes). We will

show later that this concern may be unwarranted in many cases, as

option valuations and preferential strength can be trivially inferred

from existing heuristics for choices under risk and uncertainty,
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without changing their deterministic parameter-free core and the

assumption of simple processes.

2.3 Methodological arguments

Heuristics have been presented as procedural models of

behavior that are more realistic than their parameter-rich as-

if adversaries. Scholars advocating for models of heuristics have

correctly, in our opinion, asserted that comparisons of heuristics

and flexible models should be done on the basis of out-of-

sample or cross-validation performance. The argument is that

good performance by flexible models with many free parameters

is illusive if their performance is estimated in sample. Ultimately,

comparisons between the two types of models comes down to their

out of sample performance on the same sets of tasks; however,

the difference in their need for estimation may be problematic

when it comes to such a model comparison. Can flexible stochastic

models and deterministic models of heuristics be directly compared

without unduly handicapping one or the other? We wish to draw

attention to some issues with existing methods of comparing these

models and suggest a viable alternative thatmay alleviate them—see

related arguments about model comparisons in Spiliopoulos and

Hertwig (2020).

The first issue concerns the fact that flexible models are

usually implemented with an error mechanism, and are therefore

stochastic, admitting continuous-valued predictions (on the

probability scale) derived from valuations, whereas heuristics are

deterministic, admitting discrete-valued predictions only. How is

this difference typically reconciled in the literature? For a direct

comparison, both models must be scored according to the same

performance metric leading to three possible solutions:

1. Use a discrete performance metric and convert the continuous-

valued predictions of a stochastic flexible model to discrete

predictions to be compared against a discrete heuristic.

2. Use a discrete performance metric and deterministic flexible

models and heuristics, so that the above conversion need not to

be made.

3. Use a continuous performance metric with both flexible models

and heuristics implemented with a stochastic error mechanism.

We believe that the first two, which are predominantly used

in the literature, may be problematic in various respects, and

recommend the third option—let us explore the reasoning behind

our assertion.

2.3.1 Option 1
This option is problematic because of the mismatch between

the continuous loss function necessitated by the estimation of

the stochastic flexible model and the subsequent application of

a discrete performance metric. Converting a stochastic prediction

to a deterministic one is usually achieved by assuming that

the option with the highest predicted likelihood is chosen with

probability 1 and the other options with probability 0. Having

done this conversion, both flexible models and heuristics can be

compared using the percentage of correct choice metric, ignoring

any probabilistic information that existed in the flexible models

(and by extension in the choice data). This is clearly inefficient

and may have put flexible models at a relative disadvantage to

heuristics, as they are estimated using a procedure with a different

goal or metric than the one that their comparison to heuristics

is based on, possibly leading to poorer performance than would

otherwise be the case. This occurs because the nature of the loss

function determines the parameter estimates, which in turn affect

the choice predictions. Consider how the continuous L2 and log-

likelihood loss functions penalize errors during estimation. Since

the penalty for the error is a continuous function of the error

magnitude, the errors between a continuous-valued prediction of

0.49 and 0.51 are very similar in value (assuming two options).

Now consider the discrete performance metric, which requires

that those two predictions are discretized to values of 0 and

1, respectively. The errors are now diametrically opposed, one

prediction has an error of 1 and the other 0. In general, the true

(continuous) magnitude of the error is irrelevant under discrete

loss functions (and performance metrics) as long as it is on the

same side of 0.5. Under continuous loss functions, larger errors

are always penalized more, whereas under discrete loss functions

errors are penalized more only when the threshold prediction of 0.5

is crossed, jumping discontinuously at this point. These significant

differences substantially influence the estimation procedure and the

resulting parameter estimates, possibly leading to worse predictive

performance than if the parameters were fitted with a loss function

identical to the performance metric.

There are important drawbacks to using a discrete performance

metric. As the link between preferential strength and choice

probabilities is severed by this metric, deterministic heuristics

may be placed at a relative advantage to flexible models, as the

advantage of the latter in accounting for preferential strength

is ignored. Also, as discrete model predictions are less precise

than continuous predictions, this makes models less identifiable or

distinguishable, less falsifiable and more prone to model mimicry,

thereby hampering efficient model comparison.

The topic of model mimicry has received increasing attention
in the methodological literature, particularly with respect to its
impact on model comparisons. Sets of flexible models can often
exhibit significant model mimicry exactly because if endowed

with numerous free parameters they can fit almost any data.

