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Introduction: While traditional neuroimaging approaches to the study of 
executive functions (EFs) have typically employed task-evoked paradigms, 
resting state studies are gaining popularity as a tool for investigating inter-
individual variability in the functional connectome and its relationship to 
cognitive performance outside of the scanner.

Method: Using resting state functional magnetic resonance imaging data 
from the Human Connectome Project Lifespan database, the present study 
capitalized on graph theory to chart cross-sectional variations in the intrinsic 
functional organization of the frontoparietal (FPN) and the default mode (DMN) 
networks in 500 healthy individuals (from 10 to 100 years of age), to investigate 
the neural underpinnings of EFs across the lifespan.

Results: Topological properties of both the FPN and DMN were associated 
with EF performance but not with a control task of picture naming, providing 
specificity in support for a tight link between neuro-functional and cognitive-
behavioral efficiency within the EF domain. The topological organization of the 
DMN, however, appeared more sensitive to age-related changes relative to that 
of the FPN.

Discussion: The DMN matures earlier in life than the FPN and it ıs more susceptible 
to neurodegenerative changes. Because its activity is stronger in conditions of 
resting state, the DMN might be easier to measure in noncompliant populations 
and in those at the extremes of the life-span curve, namely very young or elder 
participants. Here, we argue that the study of its functional architecture in 
relation to higher order cognition across the lifespan might, thus, be of greater 
interest compared with what has been traditionally thought.
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1 Introduction

Executive functions (EFs) are a family of higher order cognitive processes that facilitate 
goal-oriented thought and action (Anderson, 2001; Banich, 2009; Duncan and Owen, 2000; 
Norman and Shallice, 1986). They enable the coordination of behaviors that are considered 
characteristic of, although they are not unique to, humans (Goldberg, 2001), such as those 
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linked to intentionality, inhibitory control and complex decision-
making (Panikratova et al., 2020). While they have been traditionally 
localized to brain areas that are relatively immature until early 
adulthood (Menon and D’Esposito, 2021), core executive capacities 
have been elicited in children as young as 5 years (Anderson et al., 
2002; Diamond, 2020; Espy, 2004). Given the rapid maturation of 
these higher order abilities in early life (Blair, 2016), their importance 
for optimal academic performance (Blair and Razza, 2007; Clark et al., 
2010; Fuhs et al., 2014; Pascual et al., 2019) and behavioral control 
development (Schoemaker et  al., 2013), as well as their role in 
predicting cognitive impairment in older age (Corbo and Casagrande, 
2022), an understanding of the mechanisms underpinning executive 
integrity across the lifespan is at the forefront of neuroscientific 
research. Longitudinal neuroimaging studies are methodologically 
challenging (Skup, 2010), however, and findings from cross-sectional 
lesion-based studies have been largely inconsistent (Panikratova et al., 
2020). Functional magnetic resonance imaging (fMRI) has, thus, 
gained popularity in identifying functional connectivity patterns in 
pediatric and elderly populations, particularly given its ease in signal 
acquisition and requirement of minimal effort (Smitha et al., 2017).

From a neuro-anatomical point of view, EFs appear supported by 
a distributed network of interconnected brain areas that include the 
dorsolateral prefrontal cortices (dlPFC), anterior cingulate cortices 
(ACC), posterior parietal cortices (PPC), supramarginal gyri (SMG), 
and inferior temporal gyri (ITG), collectively referred to as the 
frontoparietal network (FPN) (Marek and Dosenbach, 2018; Spreng 
et al., 2010). Joint activation between these regions has been regularly 
elicited in task-driven fMRI studies that have placed demands on 
selective attention (Chelazzi et al., 2011; Squire et al., 2013; Tang et al., 
2021; Yantis, 2008) and, similarly, cognitive inflexibility during tasks 
has been associated with abnormal FPN connectivity (Liu et al., 2023). 
Importantly, the functional architecture of the FPN at rest has been 
associated with a general capacity to engage in goal-directed behavior 
even outside of the MRI environment (Reineberg et al., 2015). On the 
other hand, because of observed decreases in activity of the Default 
Mode Network (DMN) during overt attention-demanding tasks 
(Raichle, 2015), this network has traditionally been considered a 
hindrance for higher-order cognition (Spreng, 2012). Comprised of 
the ventromedial prefrontal cortices (vmPFC), the dorsomedial 
prefrontal cortices (dmPFC), posterior cingulate cortices (PCC), 
precuneus, superior temporal gyri (STG) and a portion of the lateral 
parietal cortex comprising the angular gyri (Raichle, 2015; Spreng 
et al., 2010), the DMN has been conceptualized as a network whose 
activity reflects stimulus-independent “baseline” conditions: those of 
daydreaming, mind wandering or emotional processing (Menon, 
2023; Raichle, 2015; Spreng, 2012). Its activity, then, is considered 
negatively correlated—or “anticorrelated” (Fox et al., 2005)—with that 
of task-positive networks (e.g., the FPN), in which activity typically 
increases with increases in externally-driven cognitive demands. As 
such, the degree of suppression of the DMN during task-evoked 
activity has been reported as a trademark of healthy functioning, 
interpreted as a diminished risk of intrusion of irrelevant activity (e.g., 
mind wandering) that is traditionally supported by the DMN (for a 
review see Anticevic et al., 2012).

