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Learning experiences are intertwined with emotions, which in turn have a significant 
effect on learning outcomes. Therefore, digital learning environments can benefit 
from taking the emotional state of the learner into account. To do so, the first 
step is real-time emotion detection which is made possible by sensors that can 
continuously collect physiological and eye-tracking data. In this paper, we aimed to 
find features derived from skin conductance, skin temperature, and eye movements 
that could be used as indicators of learner emotions. Forty-four university students 
completed different math related tasks during which sensor data and self-reported 
data on the learner’s emotional state were collected. Results indicate that skin 
conductance response peak count, tonic skin conductance, fixation count, duration 
and dispersion, saccade count, duration and amplitude, and blink count and 
duration may be used to distinguish between different emotions. These features 
may be used to make learning environments more emotionally aware.
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1 Introduction

Learning experiences are greatly influenced by the emotions of a learner (Pekrun, 2006). 
Therefore, it is pertinent that educators, designers, and researchers consider a learner’s 
emotions while creating learning systems that offer personalized support. For this to 
be  possible, the first step is to be  able to perceive a learner’s emotions and ideally in a 
continuous and non-obtrusive manner. This is what we address in the present paper.

1.1 Emotions in learning environments

There is a large body of work on the interaction of learner emotion and learning. For 
example, Csikszentmihalyi’s (1990) seminal work on ‘flow’ suggests that optimal learning 
experiences occur when individuals are in such a state of concentration that they lose track of 
time. This is often accompanied by deep enjoyment and happiness. An example is Pekrun 
et  al.'s (2017) longitudinal study on the development of mathematical competencies of 
adolescents (grades 5 to 10) that found that enjoyment and pride positively predicted 
subsequent annual assessment scores; the converse was found to be true for anger, anxiety, 
shame, hopelessness and boredom. Boredom in particular has been found to be persistent in 
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learning situations of durations ranging from 30 to 75 min and is 
associated with ‘gaming the system’ (in which students simply 
manipulate the system to succeed at a task instead of actually learning 
the content) (Baker et al., 2010) and poor learning (Baker et al., 2010; 
Craig et al., 2004). According to D’Mello and Graesser (2012), students 
in a state of flow experience confusion when faced with an obstacle to 
their goals, but their state of flow is restored if they are able to solve 
their problem. If they cannot, this confusion makes way for frustration 
and then boredom. So, while one cannot assert that optimal learning 
experiences consist solely of positive emotions (such as deep 
enjoyment and happiness), current research suggests that persistent 
negative emotions do affect learning negatively. Therefore, it is 
expected that learning systems that detect these emotions in order to 
adapt their support will provide optimal learning experiences.

1.2 Emotion detection

Research into emotions has traditionally used self-reported data 
(Wu et al., 2016). Apart from the obvious subjective nature of self-
reports, this approach is also limited by the temporal mismatch 
between when an emotion is experienced and its corresponding data 
are collected (Yadegaridehkordi et al., 2019). Moreover, if one’s aim is 
to develop a system that can detect and adapt to emotions, it is 
impractical to constantly interrupt the learning process to ask the 
learner for input. This calls for objective, time-specific and unobtrusive 
data collection. Wearable and portable sensor technology today makes 
this possible because emotions are accompanied by physiological and 
behavioral responses. For example, people can find themselves with 
sweaty palms or a racing heart when extremely anxious. Sometimes 
people find themselves “wide-eyed” with surprise or shaking with fear 
or anger. Physiological and movement sensors can detect these signals, 
and using the appropriate techniques, one may make inferences about 
the associated emotion.

1.3 Sensor data in educational and emotion 
research

In their review of physiology-based mobile educational systems, 
Hernández-Cuevas and Crawford (2021) found that one of the most 
used measures, after eye-tracking, was heart rate (i.e., the number of 
heart beats per minute). In line with this, Liu et  al. (2022) 
systematically reviewed learning analytics based on wearable devices, 
examining 120 articles published between 2011 and 2021, and found 
that heart rate and skin conductance (i.e., the level of perspiration in 
response to an emotional stimulus) were two of the most widely used 
sensor data. Heart rate has been included in several studies such as 
ones that investigated measures of mental workload (Sharma et al., 
2020), student interaction (Darnell and Krieg, 2019) and cognitive 
load (Larmuseau et al., 2020). Among other things, skin conductance 
has been studied to profile sympathetic arousal of students during a 
physics class (Pijeira-Díaz et al., 2018), identify momentary student 
engagement in an afterschool program (Lee et al., 2019) and measure 
mental workload (Sharma et  al., 2020). In emotion research 
specifically, skin conductance and heart rate have been investigated 
in the context of fatigue and drowsiness (Adão Martins et al., 2021). 
In the field of emotions during learning, some studies have found 