Deceivingly, significant model mimicry can be found even across

models that appear to have very different foundations and non-

linear parametric forms, if there are enough parameters to interact

with each other. Recall von Neumann’s quip to Fermi, that “With

four parameters I can fit an elephant, and with five I can make him

wiggle his trunk.” Concerning model comparisons between flexible

models such as cumulative prospect theory and choice heuristics,

significant model mimicry has been found even for such different

models (Brandstätter et al., 2006, Table 5; Pachur et al., 2013). One

perspective is that this is a feature of heuristics, since it implies that

they can have approximately the same predictive performance as

flexible models with much simpler functional form and a lack of

free parameters. We agree, but wish to point out that these model

mimicry comparisons have typically been performed on discrete

prediction metrics, which necessary preclude any informativeness

that may be derived from strength-of-preference (and by extension,

from stochastic variants of said models). An exception is the

model recovery analysis by Pachur et al. (2013), who showed how
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Cumulative Prospect Theory can mimic a wide variety of heuristics

with very difference processes, through the flexibility afforded

by the probability weighting function parameters. In this study,

CPT and heuristics were rendered stochastic through a fixed error

mechanism, and the success of model recovery was determined for

varying levels of errors.We suspect that comparingmodels not on a

discrete metric but on a continuous metric (and stochastic variants

of the models) such as choice probability after the introduction

of a choice rule, will reveal less model mimicry than previously

observed. This is a corollary to the argument that stochastic models

are more falsifiable than their deterministic counterparts due to

their more precise predictions covering the full probability range.

How large can this difference be theoretically? Consider the

following example presented in Table 1. Let us take a simple case

where decision-makers are presented with two different pairs of

lotteries, each with two prospects A and B. The lotteries are

repeated 100 times each, so that consistency and stochasticity can

be revealed. If a discrete performance metric is used, then perfect

model mimicry would be observed under the following conditions.

Consider the empirical choice data first (the last column in the

table), and let us assume that A was chosen in Lottery pair 1 99% of

the time and 51% of the time in Lottery pair 2. Note that this would

likely be the case if the two prospects in Pair 1 had valuations that

were very different, leading to few errors. In Pair 2, in contrast, the

two valuations of both prospect result in very similar values, leading

to many errors and a near 50–50 choice proportion.

Now consider deterministic versions of two models, both of

which predict prospect A as being chosen with certainty. In this

case, both models would have the same predictive accuracy of 99

and 51% for Pairs 1 and 2, respectively, implying perfect model

mimicry—see the first two columns in the table. That is, the two

models’ predictions are perfectly positively correlated across the

lotteries. Suppose that the stochastic version of Model 1 predicts

p(A) = 0.51 for Lottery 1 and p(A) = 0.99 for Lottery 2, whereas

these values are flipped for Model 2. This is entirely consistent with

the numbers used for the deterministic models above, as long as the

stochastic versions both predict a choice probability for Prospect

A greater than 0.5 for both lotteries—this would imply choosing

A with certainty under a discrete metric. The predictive accuracy

of Model 1 is now 99 and 51% for lotteries 1 and 2, whereas that

of Model 2 is 51 and 91%, respectively. Examining the correlation

between the two models and across the lottery predictions reveals

that they are perfectly negatively correlated, in contrast to the

perfect positive correlation between the deterministic models.

Consequently, model mimicry was significantly over-estimated in

the latter case. It is clear from the empirical (true) choice data,

that Model 1 is preferable, however this can only be concluded by

comparing the stochastic model variants with a continuous metric,

not by their deterministic models.

2.3.2 Option 2
The second option is also problematic for numerous reasons—

note, the arguments made above regarding discrete performance

metrics continue to hold in this case. The strong empirical

evidence that choice behavior is generally stochastic implies that

deterministic models are strongly misspecified during estimation.

Consequently, inferring that one deterministic model or the other

TABLE 1 A comparison of model mimicry and performance between

deterministic and stochastic models.

Model predictions Choice
data

Deterministic Stochastic

Task Model
1

Model
2

Model
1

Model
2

#1 0.99 0.99 0.99 0.51 0.99

#2 0.51 0.51 0.51 0.99 0.51

has been invalidated by a model comparison is wrought with

difficulty, as deviations of model predictions from the empirical

data cannot necessarily be attributed to the core deterministic

model being wrong, but may be due to the lack of an error

mechanism. This is particularly problematic for studies that employ

the axiomatic approach to invalidating a model (or that include

specifically designed tasks to stress-test axioms). For example,

deterministic EUT assumes transitivity of choices, which is not

supported by the empirical data as we often observe violations.

However, this does not preclude the deterministic component

of EUT being correct, and that any violations of the transitivity

axiom arise solely due to errors. Similarly, violations of stochastic

dominancemay arise either in the core deterministic model or from

an error component (or both).

How problematic can this become? We perform a simple

recovery simulation where the true choices or data are generated

using a stochastic model and perform a model comparison

analysis using deterministic models. If the deterministic model

recovered matches the core deterministic component of the

true stochastic choice model, then we deem this as a correct

recovery. For example, if we generate the choice data using a

stochastic Expected Value (EV) model, do we conclude often

enough that the core component was the EV model even when our

model comparison assumes a deterministic EV model and other

competing deterministic heuristics?