More recently, however, regions within the DMN alone have also 
been associated with different cognitive processes. The PCC has been 
causally implicated in episodic memory encoding (Natu et al., 2019), 
with abnormal activity in the region observed in mild cognitive 

impairment (Vanneste et  al., 2021) and indicative of possible 
progression to Alzheimer’s disease (Lee et al., 2020), where it may even 
have a critical role in EF (Fu et al., 2023; Leech et al., 2011). The 
precuneus, on the other hand, has been found to have a causal role in 
the retrieval of episodic memories (Hebscher et al., 2020). Moreover, 
both the development of social cognition early in infancy (Grossmann, 
2013), as well decision making processes (Csifcsák et al., 2021), appear 
at least partially regulated by the medial PFC, while the STG has been 
observed to play a role in multisensory integration, particularly of 
auditory and visual stimuli (Reale et al., 2007).

Interestingly, because of its distributed location in the cortex, the 
DMN is heavily connected to several sensory and association areas 
and may, thus, have a particularly important role as a control point for 
information processing, allowing otherwise segregated brain systems 
to be functionally connected (Buckner et al., 2009). A challenge for 
higher order cognition lies indeed in the integration of information. 
In line with this idea, a disproportionately drastic impact has been 
reported in cognitive functioning following damage to DMN hubs 
(Buckner et al., 2009). It might be reasonable, then, to reconsider the 
network architecture of the DMN itself in relation to higher order 
cognitive processes. For instance, several regions within the DMN 
(PCC, angular gyri, temporal lobes) have been reported to increase 
their connectivity with task-positive regions as a function of increased 
cognitive demands (task difficulty) (Cocchi et al., 2013; Hearne et al., 
2015), challenging the view of the DMN and FPN as competing and 
functionally segregated networks (Dixon et al., 2018; Hasson et al., 
2015; Kam et al., 2019; Katsumi et al., 2023; Raut et al., 2020; Zhang 
et al., 2019). Indeed, although both networks represent distinguishable 
entities with specific functions, their interplay is essential in high 
order cognitive functions (Cocchi et al., 2013; Menon and D’Esposito, 
2021). As such, across-network interactions between the DMN and 
the FPN have been shown to be significant predictors of interindividual 
differences in executive functions (Hearne et al., 2015, 2016; Shi et al., 
2018), with their inter-network connectivity progressively increasing 
during childhood (Chen et al., 2023) and decreasing with older age 
(Koshino et al., 2023).