that skin conductance reflected stress (Brouwer et  al., 2017), 
emotional arousal (i.e., the strength of an emotional state) (Jindrová 
et al., 2020), anxiety (Harley et al., 2019; Meer et al., 2016) and shame 
(Harley et  al., 2019). In more recent preliminary explorations of 
emotions during parent–child learning activities, Avelar et al. (2022) 
and Shaby and Bokhove (2023) found that skin conductance could 
be used to discern different emotions. In their meta-study on test-
anxiety and measures of physiological arousal, Roos et al. (2021) 
found that both skin conductance and heart rate significantly 
increased with self-reported test anxiety. However, there is no clear 
consensus yet on how exactly these signals vary with different 
emotions or how much variance they can explain. For example, Van 
Bruinessen et al. (2016) found no significant relationship between 
self-reported anxiety and skin conductance. In another study, Ritz 
et al. (2005) investigated physiological response to the viewing of 
pictures from IAPS (International Affective Picture System) and 
found that while heart rate significantly increased for both negative 
and positive emotions, there were no considerable changes in skin 
conductance. Nevertheless, a review by Ba and Hu (2023) showed 
that skin conductance and heart rate were two of the most studied 
measures of autonomic nervous system activity associated with 
emotions, and available evidence suggests that there is value in 
further exploration.

However, Kreibig (2010) warned that progress in research was 
hindered by the “exclusive use of convenience measures such as HR 
[heart rate] and electrodermal activity, as sole indicators of the 
activation state of the organism” (p. 409) and that it is essential to 
select more measures to determine patterns. Skin temperature is one 
such measure (Adão Martins et al., 2021; Noroozi et al., 2020). In their 
study with female undergraduate students, Rimm-Kaufman and 
Kagan (1996) found that hand skin temperature increased while 
watching film clips designed to induce happy affect and reduced when 
asked threatening personal questions. In a similar vein, McFarland 
(1985) found that music that was perceived as inducing negative 
emotions stopped an increase and perpetuated a decrease in skin 
temperature; calming music had the opposite effect. On the other 
hand, Jang et al. (2015) found that skin temperature increased with 
boredom (a negative emotion). Lal et al.’s (2021) study physiological 
correlates of learner emotions during different programming tasks 
suggested the same. Meanwhile, Jang et al. (2019) investigated the 
reliability of skin temperature as a response to different emotions and 
found it to be an unreliable indicator. Mixed results from past studies 
warrant further investigation into skin temperature as an indicator 
of emotions.

A relatively new approach in emotion research is tracking eye 
movements (Lim et al., 2020). Eye-tracking for emotion detection has 
usually been used in combination with physiological signals and there 
is mounting evidence that this is indeed useful (Lim et al., 2020). An 
example of this is Aracena et al.'s (2015) use of neural networks on 
multimodal data that included blinks and saccades (quick eye 
movements between fixations) to differentiate between negative, 
neutral and positive emotions. Other examples of successful use of 
eye-tracking include the use of gaze features for emotion recognition 
in patients with mesial temporal lobe epilepsy (Gomez-Ibañez et al., 
2014) and in individuals in the autism spectrum (Tsang, 2018). While 
a wide variety of features has been used in the past, studies do not 
concur on which are the most effective for emotion recognition (Lim 
et al., 2020), and hence this warrants further research.
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1.4 Present study

As outlined earlier, despite extensive research on skin conductance 
and heart rate as indicators of emotions, past results are varied. On the 
other hand, skin temperature despite being an easily accessible 
physiological measure that could be used as an emotional indicator, 
has rarely been investigated with respect to learner emotions (Noroozi 
et al., 2020). Moreover, eye-tracking has only recently been included 
in emotion detection and here too, findings are inconclusive. More 
interestingly, Noroozi et  al. (2020) found that out of the 207 
publications included in their systematic review of multimodal 
metrics to capture the learning process, only 15 included the 
emotional aspect of learning. This imbalance in past literature 
underscores the need for further research that focuses on (under 
represented) indicators of emotions, specifically of learners. In the 
present study, we  investigated skin conductance, heart rate, skin 
temperature, and eye movement metrics as indices of learners’ 
emotions. To this end, we  adopted a dimensional approach to 
emotions based on Russell’s (1980) widely accepted circumplex model 
of emotions, which posits that emotions may be represented along two 
orthogonal dimensions, arousal and valence. Emotional arousal may 
be defined as the activation level or strength of an emotion, while 
emotional valence is its hedonic nature (Pekrun, 2006; Russell et al., 
1989; Thayer, 1967; Thayer, 1978). Consequently, emotions fall into 
any one of the four quadrants determined by the axes arousal and 
valence – high arousal-negative valence (for example, frustration), 
high arousal-positive valence (for example, happiness), low arousal-
positive valence (for example, calmness) and low arousal-negative 
valence (for example, boredom). For a visual representation of 
different emotions on a two-dimensional scale, see Figure 6 of Russell 
(1980). Our research was motivated by the need to develop 
emotionally aware systems that can encourage positive and reduce 
persistent negative emotions during learning. Therefore, in the present 
study we investigated relevant (and unobtrusive) indices of the four 
emotional quadrants. Learner emotions were indexed by self-reported 
arousal and valence. In line with the literature cited earlier, 
we investigated the prospects of using the following three measures of 
physiological arousal – skin conductance, heart rate and skin 
temperature, and features derived from all three events that take place 
during eye-movement (Hessels et al., 2018) – blinks, saccades and 
fixations. It is important to note that the selection of measures was 
based also on the possibility of using them in real-world classrooms. 
The study was quasi-experimental and involved data that was collected 
at regular intervals during multiple math-related tasks in a 
counterbalanced set-up.