We implement the simulation using heuristics that are

often used in the choice under risk literature (Thorngate, 1980;

Payne et al., 1988; Hertwig et al., 2019). The set of models

consists of the Expected Value model, which uses all information

(probabilities and outcomes), and the following heuristics that

either ignore or process probability information in a non-

multiplicative way: Maximax, Maximin, Least likely (LL), Most

likely (ML), Equiprobable (EQ), Probable (Prob), and the Priority

heuristic.1 Assume that a decision-maker uses the same stochastic

heuristic to make choices in N choice tasks or lotteries. Given the

practical limitations of experiments, setting N = 50 is a reasonable

1 Maximax chooses the prospectwith the highestmaximumvalue,Maximin

the one with the highest minimum value, Least likely the prospect with the

lowest probability of the worst outcome, Most likely the prospect with the

highest most-likely outcome. Equiprobable assumes that each outcome has

the same probability of occurring and chooses the prospect with the highest

expectation. Equiprobable eliminates outcomes whose probability are less

than the inverse of the number of outcomes, and then assumes equal-

weighting of the surviving outcomes to calculate a prospect’s expectation.

See Section 3.3 for the definition of the Priority heuristic.
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assumption. Two prospects for each lottery are randomly drawn in

the following fashion. Both prospects consist of two outcomes each

and probabilities are drawn from a uniform distribution drawn

over [0, 1] and the outcomes are drawn from a uniform distribution

over [0, 100].

We examine the case of two different stochastic models as the

true choice models, EV and Maximin. Stochasticity is modeled as

noise in the outcome values. This is a simplification, of course, as

noise could also affect probabilities. However, sincemany heuristics

ignore probabilities, but not outcome information, we settled on

the latter. We vary the degree of noise or stochasticity in the data

generation process by adding errors to each outcome value that are

normally distributed with mean 0 and standard deviation equal to

5, 10, 20, 50, or 100.

Summarizing, for each true choice model and associated noise

level, we calculate the recovery rate for each of the eight decision

models under investigation. Model comparison and recovery is

based on the following performance metric: The best performing

model that we infer is used by the decision-maker is the one with

the highest percentage of correct predictions across the N tasks.

The choice data generation and model prediction is simulated

10,000 times, and the recovery rate is defined as the percentage

of those simulations for which the correct model was inferred. If

the outcome noise is zero, then the recovery rate will necessarily

be 100% as the stochastic and deterministic versions of a model

are identical.

Tables 2, 3 present the recovery rates for each of the two true

models (stochastic EV and Maximin, respectively) for each noise

level. If the true model is stochastic EV, for low noise (σ = 5)

the recovery rate is very high (97%); however, as the level of noise

increases recovery falls significantly to 70% for a noise level of 20.

At high levels of noise (50 and 100), the recovery rate falls to 41 and

26%, indicating a significant failure in recovering the true model by

deterministic models of choice behavior. When recovery fails, the

most commonly inferred (incorrect) models are ML and Probable.

This constitutes a significant failure as they are in principle quite

different models from EV, ignoring some of a prospect’s events and

not fully utilizing probabilistic information. For high levels of noise

(50 and 100), evenmore parsimonious heuristicsmay be incorrectly

inferred as the true model, in particular ones that completely ignore

probabilistic information (i.e., Maximax and Maximin).

Let us now turn to the case where a stochastic Maximin model

generates choices. At the lowest level of noise (5), the recovery

rate is 86%, falling to 71% for the next noise level (10), and only

50% for a noise level of 20. Compared to the case where the

stochastic EV was the true model, recovery rates for stochastic

Maximin are generally worse at the corresponding noise levels, and

drop more quickly even for intermediate noise levels. The most

common wrongly inferred model is the Priority heuristic, which is

understandable as the latter shares a very similar first step in the

lexicographic decision tree. The recovery rate of 50% at a noise

level of 20 is quite poor, and even more problematic is the fact

that some of the wrongly inferred models are significantly different

to Maximin. The second most commonly inferred wrong model

is Equiprobable, followed by EV. Equiprobable is a significantly

different heuristic to Maximin in principle, as it examines all

outcomes rather than just theminimumoutcomes in each prospect.

Evenmore concerning is that in the presence of noise the EVmodel

may be inferred as the true model, even though it is the antithesis of

the Maximin heuristic. Our recovery simulations—while relatively

simple abstractions of more complex model comparisons—have

shown that there is cause for concern regarding the accuracy

of model inference when heuristics are incorrectly assumed to

be deterministic instead of stochastic. Further simulations seem

warranted to investigate the accuracy of model recovery: (a) in a

broader set of tasks where lotteries are sampled differently, (b) for

a broader range of models, including flexible models such as CPT,

(c) and for various categories of error mechanisms as defined in the

next section.