Neuroimaging studies have traditionally investigated the 
association between brain and behavior through task-evoked fMRI 
paradigms. The use of tasks inside the scanner is challenging, however, 
as it suffers from inherent issues such as an increased risk of motion 
inside the scanner, as well as a dependence on a relatively high level of 
compliance from the participants to task demands (Fox and Greicius, 
2010; Harms et al., 2018; Uddin et al., 2010). The latter aspect poses a 
particular challenge for studies across the lifespan, where part of the 
sample falls into the extremes of the aging curve; that is, younger 
children and older adults. Additional factors in favor of resting state 
relative to task-fMRI include: (i) a higher signal-to-noise ratio, given 
that over 80% of the signal in task-fMRI is discarded as noise, 
including spontaneous fluctuations that are correlated with specific 
resting state networks; (ii) a lower number of trials, since task-fMRI 
requires a high number of trials and extensive acquisition in order to 
derive reliable activation maps that can be  difficult to achieve in 
noncompliant populations (e.g., very young or old participants); (iii) 
an opportunity to study multiple cortical regions at once, while task-
fMRI requires dedicated protocols for each specific function or brain 
region (Fox and Greicius, 2010). Finally, the metabolism increase 
associated with a task is usually very small (<5%) compared to the 
high energy consumption associated with resting state activity (20% 
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of the overall body metabolism), which leads to study task-related 
changes in brain activity between groups that often account for less 
than 1% of the signal (Fox and Greicius, 2010). Demonstrating that 
functional connectivity patterns at rest are equally associated with 
behavior outside of the scanner would, thus, prove beneficial in 
overcoming these issues. Because spontaneous fluctuations in the 
brain are known to self-organize in regions of activity—i.e., resting 
state networks (Biswal et  al., 1997)—that mirror the activation 
patterns that are evoked by cognition (Cole et al., 2016), interindividual 
differences in intrinsic functional connectivity might be useful in 
predicting differences in brain activity that are task-evoked (Cole 
et al., 2016). This has recently been achieved by several studies in 
young healthy populations, proving that higher order cognitive 
functioning measured outside the scanner can be  successfully 
predicted by regional connectivity that expands well beyond the FPN 
and involves a multitude of regions belonging to the DMN and 
attentional networks too (Hearne et al., 2016; Menardi et al., 2022; 
Reineberg et al., 2015). However, it is difficult to generalize those 
findings to younger and older age groups, given the diverse rate at 
which specific EF skills develop in the first years of life (McKenna 
et al., 2017), as well as the fact that EF are among the first cognitive 
functions to decline in the elderly population and are often 
accompanied by compensatory activity in the brain (Reuter-Lorenz 
et al., 2021). Lifespan studies are, hence, needed in trying to bridge 
this gap and to help determine the neural bases of EF as a 
function of age.

Paralleling changes in higher cognitive abilities, functional 
connectivity both within—and between—the FPN and DMN is 
subject to complex transformations across the lifespan (Edde et al., 
2021). In line with the emergence of self-awareness in infants, the 
DMN undergoes significant and sustained development to achieve a 
well-distributed and adult-like network architecture within the first 
year of life (Gao et al., 2015). More specifically, an initial increase in 
within-network connectivity between the bilateral posterior regions 
of the DMN (i.e., medial temporal lobe and PCC) is followed by an 
increase in within-network connectivity between remote regions 
along the rostro-caudal axis (i.e., medial PFC and lateral temporal 
cortex). The FPN, by contrast, is characterized by a more progressive 
development, being one of the last functional networks to emerge 
(Chen et  al., 2023; Edde et  al., 2021; Kupis et  al., 2021) and still 
relatively immature until well into adolescence (e.g., Liu et al., 2016). 
A reduction in within-network connectivity in both the FPN and 
DMN is observed to begin in middle age (Varangis et al., 2019), and 
becomes even more pronounced in older age (Farras-Permanyer et al., 
2019). While this suggests an overall progressive age-related shift 
towards a more segregated functional architecture, topological 
changes in healthy aging have also been characterised by a more 
complicated pattern of both increases and decreases in connectivity 
between different networks (Zonneveld et al., 2019). Mixed results 
have, however, been reported in the literature on the association 
between connectivity and cognition (for a review, see Liem 
et al., 2021).

The present study aimed to investigate how changes in EF 
capacities across the lifespan might be related to brain organization as 
derived from resting-state data. Specifically, it was of interest to 
determine whether normal age-related changes in selective attention 
and cognitive flexibility—two core EF capacities—could be reliably 
understood in terms of functional topological alterations within the 

DMN and FPN across the lifespan. Building on prior literature, 
we tested (i) if resting state network topology might be associated with 
higher order cognitive abilities, (ii) how this relationship might 
be  modulated by age, and (iii) whether a resting state network 
traditionally linked to baseline activity, the DMN, could show a higher 
association with EF compared to the traditional task-evoked activity 
network, the FPN. To address these aims, graph theory metrics 
representative of segregation and integration mechanisms in the brain 
were employed as main effects in the models, first simply to estimate 
the association between topological changes and age, and then to 
investigate how the topological properties of each network might 
be  associated with outside-scanner EF performance as a 
function of age.

To the best of our knowledge, this is the first study to directly 
investigate the functional architecture of the DMN itself in relation to 
EFs across the lifespan.