2 Methods

2.1 Participants

Participants consisted of 44 (32 females and 12 males, 18–26 years 
old, Mage = 20.09 years, sd = 1.89, 40 right-handed and 2 left-handed) 
bachelor’s students from the Faculty of Behavioural, Management and 
Social sciences at the University of Twente (the Netherlands). The 
sample consisted of persons of 12 nationalities, namely: Bulgarian 
(n = 1), Brazilian (n = 1), Chinese (n = 1), Croatian (n = 1), French 
(n = 1), German (n = 21), Greek-German (n = 1), Malaysian (n = 1), 

Dutch (n = 11), Dutch-German (n = 1), Dutch-Ukrainian (n = 1) and 
Romanian (n = 3). All participants had at least working knowledge of 
English. Participants were recruited through an online participant 
management system. Participation was voluntary in exchange for 2 
study credits. All participants had provided informed consent to 
participate in the study, which included the collection of demographic, 
physiological, eye-tracking and self-reported data.

2.2 Materials

2.2.1 Tasks and baseline stimulus
Participants engaged with three different math related tasks. All 

tasks were designed such that they could be done with just one hand. 
This was to mitigate motion artefacts in signal data from the wearables 
used in the study. The first task henceforth called the shape matching 
task, utilized an elementary school level math simulation called 
“Shapes Matching: Scored” (Lindenmuth, n.d.; Figure  1). In each 
round, a two-dimensional shape was displayed at the top of the screen. 
Participants were required to scan the row of shapes below the 
presented one and click on the matching shape. Instructions included 
no indication of how long the task would last and all points scored 
were inconsequential. While there were indefinite rounds in the task, 
participants completed only as many as was possible in 12 min. The 
second task was a high school level coordinate geometry puzzle 
(Figure 2). Participants were required to move the cursor to move the 
point (marked by the orange arrow) along the coordinate plane in 
order to find “the rule that governs the shape of the point.” The rule 
was that the point changed shape based on whether it lays inside, on, 
or outside a parabola. Instructions stated that the activity would only 
end when participants solved the puzzle (to win €20), or time ran out 
(with no indication of when exactly that would be). However in reality, 
this task too ended after 12 min. Participants thus had an indefinite 
number of attempts at solving the puzzle. Irrespective of what answer 
the participant gave, the researcher told them they were wrong, 
essentially making this a frustrating activity. The third task was online 
(Tetris, 1985). Tetris is a video game in which players attempt to 
complete rows of a grid by arranging differently shaped tetrominoes 
that fall onto the playing field. The game has been found to bring 
players into a positive emotion of effortless attention (Harmat et al., 
2015). It is not only widely popular among gamers and recreational 
mathematics enthusiasts, but is also a widely studied game (Mayer, 
2014), drawing interest from psychologists, mathematicians, and 
computer scientists (e.g., Chanel et  al., 2008; Maier et  al., 2019; 
Tsuruda, 2010). Tetris (and its variations) has been found to improve 
algorithmic thinking and spatial skills and is often used to teach 
geometrical concepts such as rotation, translation and reflection 
(Clements et al., 1997; Sims and Mayer, 2001; Williams and Bright, 
1991). In an attempt to foster engagement in this task, participants 
were offered prize money based on their Tetris score. Participants won 
€5 for the first 20,000 points in Tetris. For every 10,000 points after 
that, they won €1. If they made it to the leader board, they won 
additional money – up to €5 – depending on their rank. (Twenty-three 
participants won on average €6.52 (sd = 3.46), with the highest prize 
money being €22). Participants knew they had 12 min to play and 
were free to restart the game any number of times within that period.

In an effort to bring participants to more or less the same starting 
point in terms of their emotional state, participants were instructed to 
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“Sit still. Relax and clear your mind while watching this relaxing 
video” of an underwater scene with calm instrumental music (4 min). 
The decision to not use a math-related baseline was a conscious one 
– the baseline was intended to elicit minimal stimulation without 
priming participants to the math-related nature of the study. The use 
of this video is a deviation from the traditional ‘resting baseline’ in 
which participants usually do not engage in any activity and stay in a 
relaxed or ‘resting’ state. Research finds that engaging in an activity 
that requires minimal cognitive effort minimizes intrusive thoughts 
and produces results equal to or better than resting baseline conditions 
(Jennings et al., 1992). In fact, Piferi et al. (2000) found that watching 
a relaxing aquatic video produced lower (cardiovascular) baseline 
levels than traditional methods.

The tasks, baseline stimulus and self-reports (described below) 
were finalized after three rounds of iterative pilot testing involving a 
total of 13 pilot participants. Based on researcher observations and 
participant responses, we expected participants to report low arousal 
positive emotions while watching the baseline video, low arousal 
negative emotions over time while matching shapes, high arousal 
negative emotions over time doing the coordinate geometry puzzle, 
and high arousal positive emotions playing Tetris.