Another issue with this option is that deterministic models

necessitate discrete loss functions and performance metrics. This

leads to a loss in the informational content of the empirical data,

which by its nature is stochastic. Finally, using a discrete error

function to estimate a flexible model (whether deterministic or

stochastic) is extremely problematic due to key properties relating

to the behavior of the loss function with respect to the estimation

technique. For example, estimation based on minimizing the

percentage of correct predictions is generally avoided as there is

no guarantee of a unique solution in the parameter values due

to the discreteness and lack of continuity of this loss function,

i.e., different parameter values can lead to the same percentage of

correct predictions, and it is not guaranteed that the estimation

algorithm will converge to a global rather than local optimum.

Since it is clearly desirable to estimate flexible models using

continuous loss functions and to use an identical loss function

and performance metric, this leaves only the next option as a

viable candidate.

2.3.3 Option 3
This option in our opinion dominates the two previously

discussed ones, yet to the best of our knowledge has not been

extensively used in the literature for a wide range of flexible models

and heuristics, only for a limited number of models in rare cases

(e.g., Rieskamp, 2008). First, it deals with the misspecification issue

as both types of models are implemented as stochastic and prone to

errors. Secondly, the mismatch between the loss function and the

performance metric can be eliminated for both types of models, by

using a continuous error function with an identical performance

metric. Unifying the loss function, estimation technique and

performance metric for both models minimizes the auxiliary

assumptions involved in any model comparison (in the spirit

of the Duhem-Quine problem), lending further credibility to

the comparison conclusions. The stochastic specifications will

make the models more identifiable and falsifiable, by making

more precise predictions on the continuous probability interval

compared to discrete predictions with certainty, as argued above.

2.4 Discussion

To conclude, there are important reasons to consider stochastic

models of heuristics and to compare flexible models and heuristics

using continuous performance metrics, in contrast to the majority

of studies that have used discrete metrics (e.g, Pachur et al., 2013).

First, they are cognitively more realistic as choice is stochastic
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TABLE 2 Recovery rates (%) if the true model is stochastic EV.

Noise σ EV Maximax Maximin LL ML Eq Prob Priority

5 97 0 0 0 6 2 6 0

10 89 1 1 0 15 7 15 0

20 70 5 4 0 26 15 26 2

50 41 15 13 7 29 21 29 9

100 26 19 16 16 24 19 24 14

TABLE 3 Recovery rates (%) if the true model is stochastic maximin.

Noise σ EV Maximax Maximin LL ML Equip Prob Priority

5 0 0 86 0 0 3 0 26

10 3 0 71 0 0 11 0 38

20 10 1 50 0 3 26 3 38

50 19 15 28 2 11 31 11 28

100 18 22 22 10 16 24 16 24

(or noisy) and dependent on preferential strength. Second, such

models would allow for a more equitable comparison of heuristics

versus flexible models by doing away with differences in auxiliary

assumptions, using the full informational content of data and the

more precise predictions of continuous choice probabilities.

Furthermore, stochastic models of heuristics will be more

falsifiable than their deterministic counterparts, as they will be

forced to also account for preferential strength to perform well.

This is a crucial test for heuristics that has not been empirically

conducted yet. It may lead to further innovation in the field if the

existing models of heuristics are not found to predict preferential

strength well.

It is conceivable that some deterministic models of heuristics

that have been rejected as not predicting behavior well in

past studies, may in fact have fallen prey to their lack of an

error mechanism that could “explain” some deviant choices.

Simply put, the misspecification of heuristics as deterministic

may invalidate conclusions drawn from deterministic heuristic

modeling comparisons, as we showed in our recovery simulation.

To be fair, all models are misspecified, but given how elemental

stochastic choice seems to be in every facet of human behavior, the

omission of an error mechanismmay be more important that other

sources of misspecification, such as a parametric form that is not

exactly faithful to its true form.

3 A classification of error mechanisms

We now classify various types of error mechanisms that are

applicable to models of heuristics, and discuss their advantages

and shortcomings. We will use the maximin heuristic as a case

study of how to define a stochastic variant. It is well-known

both in individual choice under risk and uncertainty, and also in

strategic decision making, such as games where the choices of other

influence one’s own payoffs (see Spiliopoulos and Hertwig, 2020).

The maximin heuristic recommends that the chosen prospect is

the one that has the most attractive worst-possible outcome. This

heuristic is non-probabilistic and as it only compares outcome

values across prospects and is thus an instance of the class of

fast-and-frugal heuristics.