2 Methods

2.1 Participants

Five hundred neurologically healthy (nfemales = 267) participants 
were retrieved from the Human Connectome Project (HCP) Lifespan 
database,1 a rich and multi-model available set of consistently acquired 
neuroimaging and cognitive data, aimed at defining normative 
developmental and age-related changes in the brain (Harms et al., 
2018). Participants were selected to maintain a balance between 
females and males from each age category, from 10 to 100 years of age 
(see Table 1).

2.2 Cognitive measures

As part of the HCP fMRI protocol, participants were administered 
a broad neuropsychological test battery covering sensory, motor, 
emotion, memory, language and EF skills, with age-adjusted versions 
allowing for comparison across the lifespan. For the purpose of this 
study, however, only the Dimensional Change Card Sorting (DCCS) 
and the Flanker task were used as representative of EF functions, given 
that they were the only two EF tasks administered to all age cohorts. 
Scores obtained on a picture vocabulary (PVT) task were also used as 
a control to test the specificity of our findings. Further details on the 
administration and scoring of the tasks are openly available on the 
Human Connectome Project (HCP) Lifespan webpage (see 
footnote 1).

2.3 Neuroimaging measures

2.3.1 fMRI data acquisition
Given the challenges pertinent to imaging developmental and 

aging populations, including an increased propensity for head 
movement (Geerligs et al., 2017; Satterthwaite et al., 2012) and a lower 

1 https://www.humanconnectome.org/lifespan-studies
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tolerance for long scan sessions (e.g., as a result of boredom in the 
younger participants or muscular distress in the older participants), a 
key decision was to limit the collection of data to an overall scanner 
acquisition time of 45 min per subject (Harms et al., 2018). This is 
slightly shorter relative to the traditional HCP protocols of 1 h per 
participant, but was considered an appropriate acquisition time given 
the age range of the sample. T1-weighted anatomical data [repetition 
time (TR) = 2,500 ms, time interval (TI) = 1,000 ms, matrix size = 320 × 
300 × 208 mm, voxel size = 1 × 1 × 1 mm] and functional resting state 
data [acquisition parameters: number of volumes = 488, TR = 800 ms, 
echo time (TE) = 37 ms, voxel size = 2 × 2 × 2 mm, flip angle 
(FA) = 52 deg.] were collected according to the HCP Lifespan 
acquisition protocols (Harms et  al., 2018). The data provided had 
already undergone HCP minimal preprocessing steps (Glasser et al., 
2013), including correction for spatial distortion, motion, bias field, and 
surface registration. Temporal artifacts were cleaned from the data 
using independent component analysis and a machine learning 
classifier (FIX) (Glasser et al., 2016). Only spatial smoothing using a 
Gaussian kernel of FWHM 6.0 mm was further applied. A quality check 
(QC) on the extent of head motion inside the scanner was performed 
by looking at the individual average framewise displacement across all 
scans (range: 0.61 mm—0.02 mm; mean = 0.2 mm, std. = 0.09 mm), 
proving good quality of the data. Indeed, the average absolute value 
remained below half a voxel width, which is generically considered a 
threshold to determine the quality of the data with respect to head 
motion (Power et al., 2012). However, we observed a weak positive 
relationship between age and head motion (r = 0.19, p < 0.0001). 
Additional QC controls are applied as part of the HCP Lifespan 
processing pipeline, both in real-time during data acquisition, as well 
as by means of post-acquisition manual and automated QC. An 
extensive list of all QC procedures is available in the published work by 
Marcus et  al. (2013). In summary, structural scans are manually 
inspected by an expert rater and any anomaly further evaluated by 
experienced neuroradiologists (Elam et al., 2021). If brain abnormalities 
are present which could affect brain connectivity estimates, the 
participant’s data (including his/her behavioral data) are not released 
(Elam et al., 2021). Further QC on the structural data is performed 
following Freesurfer surface reconstruction to readily evaluate grey and 
white matter segmentations (Elam et al., 2021). As for the functional 
data, another set of QC pipelines is used to determine signal-to-noise 
ratios and flag motion outliers (Elam et al., 2021). Individuals’ data with 
excessive head motion are also not made available in the release (Elam 
et  al., 2021). This might come with a caveat, in the sense that all 
individuals who completed the protocol and provided high quality data, 
as made available by from the HCP, might not be representative of their 
age category, but rather represent a “super-normal” sample (e.g., for 
older participants) (Bookheimer et al., 2019).