2.2.2 Measures and instrumentation
Self-reported measures were collected using the Affect Grid 

(Russell et  al., 1989), a 1-item scale of emotions along the two 
dimensions, emotional arousal (Cronbach’s α = 0.81) and valence 
(Cronbach’s α = 0.79), both of which could range from values 1 to 9. 
The affect grid was selected because it is a quick capture tool and is 
appropriate for repeated measurements (Killgore, 1998). Respondents 
check a square on the 9×9 grid to indicate their emotion along two 
dimensions, valence (along the X-axis) and arousal (along the Y-axis). 
The mid-point of the grid is (5,5) which denotes neutral valence or 

arousal. High arousal-negative valence, high arousal-positive valence, 
low arousal-positive valence and low arousal-negative valence 
emotions are marked in the first, second, third and fourth quadrants, 
respectively. An open-ended fill-in-the-blank statement “I am feeling 
__” was used to verify that the participant had in fact thought through 
the filling of the affect grid. This self-report was administered 
every 4 min.

Four physiological measures were assessed. Skin conductance and 
heart rate were measured using the Shimmer3 GSR+, a biosensing 
unit with an average sampling frequency of 128 Hz. Skin conductance 
was measured between two stainless steel electrodes attached to the 
palmar region of two fingers. Heart rate was derived from a 
photoplethysmogram signal collected by a pulse probe clipped to the 
ear. Peripheral skin temperature was measured with the infrared 
thermopile sensor (sampling rate of 4 Hz) of the Empatica E4 
biosensing wristband. Eye-tracking was done using Tobii Fusion Pro, 
a screen-based eye-tracker with sampling frequencies up to 250 Hz. 
Its camera was attached horizontally at the bottom of the computer 
screen the participants’ tasks were displayed on.

Several supporting tools were used in the study. The Tobii Fusion 
Pro and the Shimmer3 GSR+ were configured using Tobii’s 
eye-tracking manager and Shimmer’s ‘Consensys’ software. These 
were synchronized on iMotions, an integrative software platform for 
biometric research. iMotions was used to time and present the tasks 
and instructions, and collect, visualize, and pre-process data from the 
two devices mentioned above. Calibration of the eye-tracker for each 
participant was also done on iMotions using a 9-point calibration 
slide; light calibration was done using a single grey screen. Skin 
temperature data were streamed to Empatica’s cloud-based repository 
via an android application set up on a mobile phone which in turn was 
connected via Bluetooth to the Empatica E4. Other pieces of 
equipment used were a 24 inch AOC G2460PF computer monitor 

FIGURE 1

The shape matching task. In this instance, clicking on the blue square in the row would increase the score by 1 point. Created with GeoGebra®, by 
Lindenmuth https://www.geogebra.org/m/rvz58cma#material/eMCXcErd.
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(refresh rate 144 Hz) used as the participant’s primary screen, a 
Microsoft Surface Pro touchscreen tablet used to record participants’ 
self-reports, a wired mouse for the use of the participants and two HP 
Elitebook laptops (64-bit operating system, Intel(R) Core(TM) 
i5-8250U processor with CPU @ 1.60GHz) – one that served as the 
researcher’s primary device (used to initiate and monitor the study on 
iMotions) and the other for the researcher to note down observations. 
A Jellycomb 1920 × 1,080-pixel webcam was mounted on the 
top-centre of the participant’s computer to collect face recordings. 
These were to be used to explain missing eye-tracking data if any. A 
room thermometer was used to record ambient temperature at the 
start of the experiment.

2.3 Procedure

Before the experiment, participants (wherever applicable) tied or 
pinned up long or loose strands of hair, removed makeup and 
accessories from their wrists and ears, and rolled up their sleeves. They 
were individually seated in a closed, well-lit and thermoregulated room 
(average ambient temperature 25 degrees Celsius). After completing an 
informed consent form and a demographics questionnaire, they 
received a general outline of the experimental set-up, procedure, tools, 
and expected code of conduct. The Affect Grid specifically was 

explained in detail – arousal was described as “how activated or aroused 
you feel” while pointing at the y-axis on the Affect Grid and valence was 
described as “how unpleasant or pleasant your emotion is” while 
pointing at the x-axis. This was followed by check-for-understanding 
(CFU) questions such as “You are running late for an exam and your 
bike has a flat tyre. Where would you mark an ‘X’ on the grid?” and a 
quick think-aloud of the reporting. For example, if a participant 
pointed to the first (high arousal-high valence) quadrant, the researcher 
would say something along the lines of “Yes, maybe because you feel 
anxious and anxiety is a negative emotion that is also activating” Other 
CFU questions/scenarios used were “You are thinking about a party 
you will attend this evening with your friends,” “You just did yoga/
meditation and are feeling relaxed” and “You are sitting in a very boring 
lecture and falling asleep.” Next, participants were informed that all the 
instructions they would need would be on the screen and that the 
researcher would not help them with the tasks. They were also informed 
that if there was prize money attached to a task, this information would 
be in the task’s instructions – textual information about prize money 
preceded the coordinate geometry puzzle and Tetris.