3.1 Fixed (or independent) errors

Stochasticity arising from fixed errors is not conditional on any

of the processes involved at arriving at a choice. Alternatively, they

are sometimes referred to as naive errors, as they simply stipulate

that the deterministically derived choice is mistakenly not chosen

in ǫ% of choices. Thus, if two options are available, the stochastic

model of a heuristic will predict the choice of the deterministic

model of the heuristic 100 − ǫ% of the time and the other choice

ǫ%. If more than two options exist, then one must stipulate how the

errors are spread to the other option. The most obvious choice that

retains independence is to apportion the ǫ% of errors uniformly

over the other options. A stochastic version of maximin would

therefore choose the option with the best worst-case scenario 100−

ǫ% of the time.

The advantage of fixed errors is that they are quite simple

to implement and can be useful in cases where there may be

multiple errors occurring prior to the final choice, but which

would be too difficult to estimate and effectively identify during

estimation. Thus, the cumulative effect of the errors during the

decision processes will be estimated, with the cost that this

distribution may not effectively capture the true error distribution.

Note that fixed errors can be used even with models without a

final valuation stage from which a strength of preference could

be inferred.

A useful extension of fixed errors are conditionally fixed errors,

where a fixed error parameter may be valued differently conditional

on characteristics of the task. For example, errors may be more

likely for more difficult tasks than for easier tasks. Returning

to the example above, suppose a decision-maker must choose

between two options in one case and four options in another—the

probability of making an error is likely higher in the latter case than

in the former. This could be modeled by allowing the value of the

error rate ǫ to be conditional on the number of available options.
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Of course, this comes at the cost of additional free parameters to

be estimated.

A disadvantage of this fixed error mechanism is that it is still

not ideal when used in conjunction with a continuous performance

metric. For all tasks the choice predictions take on only two possible

values, ǫ and 1 − ǫ, whereas a continuous metric can take on the

full range of values between 0 and 1. This happens exactly because

fixed errors are not conditional on preferential strength, which will

typically vary across tasks allowing model predictions to take on

a broader range of values instead of two discrete values. If the

core model includes a valuation stage, then the next type of errors

would be more desirable, as they allow the size of the error to be

conditional on the measure of preferential strength derived from

the valuations. This, in turn, would enable probabilistic predictions

that are not constrained to just two values, ǫ and 1− ǫ.

3.2 Valuation errors

Valuation errors are perhaps the most commonly employed

error-mechanisms for flexible models. Valuation based error

mechanisms are conditional on the relative magnitude of the

valuations, which can be interpreted as a strength of preference.

This error mechanism is more sophisticated and realistic than

a fixed error mechanism—recall the evidence we presented

earlier about the link between preferential strength and errors

(or consistency).

How could such a mechanism be implemented in a

deterministic heuristic, which usually do not have an explicit

valuation stage? Let us turn again to the maximin heuristic. A

prospect i is defined by the n possible outcomes and associated

probabilities pn. The maximin heuristic can be procedurally

calculated in three steps:

1. Determine the minimum value in each option.

2. Compare the minimum values and find the option with the

larger minimum value.

3. Choose this option.

The choice rule is based on the comparison between these two

minimum values. Regardless of the magnitude of the differences

between the minimum values, the heuristic uses an all-or-nothing

rule in the final choice. What if a rule is used that depends

on the difference between the two minimum values? That is, let

us define the valuation of a prospect as its minimum outcome

value, and interpret the difference in the two minimum values as

defining the continuous strength-of-preference for one prospect

over another. The higher the preferential strength, the more likely

the prospect is to be chosen, meaning that choice probability is

an increasing function of strength of preference. Consequently, a

stochastic maximin heuristic could be defined as follows, where

λ = ǫ−1 is the consistency parameter:

pA = f (minXA, minXB, λ)

∂pA

∂ (minXA) > 0
∂pA

∂ (minXB) < 0

It is convenient to choose a parametric function f such that

if the error parameter ǫ is zero the function will return the same

prediction as the deterministic maximin heuristic. The advantage

of this is that by estimating ǫ it is possible to actually ascertain

how stochastic choice is, and it also includes the special case of

the deterministic heuristic, if warranted by the data. An obvious

candidate is the logit (or probit) function alluded to earlier, see

Equation 1. As λ approaches infinity, the probability of choosing

one of the prospects tends to 1 and the other to 0, i.e., identical to

that made by deterministic maximin.

pA =
eλ(minXA)

eλ(minXA) + eλ(minXB)
(1)

The parametric form of the error mechanism f has been

shown to be very important, affecting not only the estimated

parameters as we have already discussed above, but also the

predictive performance of decision models and the informativeness

of model comparisons (Zilker, 2022). Using cumulative prospect

theory as the core deterministic component, Zilker rigorously

examined various forms of error mechanisms and concluded that

independent or fixed errors are eclipsed by the informativeness

of the valuation error mechanism that we propose. Schulze et al.