Finally, individual brains were parcelled into 200 regions of 
interest (ROIs) according to the Schaefer et al. (2018), and functional 
connectivity matrices were computed from the individual time 
series by correlating the BOLD signal of every pair of ROIs. 
Individual connectivity matrices were then further transformed into 
Fisher’s z-scores to ensure normality, and to ease the comparison 
and the interpretability of connectivity estimates (Yu et al., 2018). 
Our analyses were also run using the 400 regions parcellation 
scheme of the Schaefer et  al. (2018), available in the 
Supplementary material.

2.4 Graph theory

In order to define changes in communication efficiency between 
components of the FPN (consisting of 30 nodes) and the DMN 
(consisting of 46 nodes) across the lifespan, and to understand how 
these might be associated with cognitive performance, the present 
study employed graph theory principles (Bullmore and Sporns, 2009). 
First, a false discovery rate (FDR) correction (𝛼= 0.05) was applied to 
all connectivity matrices to reduce the risk of false positives while 
ensuring that sufficient interindividual variability was kept (Bassett 
et al., 2006; Drakesmith et al., 2015), allowing us to retain the 80% of 
the edges on average. While traditional approaches to thresholding 
have typically employed arbitrary cut-offs as a means of retaining the 
strongest 10–40% of edges (Bullmore and Bassett, 2011), such 
methods are highly conservative and can bias the topological 
properties of a network (Drakesmith et  al., 2015). Indeed, high 
thresholding approaches tend to result in relatively disconnected 
networks that are not representative of a true connectome (Drakesmith 
et al., 2015).

A more permissive single statistical threshold application by 
means of FDR or Bonferroni correction to the single correlations 
in the connectivity matrices can reduce the risk of both Type-I 
and Type-II error rates, while retaining interindividual variability 
(Cao et al., 2014). Such an approach appears particularly relevant 
in the context of developmental research where, despite an 
apparent connectome macrostructure by the age of 2 years, 
rearrangements at a more micro level (e.g., edge weights) continue 
to occur throughout the lifespan (Collin and Van Den Heuvel, 
2013). It was therefore considered appropriate to threshold the 
matrices in a manner that would preserve as much of this latter 
source of variability as possible in the present study. Adjacency 
matrices were derived for each individual, in which the aij elements 
were equal to the Fisher-z transformed value of the correlation 
between nodes i and j, or zero otherwise (i.e., in the absence of 
a connection).

TABLE 1 Summarizes the demographic characteristics of our sample.

Age (range) Sex (n) Race (%) Ethnicity (%) Handedness* mean (SD)

10–100 years F (n = 267)

M (n = 233)

Asian = 1.8%

Black or African American = 9.8%

Hawaiian or Pacific Islander = 10.2%

More than one race = 5.8%

Unknown or unreported = 2.4%

White = 70%

Hispanic or Latino = 11.4%

Not Hispanic or Latino = 88.2%

Unknown = 0.4%

68.17(±46.9)

*Handedness was assessed using the 11-item Edinburgh Handedness questionnaire (Oldfield, 1971).
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Graph theory measures were extracted via the Brain Connectivity 
Toolbox2 function running in MATLAB 2023a (The Mathworks, Inc., 
Natick, MA, United States). Measures of integration (i.e., Characteristic 
Path Length, Global Efficiency), segregation (i.e., Clustering 
Coefficient and Modularity), and their balance within the system 
(Small Worldness) were extracted separately for both the FPN and the 
DMN to allow a network-level analysis, and were defined as follows:

Integration measures:

 i) Characteristic Path Length (CP): the average distance between 
a node and all the other nodes of the system;

 ii) Global Efficiency (GE): the inverse of the average shortest path, 
that is, the average of the efficiency over all pairs of nodes.

Segregation measures:

 iii) Clustering Coefficient (CC): the fraction of nodes being 
neighbors with the surrounding nodes, forming triangular triplets;

 iv) Modularity (MOD): the extent to which a network can 
be  divided into distinct modules based on greater within-
module, rather than between-modules, edges.

And their balance:

 v) Small-Worldness (SW): the property of a system to have a 
concomitant high clustering coefficient and a low path length.