The Shimmer3 GSR+ unit was strapped tightly to the 
non-dominant forearm to mitigate motion artefacts. Its electrodes 
were attached to the third and fourth proximal phalanges of the 
participant’s non-dominant hand. The ear clip was attached to the 
corresponding earlobe. Participants were also fitted with an Empatica 

FIGURE 2

The coordinate geometry puzzle. Created with GeoGebra®.

https://doi.org/10.3389/fpsyg.2024.1440425
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Lal et al. 10.3389/fpsyg.2024.1440425

Frontiers in Psychology 06 frontiersin.org

E4 on the same hand making sure that the thermopile sensor made 
complete contact with the dorsal side of the hand. Once the wearables 
were switched on and streaming data, participants waved their hand 
around a few times while the researcher ran a visual check on the 
signals. Thereafter, participants sat still for at least 10 min while signal 
readings were checked. This was done to ensure that the electrodes 
coupled with the participant’s skin before the start of the experiment.

Participants were seated at a distance between 60 cm and 70 cm 
from the computer screen such that (a) they could see the reflection 
of their nose on the eye-tracker’s frontal surface (an indication that the 
eye-tracker was at an optimum distance and height) and (b) iMotions’ 
‘eye finder’ widget indicated that both eyes were being detected. 
Participants placed their non-dominant hand on their lap and were 
discouraged from fidgeting or making big motions during the study.

The experiment was set up on iMotions meaning that all sensors 
were synchronized, and stimuli were timed and displayed on the 
platform. The study commenced when the quality of the eye-tracker 
calibration was deemed “excellent” by iMotions. The experiment 
started with a baseline reading (4 min) after which participants 
performed the three tasks. Each task lasted 12 min and participants 
made multiple attempts at the tasks during these periods. The order 
of the three tasks was counterbalanced across participants. Every four 
minutes, participants paused to complete the self-report on the 
touchscreen tablet. Thus, 13 instances of the self-report were collected 
– one for the baseline and three for each task. Participants had a 1-min 
‘cooling off ’ period between tasks while a screen with the instructions 
‘Sit still, relax and clear your mind’ was displayed on their monitor. 
Participants were debriefed at the end of the experiment.

2.4 Signal processing

Most studies using skin conductance split the signal into the 
phasic component (i.e., the fast-moving signal that is an immediate 
response to stimuli) and the tonic component (i.e., the slow-moving 
signal) (Horvers et  al., 2021). However, there is no consensus on 
which component to use (Horvers et  al., 2021). Therefore, 
we  investigated both. We  used iMotions’ R notebooks with their 
default parameters to process the raw skin conductance signal 
(measured in μS) (iMotions, 2022a). A time window of 4,000 ms was 
set as the threshold to determine gaps in the signal (due to signal 
drops) that would be linear interpolated. Missing data in gaps longer 
than the threshold were not interpolated and the resulting signal 
fragments were processed separately.

The phasic component was separated from the tonic component 
using a median filter over a time window of 8,000 ms. A lowpass 
Butterworth filter of 5 Hz was applied for noise filtration of the phasic 
signal. Skin conductance response (SCR) peaks were extracted from 
the phasic component using a 0.01 μS peak onset threshold, a 0 μs 
offset threshold and a 0.005 μS peak amplitude threshold. An onset is 
when the phasic signal surpasses a predetermined onset threshold, 
and an offset is when the signal drops below an offset threshold. A 
peak is the maximum value of a phasic signal within a time window 
determined by an onset-offset pair. Its amplitude is calculated as the 
difference between the value at the highest point and the value of the 
phasic signal at the onset. Each onset-offset pair defines a window, and 
the maximum value attained by the signal in this window is considered 

a peak. A value was marked as a peak if it was above the amplitude 
threshold of 0.005 μs in a window longer than 500 ms.

Eye-tracking data were processed using iMotions’ R notebooks 
using their default parameters (iMotions, 2022b). Blinks were 
registered when data for both eyes were lost (an indication that eyes 
are closed) between 20 ms and 500 ms. Blinks were merged when the 
time between them was less than 70 ms. Fixation and saccade features 
were extracted using an I-VT (velocity-threshold identification) filter 
– if eyes moved slower than a velocity threshold of 30 degrees per 
second, the event was classified as a fixation and if they moved faster, 
a saccade was recorded. Fixation dispersion (i.e., the spread of a 
fixation’s gaze points) was calculated by Imotions as the root mean 
square of the samples belonging to that fixation. Gaps in the signal 
shorter than 75 ms were interpolated.

Heart rate was calculated within iMotions. Linear interpolation 
was used to fill these gaps in the signal if the percentage of invalid data 
points was less than 10%. Since skin temperature was not collected in 
iMotions, it was synchronized (post-experiment) with the tasks using 
a Python script. Visual checks indicated no missing data.

For all participants, skin conductance and eye-tracking data with less 
than 20 dB signal-to-noise ratio (as indicated by iMotions) and all signals 
with greater than 10% missing data were excluded from the analysis. This 
resulted in excluding HR data of 10 participants from the analysis.