(2021) also concluded in their probabilistic model of the social

circle heuristic that valuation error mechanisms, logit and probit,

significantly outperformed a fixed error mechanism. Stott (2006)

performed an extensive comparison of all possible combinations

of different parameterizations for cumulative prospect theory’s

probability weighting functions, value functions and error

functions, also concluding that the logit outperformed fixed errors

and was the best performing parameterization. Consequently,

wherever possible, we recommend using a valuation error

mechanism instead of a fixed error mechanism. Further research

should be directed at considering the appropriate functional form

of the error mechanism for models of heuristics because, as we

discuss below, other more sophisticated alternatives exist.

3.3 Procedural errors

Procedural errors can occur at any processing level or step (with

the exception of the valuation stage, which was covered above as a

special case). A prerequisite for such an error mechanism is that

a procedural model be clearly defined in terms of the requisite

cognitive operations. An obvious approach for interpreting such a

model is to define it in terms of elementary information processing

units (EIPs) and to allow for an error in multiple, but ultimately,

all of the EIPs. That is, errors occur at every level of information

integration (and possibly search) instead of after integration is

complete and a valuation returned. The resultant choice errors are

caused by the propagation of the procedural errors throughout the

model. For example, an error at an early EIP can interact with an

error at a later EIP, thereby leading to a very rich distribution of

final choice errors that may even be multimodal. This contrasts

the unimodal error distributions associated with valuation error

mechanisms as a result of the assumption that preferential strength

is monotonically related to errors. While not the focus here, finding

multi-modal (and a more discretized) rather than uni-modal (and
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continuous) error distributions may be a strong indication that

the true core behavioral model is a heuristic rather than a flexible

model. This conjecture may warrant further investigation as it

may be a powerful way of identifying when heuristics are used by

decision-makers.

Let us turn again to our Maximin example. The valuation error

mechanism we implemented above assumed that the first step

in Maximin—determining the minimum value in each option—

was error free. A procedural error mechanism would introduce

an error at this step. The procedural error that occurs in

comparing outcomes within each option could be implemented

as an independent error with fixed probability of occurring or

as an error conditional on the difference between the compared

values (e.g., the minimum and maximum outcomes in a two-

outcome option).

For simplicity, let us present the procedurally stochastic

maximin heuristic under the assumption of fixed procedural errors

at the first step (occurring with probability ζ in both options) and

valuation dependent errors as recommended above. This can be

considered as a hybrid valuation and procedural error model. We

assume that each of the two options consists of two outcomes each,

therefore there are four possible combinations of errors in correctly

ascertaining minimum and maximum values:

pA =



























eλ(minXA)

eλ(minXA)+eλ(minXB)
with prob. (1− ζ )2

eλ(maxXA)

eλ(maxXA)+eλ(minXB)
with prob. ζ (1− ζ )

eλ(minXA)

eλ(minXA)+eλ(maxXB)
with prob. ζ (1− ζ )

eλ(maxXA)

eλ(maxXA)+eλ(maxXB)
with prob. ζ 2

A more sophisticated implementation of procedural errors for

the priority heuristic can be found in Rieskamp (2008). The priority

heuristic is lexicographic and considers attributes of the prospects

in the following order (first to last): minimum gain, probability of

minimum gain, maximum gain, and probability of maximum gain.

Stopping rules, diverting to a final choice, at each step are defined

by setting minimum thresholds.

1. If the minimum gains of the two prospects differ by 1/10 (or

more) of the (global) maximum gain, choose the prospect with

the highest minimum gain; otherwise continue to step 2.

2. If the probabilities of the minimum gains differ by 1/10 (or

more) of the probability scale, choose the prospect with the

highest probability of the minimum gain; otherwise continue to

step 3.

3. If the maximum gains differ by 1/10 (or more) of the (global)

maximum gain, choose the prospect with the highest probability

of the maximum gain; otherwise continue to step 4.

4. Choose the prospect with the highest probability of the

maximum gain.

Each of the steps involves a comparison between two values,

which in the deterministic version occur without error. By contrast,

Rieskamp (2008) assumes that the subjective difference in the

two values compared at each step is a random variable with a

mean equal to the real difference and non-zero variance capturing

errors in the comparison. Consequently, comparing the subjective

difference to the threshold of each step ultimately leads to stochastic

or noisy choices. Thus, this stochastic model of the priority

heuristic implements procedural errors according to our definition

that are dependent on the magnitude of differences (in contrast

to our maximin example above). Note that Rieskamp (2008)

also estimates different threshold values, which are fixed in the

deterministic version, and allows for the order of the steps to

vary leading to between-participant stochasticity. However, we are

here concerned with error mechanisms and stochasticity that arises

within-participants.

3.4 Discussion

We consider procedural errors to be the most cognitively

realistic error mechanism. Yet, there are disadvantages to

implementing this type of mechanism relative to fixed or valuation

error mechanism. The primary disadvantage is probably already

apparent. It is the increase in model complexity introduced by the

addition of more parameters at every processing step. The more

parameters that need to be estimated, the more data are needed

to identify those parameters well in the estimation and to avoid

the curse of in-sample over-fitting. At some point, if too many

arbitrary error parameters are introduced, this will blur the line

between models of simple heuristics and flexible models. Two

methodological tools may be useful in taming the problem ofmodel

complexity and identification if procedural errors are used. Instead

of increasing the number of tasks in an experiment to collect more

data, it may be useful to collect additional non-choice data, such as

response times and process-tracing data. This data will also reduce

model mimicry, as some models making similar choices may have

very different implications for response times and/or information

search and integration. A better understanding of the decision

processes will be conducive to the addition of more appropriate

procedural errors.

The advantage of the fixed and valuation mechanisms is that

they can be implemented with only a single error parameter to

be estimated. Let us return to our stochastic maximin example:

the independent error version requires the estimation only of λ

whereas the procedural version requires both λ and ζ . There is thus

a tradeoff between cognitive plausibility, which we believe dictates

an error mechanism at every information search or integration

step (EIP) and estimation practicality. Given the constraints in

the length of experiments and the number of tasks that can be

reasonably presented to participants, in many cases procedural

error mechanisms may not be a viable solution.

For the majority of studies, we anticipate that the most practical

solution will be valuation mechanisms that implicitly aggregate the

procedural errors into a single error at the valuation stage, albeit

with some loss of information andmisspecification of the true error

distribution. Compared to fixed errors, the valuation mechanism

has the advantage of being conditional on valuations, which given

the existing empirical evidence cited earlier is highly likely to be

relevant, and has been shown to be a significant improvement over

fixed errors. At the very least, we would recommend empirical

researchers to compare their deterministic heuristic to at least one

stochastic version of it, following the example of Schulze et al.
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(2021), who actually went further by considering two stochastic

versions based on fixed and valuation error mechanisms.

While researchers should decide upon which type of

mechanism to employ based on the merits of each particular

study and tasks, we anticipate that valuation mechanisms will

often represent the best tradeoff. However, wherever possible we

would encourage consideration of a simple procedural mechanism,

such as the one we presented for the Maximin heuristic that only

adds one more parameter. Unfortunately, for procedural models

with many EIPs, the complexity and number of free parameters

may quickly increase, unless all types of EIPs are assumed to

have an identical error mechanism and error parameter. Even

though such an assumption is not realistic, it may be a reasonable

approximation and a practical solution as it avoids additional

error parameters.

In general, the heuristics commonly used in the literature on

decision making under risk and uncertainty are all amenable to

the valuation-based error mechanism adopted in our maximin

example. More specifically, any heuristic at some point must make

a comparison across options. It is simple to assume that a valuation-

based error mechanism operates on those values that are compared

when leading to the final decision (of the deterministic heuristics).

For example, for the stochastic model of the maximax heuristic,

the comparison would be across the maximum values of the two

options. For the stochastic model of the equiprobable heuristic,

it would be the sums of all outcomes of each option. Note, that

while we refer to this as a valuation stage, our suggestion remains

true to the simplicity of heuristics as this “valuation” is not derived

from multiplicative and probabilistic calculations (as in expected

utility theory), but is simply a comparison of two values that are not

transformed in any way. The approach of treating the final values

that are compared by a heuristic at a decision node as a form of

valuation is virtually universally applicable, and is a practical way

of generating preferential strength predictions from heuristics.

This approach can also be trivially extended to lexicographic

heuristics with more than one final decision node. Here the

valuation error mechanism is added to whichever node makes the

final decision for a specific decision problem. However, it is not

clear that the same error parameter would be appropriate at each

decision node, especially if the compared values are scaled very

differently or even refer to very different entities. For instance, the

first and third decision nodes in the priority heuristic compare

outcome values, whereas the second and fourth nodes compare

the outcomes’ likelihoods. This is not prohibitive, but would mean

that it may be necessary to estimate a different error parameter for

different nodes.

4 Conclusion

The majority of models of choice heuristics in the literature

make deterministic predictions. That is, they predict a specific

choice with certainty. However, empirical evidence regarding

choice stochasticity in general challenges this practice and raises

important questions about whether stochastic variants of heuristics

may be desirable. The few instances of stochastic heuristics, the

stochastic priority model (Rieskamp, 2008) and the social circle

model (Schulze et al., 2021) have confirmed the superiority of

stochastic variants over their deterministic counterparts.

We have presented a simple method for converting most

heuristics for choice into stochastic variants. Crucially, this

technique allows heuristics to determine a strength of preference

for the options under consideration, thereby allowing for errors

to be conditioned on the magnitude of preferential strength.

This places heuristics on a more level playing field with the

flexible models using free parameters that are often used in

the literature and which are typically implemented with an

error mechanism that induces choice stochasticity. Stochastic

variants of heuristics address the problem of misspecification

when error distributions are not included and also various

methodological issues that arise particularly in model comparisons.