All in all, the following 13 data features were extracted – SCR peak 
count, average SCR peak amplitude, tonic skin conductance level, 
fixation count, duration and dispersion, saccade count, duration and 
amplitude, blink count and duration, heart rate, and skin temperature.

2.5 Analysis

To address issues of subjectivity and individual physiological 
variability, standardized values of physiological and gaze measures 
were used – mean values for the four-minute windows corresponding 
to each self-report (from the baseline and the three tasks) were 
calculated and finally z-scores per participant were computed. Self-
reported emotions were labeled 1–4 based on the Affect Grid 
quadrant they fell in. For example, an ‘X’ on position (7,9) of the 
Affect Grid was labeled as 2 because it was in the second quadrant. 
Signals labeled with similar emotion labels (i.e., in the same quadrant) 
could come from different tasks, meaning that a label did not 
represent a task exclusively. Data points on the axes and therefore not 
in any quadrant [for example (5,7) or (8,5)] were excluded from 
further quantitative analyses. Finally, to determine if signals varied 
across emotional quadrants and if yes, what the pairwise differences 
were, Kruskal-Wallis tests with post hoc Dunn tests were performed. 
Since the baseline video was intended solely to provide a common 
point of departure for all participants and was therefore not included 
in the study’s counterbalancing design, baseline readings were used 
for the computation of z-scores; however, they were excluded from 
the pairwise comparisons. This approach of using within-person 
z-scores provides a more reliable method of handling variability as 
compared to making calculations relative to a single baseline, because 
it acknowledges that: (a) a person’s ‘baseline’ can shift due to various 
factors, making it difficult to capture a “true” baseline in a single 
measurement, (b) a single baseline measurement may not fully reflect 
an individual’s actual physiological state and (c) subjective 
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experiences of baseline tasks vary, and it is difficult to bring all 
participants to true ‘baseline levels’ with one standardized task.

3 Results

3.1 Self-reported emotional states across 
baseline and tasks

A significant within-subject difference in arousal and valence ratings 
across different points in time were observed, Pillai’s Trace = 0.94, F(18, 
720) = 35.50, p < 0.001. On average, participants recorded the following 
Affect Grid values: (a) during the baseline reading, low arousal (rating < 5) 
and positive valence (rating > 5), (b) during the shape-matching task, a 
steady decline in arousal and pleasure (i.e., valence), (c) on the coordinate 
geometry puzzle, high arousal (rating > 5) and negative valence 
(rating < 5), and (d) on Tetris, high arousal (rating > 5) positive valence 
(rating > 5) (see Figures 3, 4). According to the open-ended fill-in-the-
blank statements, most (34.1%) participants felt “relaxed” after the baseline. 
Most (22.2%) high arousal-negative valence ratings were accompanied by 
the word “frustrated” or “confused” (19.8%), followed by “nervous” (6.2%) 
or “annoyed” (6.2%). The most commonly used words used to supplement 
high arousal-positive valence ratings were “excited” (14.2%) or “happy” 
(12.8%), followed by “good” (10.6%) or “focused” (9.9%). Low arousal-
positive valence ratings were accompanied by words such as “relaxed” 
(32.2%), “bored” (15.3%), “calm” (8.5%) and “sleepy” (6.8%). Lastly, most 
participants reported low arousal-negative valence when they felt “bored” 
(27.6%), “annoyed” (10.5%), “tired” (7.9%) or “sleepy” (7.9%).

3.2 Physiological and gaze features across 
emotional quadrants and pairwise differences

Kruskal-Wallis tests indicated no significant differences in SCR 
peak amplitude [χ2 = 6.57, df = 3, p = 0.09], average heart rate 
[χ2 = 5.58, df = 3, p = 0.13] and skin temperature [χ2 = 6.55, df = 3, 
p = 0.09]. However, tonic skin conductance levels [χ2 = 10.31, df = 3, 
p = 0.02], SCR peak count [χ2 = 24.99, df = 3, p < 0.001], fixation 
count [χ2 = 19.33, df = 3, p < 0.001], fixation duration [χ2 = 24.04, 
df = 3, p < 0.001], fixation dispersion [χ2 = 35.45, df = 3, p < 0.001], 
saccade count [χ2 = 29.33, df = 3, p < 0.001], saccade duration 
[χ2 = 33.36, df = 3, p < 0.001], saccade amplitude [χ2 = 26.92, df = 3, 
p < 0.001], blink count [χ2 = 31.25, df = 3, p < 0.001] and blink 
duration [χ2 = 42.34, df = 3, p < 0.001] showed variations across 
quadrants. Table 1 shows the significant pairwise differences obtained 
from post hoc comparisons using Dunn’s tests.

4 Discussion

Emotions are integral to the learning experience. In this study, 
we  sought to determine physiological and gaze indices of learner 
emotions with the goal of informing the design of learning systems 
that can adapt to the emotions of learners. Our findings indicate that 
when students experience emotions such as relaxation, characterized 
by low arousal and positive valence, they exhibit more and shorter 
fixations along with fewer blinks than when they experience high 
arousal-negative valence emotions such as frustration. Furthermore, 

FIGURE 3

Self-reported arousal taken at baseline (B) and three points during the coordinate geometry puzzle (R1, R2, R3), shape-matching task (S1, S2, S3), and 
Tetris (T1, T2, T3). Note that task order was counterbalanced across participants.
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TABLE 1 Significant differences in features between quadrants of affect grid.