Other advantages include making heuristics more falsifiable and

allowing for more informative predictive metrics that encompass

probabilistic predictions instead of an all-or-nothing metric (such

as % correct responses).

There is of course a tradeoff to the above, and this comes in

the form of the addition of at least one free parameter to capture

the magnitude of errors. While anathema to parts of the heuristic

literature that reject free parameters, our proposed technique allows

researchers to retain the deterministic and parameter-free core

component of existing heuristics, so that the free parameters enter

only through the additional error mechanism. We believe that this

is an acceptable tradeoff and that the advantages will outweigh

the disadvantages. Importantly, we highlighted the possibility that

some existing heuristics in the literaturemay have been erroneously

discarded as not predictive of behavior due to the fact that errors

were not accounted for. Ultimately, however, the pros and cons

of stochastic versions of models of heuristics should be assessed

empirically and in model competitions involving flexible models,

and deterministic and stochastic models of heuristics.
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Şimşek, Ö. (2013). Linear decision rule as aspiration for simple decision heuristics.
Adv. Neural. Inf. Process Syst. 26, 2904–2912.

Spiliopoulos, L. (2018). The determinants of response time in a repeated constant-
sum game: a robust Bayesian hierarchical dual-process model. Cognition 172, 107–123.
doi: 10.1016/j.cognition.2017.11.006

Spiliopoulos, L., and Hertwig, R. (2020). A map of ecologically rational heuristics
for uncertain strategic worlds. Psychol. Rev. 127, 245–280. doi: 10.1037/rev0000171

Spiliopoulos, L., and Ortmann, A. (2018). The BCD of response time analysis in
experimental economics. Exp. Econ. 21, 383–433. doi: 10.1007/s10683-017-9528-1

Stott, H. P. (2006). Cumulative prospect theory’s functional menagerie. J. Risk
Uncertain. 32, 101–130. doi: 10.1007/s11166-006-8289-6

Svenson, O., and Maule, A. J. (1993). Time Pressure and Stress in Human Judgment
and Decision Making. Berlin: Springer.

Thorngate, W. (1980). Efficient decision heuristics. Behav. Sci. 25, 219–225.

Thurstone, L. L. (1927). A law of comparative judgment. Psychol. Rev. 34, 273–286.

Todd, P. M., Gigerenzer, G., and Group, A. R. (2012). Ecological Rationality:
Intelligence in the World. Oxford: Oxford University Press.

Usher, M., and McClelland, J. L. (2001). The time course
of perceptual choice: the leaky, competing accumulator
model. Psychol. Rev. 108, 550–592. doi: 10.1037/0033-295x.108.
3.550

Zilker, V. (2022). Choice rules can affect the informativeness of model
comparisons. Comput. Brain Behav. 5, 397–421. doi: 10.1007/s42113-022-0
0142-5

Frontiers in Psychology 11 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1438581
https://doi.org/10.1016/j.econlet.2020.109672
https://doi.org/10.1007/s11166-022-09381-0
https://doi.org/10.1037/0033-295x.113.2.409
https://doi.org/10.1037/0033-295x.115.1.281
https://doi.org/10.1162/jeea.2009.7.2-3.628
https://doi.org/10.1111/j.1756-8765.2008.01006.x
https://doi.org/10.1146/annurev-psych-120709-145346
https://doi.org/10.1007/bf01669272
https://doi.org/10.1037/a0020418
https://doi.org/10.1257/jep.32.2.155
https://doi.org/10.1257/aer.91.3.351
https://doi.org/10.1007/s10683-005-5375-6
https://doi.org/10.1016/j.jbusres.2014.02.013
https://doi.org/10.1007/s41412-017-0058-z
https://doi.org/10.1016/j.jbusres.2014.03.004
https://doi.org/10.1007/s11229-023-04136-z
https://doi.org/10.3389/fpsyg.2013.00646/abstract
https://doi.org/10.1037/a0013646
https://doi.org/10.1037/xge0000799
https://doi.org/10.1016/j.cognition.2017.11.006
https://doi.org/10.1037/rev0000171
https://doi.org/10.1007/s10683-017-9528-1
https://doi.org/10.1007/s11166-006-8289-6
https://doi.org/10.1037/0033-295x.108.3.550
https://doi.org/10.1007/s42113-022-00142-5
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org

	Stochastic heuristics for decisions under risk and uncertainty
	1 Introduction
	2 Arguments for stochastic heuristics
	2.1 Decision making is stochastic
	2.2 Preferential strength affects choice consistency
	2.3 Methodological arguments
	2.3.1 Option 1
	2.3.2 Option 2
	2.3.3 Option 3

	2.4 Discussion

	3 A classification of error mechanisms
	3.1 Fixed (or independent) errors
	3.2 Valuation errors
	3.3 Procedural errors
	3.4 Discussion

	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References