Pairwise comparison of affect grid quadrants

Feature High arousal – 
Negative valence 
vs. High arousal 

– Positive 
valence

High arousal – 
Negative valence 
vs. Low arousal 

– Positive 
valence

High arousal – 
Negative valence 
vs. Low arousal 

– Negative 
valence

High arousal 
– Positive 

valence vs. Low 
arousal – 

Positive valence

High arousal – 
Positive valence 
vs. Low arousal 

– Negative 
valence

Tonic skin conductance p = 0.005

SCR peak count p = 0.002 p < 0.001

Fixation count p = 0.004 p = 0.006 p = 0.006 p = 0.009

Fixation duration p = 0.009 p = 0.007 p = 0.002 p < 0.001

Fixation dispersion p < 0.001 p < 0.001

Saccade count p = 0.01 p = 0.002 p < 0.001

Saccade duration p < 0.001 p = 0.01 p < 0.001

Saccade amplitude p < 0.001 p = 0.02 p < 0.001

Blink count p < 0.001 p = 0.01 p = 0.002

Blink duration p < 0.001 p < 0.001

Green: Group 1 > Group 2. For example, fixation duration in High Arousal – Negative Valence quadrant > Low Arousal – Positive Valence. Yellow: Group 1 < Group 2. For example, fixation 
count in High Arousal – Negative Valence quadrant < Low Arousal – Positive Valence.

low arousal-positive valence emotions differ from high arousal-
positive emotions such as enjoyment in that they are accompanied by 
more and shorter fixations, fewer blinks, and more, slower and larger 
saccades. On the other hand, low arousal-negative emotions such as 
boredom differ from both high arousal-negative emotions and high 

arousal-positive emotions in that they are associated with fewer SCR 
peaks, more and shorter fixations, and more, slower and longer 
saccades. They are also characterized by longer blink durations and 
higher fixation dispersion than high arousal-positive emotions and 
fewer blink counts and lower tonic skin conductance than high 

FIGURE 4

Self-reported valence taken at baseline (B) and three points during the coordinate geometry puzzle (R1, R2, R3), shape-matching task (S1, S2, S3) and 
Tetris (T1, T2, T3). Note that task order was counterbalanced across participants.
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arousal-negative emotions. Findings also indicate that high arousal-
negative emotions are associated with higher fixation dispersion, blink 
count and blink duration as compared to high arousal-positive 
emotions. In fact, high arousal-negative emotions appear to 
be associated with the highest number of blinks. Heart rate and skin 
temperature were not found to be significant indicators of emotions.

High skin conductance observed during both positive and 
negative high-arousal emotions reaffirms the general understanding 
that this measure is a reliable index of emotional arousal (Boucsein, 
2012). Meanwhile, examining the cognitive processes linked to each 
gaze measure and emotional state may provide possible explanations 
for the different eye movement patterns observed in this study. The 
high fixation counts observed during low-arousal emotions (e.g., 
boredom and relaxation) in this study reflect the findings of Foulsham 
et al. (2013) and Steindorf and Rummel (2019), that mindless reading 
can be associated with a high number of fixations. Earlier research has 
suggested that fixation count increases when “distractors are similar 
to targets” (Rayner, 1998), which may explain our findings, as 
boredom could lead to increased distraction, or in other words, 
increased attention to non-task-related elements. On the other hand, 
the high fixation durations observed during high-arousal emotions 
(such as frustration or excitement) in this study are likely due to 
increased visual attention and cognitive engagement, as these states 
often arise when individuals are task-oriented (Pekrun, 2006). 
Similarly, research on situational awareness—particularly in driving, 
where gaze dispersion is associated with heightened awareness of one’s 
surroundings—suggests that more dispersed gaze indicates greater 
situational awareness (Liang et al., 2021). This correlation may account 
for the high fixation dispersion observed during high-arousal, 
negative-emotional states when students in this study may have 
engaged in more extensive visual searches to solve a problem. In 
contrast, past results from a SART (Sustained Attention to Response 
Task) indicate that an attentive state is accompanied by higher fixation 
dispersion as compared to a mind wandering state (i.e., when one’s 
mind unconsciously wanders away from the task at hand) (Lee et al., 
2021). Since mind wandering is a likely response to boredom (Randall 
et al., 2019), a low arousal-negative emotion, it may be possible to 
attribute this to the high fixation dispersion associated with 
this quadrant.

Additionally, several studies have found that eye movements 
during mind wandering are slower and less active than during 
attentive states (Faber et al., 2017; Uzzaman and Joordens, 2011). This 
is suggestive of slower and longer saccades associated with distracted 
visual scanning as compared to a focused visual pattern during task 
engagement. This is a possible explanation for the long saccade 
durations and large saccade amplitudes observed during low-arousal 
emotions (such as boredom or relaxation) in this study. Research on 
eye movements during stressful or anxiety-inducing situations, such 
as self-description in a foreign language, recalling a stressful event, 
viewing stress-or fear-inducing videos, and performing mental 
workload tasks (Giannakakis et al., 2017; Korda et al., 2021; Maffei and 
Angrilli, 2019) have shown a significant positive relationship between 
stress/anxiety and blink rate. The high blink rates observed during 
high-arousal, negative-valence emotions in this study are consistent 
with these findings. With respect to blink duration, research in 
vigilance and human factors suggests that longer blink durations 
during low-arousal, negative-valence states may be  indicative of 
fatigue or drowsiness (Schleicher et al., 2008; Stern et al., 1996). This 

could explain this study’s findings of high blink duration during low 
arousal-negative emotions. Unfortunately, we do not have a possible 
explanation for the high saccade count during low arousal-negative 
emotions and large blink durations during high arousal-
negative emotions.

In their review of eye-tracking metrics related to emotional and 
cognitive processes, Skaramagkas et al. (2023) highlighted the complex, 
non-linear relationship between gaze measures and emotions, a finding 
that aligns with the results of this study. Insights from this study draw 
attention to the importance of integrating multimodal data for emotion 
detection. Overall, our findings highlight the potential of physiological 
and gaze measures to distinguish between different learner emotions, 
thus paving the way for potential intervention moments when a learner 
moves from one emotional state to another.

Results notwithstanding, it is important to note the limitations of 
this study. Firstly, in this study, we  were unable to differentiate 
between low arousal-negative emotions and low arousal-positive 
emotions. A possible explanation is the clustering of self-reported 
valence near-neutral in the third and fourth quadrants. Of the 98 
ratings in these quadrants, 45 had valence values between 4 and 6, 
making it hard to distinguish between the groups of emotions. This is 
further reflected in the overlap of emotion labels, as the words “bored” 
and “sleepy” are associated with both quadrants. Secondly, despite all 
three tasks requiring some extent of visual scanning of a scene and 
visual selection of an object of interest, it is possible that (other) 
variability in the task demands influenced eye movement. This is 
potentially a confounding variable in our study and future studies can 
benefit from attempting to mitigate this by ensuring comparability of 
the visual demands of their tasks. It is also worth emphasizing that 
this study was conducted in a controlled environment to ensure the 
relevance of the signals, focusing on their applicability, rather than the 
sensors themselves. Though the current set-up seems distant from 
real-word classrooms, the rationale was to confirm the feasibility of 
these measures before applying them in a phased manner using more 
accessible sensors in classrooms. However, the controlled lab-setting 
of this study eliminated several distractions that one would normally 
find in a real classroom. Therefore, to run a similar study in real world 
classrooms would also require measures of students’ attention to the 
task at hand (thus ensuring that the emotions detected are in fact 
related to the learning) and error correction for external distractions. 
Additionally, words such as ‘annoyed’, ‘bored’ and ‘sleepy’ 
accompanied arousal and valence ratings in different quadrants of the 
Affect Grid. For example, sometimes participants experienced 
annoyance as a high arousal-negative emotion and sometimes as a 
low-arousal negative emotion. This is at odds with Russell’s (1980) 
circumplex model that places each emotion in one specific quadrant 
(in this case, annoyance as high arousal-positive valence emotion). It 
may be that persistence of annoyance of the former kind leads to 
other high arousal-negative emotions such as frustration or anger 
while the second kind leads to other low arousal-negative emotions 
such as hopelessness or gloominess. However, to provide a clear 
explanation for this is beyond the scope of this study. Lastly, 
we  acknowledge that generalizability of this study’s findings are 
limited by the demographics included. For example, the sample 
primarily consisted of undergraduate students from Western Europe, 
which may not fully represent the broader population or account for 
physiological variations across different ages or cultural influences on 
emotional responses.
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Mixed results of past research on what are reliable indicators of 
learner emotions may be  attributed to a heterogeneity of (and 
sometimes a lack of transparency in) methodologies and devices used 
(Horvers et al., 2021; Lim et al., 2020; Yadegaridehkordi et al., 2019). 
With this paper, we hope to add to the corpus of clear methods for 
sensor-based studies in the field of education, thus paving the way for 
definitive study-design guidelines using such technology.

5 Conclusion

Students experience different emotions when engaging with 
learning-related tasks and this influences learning outcomes. Sensor 
technology today allows for (unobtrusive) collection of data that may 
eventually be used to provide personalized instruction or feedback to 
improve learning. In this paper, we investigated multimodal sensor 
data, namely skin conductance, skin temperature and gaze data as 
indicators of learner emotions operationalized by self-reports. Results 
indicate that skin conductance response peak count, tonic skin 
conductance levels, fixation count, duration and dispersion, saccade 
count, duration and amplitude, and blink count and duration can in 
fact be indicators of (self-reported) emotional arousal and valence in 
laboratory conditions. Researchers and designers may use these 
measures to make digital learning environments emotion-aware. These 
findings underline the need to move beyond the most extensively used 
measures – skin conductance and heart rate – and include several 
relevant factors. Results also reinforce the importance of doing 
psychophysiological research specific to the context of learning. On the 
whole, this study is a step toward emotion-aware learning systems.
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