Because the FPN and the DMN can be divided into anatomically 
distinct components, nodes were defined within both the FPN and the 
DMN to better estimate their contributions to cognitive changes 
across the lifespan. In particular, parcellations were based on the 
Schaefer et al. (2018), such that the FPN was subdivided into 30 nodes 
and the DMN into 46 nodes. Separate topological measures were 
extracted for the individual regions, and were defined as follows:

 i) Characteristic Path Length (CP): the average distance of a given 
region to all the other nodes of the network;

 ii) Clustering Coefficient (CC): the tendency of a given region to 
show a greater distribution of edges towards neighboring 
nodes, forming triangular triplets;

 iii) Betweenness Centrality (BC): the fraction of all shortest paths 
that pass through a given region;

 iv) Nodal Degree (ND): the number of connections of a 
given region.

 v) Participation Coefficient (PC): a measure of diversity of 
intermodular connections of the individual nodes.

For an in-depth explanation of graph theory measures, see 
Rubinov and Sporns (2010).

2.5 Data analysis plan

Data were analyzed using MATLAB 2023a (The Mathworks, Inc., 
Natick, MA, United  States). To assess topological changes at the 

2 https://sites.google.com/site/bctnet/

network level as a function of age, linear correlation analyses were 
performed between the aforementioned graph theory measures and 
age, separately for the FPN and the DMN. To minimize the risk of 
Type-I error due to multiple comparisons, the results of all models 
were corrected using False Discovery Rate (FDR), with statistical 
significance considered against 𝛼 = 0.05.

Then, multiple linear regression models were employed to 
determine if brain topology at the network level, as indexed by 
graph theory measures, was associated with EF abilities, 
operationalized by performance on the Flanker and the DCCS 
tasks. Performance on these tasks was analyzed separately as they 
reflect different components within the EF framework: selective 
attention/inhibition and cognitive flexibility, respectively. Of 
particular interest were the possible interactions between age and 
the functional properties of each network in regard to higher order 
cognitive performance and, thus, age was included as an interaction 
term in each of the models. Moreover, because developmental 
trajectories for executive abilities have been found to differ slightly 
as a function of sex (De Luca et al., 2003), sex was controlled for. 
Given the exploratory nature of the study, we  did not want to 
impose any a priori assumption on the influence of age on the 
model and so both linear and quadratic effects were tested. A 
Likelihood Ratio Test was then used to determine the model with 
the better fit. To minimize the risk of Type-I error, only models 
surviving FDR correction (𝛼 = 0.05) were considered. Furthermore, 
all analyses were controlled for potential head motion effects, 
measured as the individual mean of the framewise displacement 
across all scans.

The same multiple regression models were employed at the node 
level of each network, with the node-specific graph theory measures 
evaluated as factors in the analyses. The variance inflation factor (VIF) 
was computed to ensure that only factors with no risk of multi-
collinearity were inserted in the models, resulting in the choice of CP, 
MOD and SW as factors for the analyses conducted at the network 
level and CP, CC and BC as factors for the analyses conducted at the 
node level. Outliers were removed based on the models’ residuals, as 
determined by a cut-off of ±3 scaled absolute deviations from 
the median.

At last, we estimated the extent to which each node of the DMN 
and of the FPN preferentially connects to nodes of the same 
community (DMN-DMN, FPN-FPN) or across communities 
(DMN↔FPN) by evaluating their measures of PC. We then tested the 
association between the average value of PC for each network (DMN 
and FPN, respectively) and EF measures in both linear and 
quadratic fashion.

3 Results

To get a general idea about the nature of topological change at the 
network level in association with age, linear correlations were run 
between graph theory measures and age for both the FPN and the 
DMN. Multiple regression analyses were then used to evaluate the 
strength of the association between topological properties and EF in 
consideration of age; first at a network level, to get a global picture of 
network characteristics associated with cognitive function and, 
subsequently, at a node level, to evaluate how EF development and 
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decline over the lifespan might be  a product of the age-affected 
topographical properties of specific anatomical components within 
each of the networks. For each model, we performed an analysis of 
the standard residuals and observed an average of 6 outliers, which 
were then removed. We  also checked for the strength of the 
association between EF and age in their linear (Flanker; r = 0.17, 
p = 0.0002, R2 = 0.03; DCCS: r = 0.23, p < 0.0001, R2 = 0.054) and 
quadratic (Flanker: F(2,475) = 7.27, p < 0.0001, R2 = 0.03); (DCCS: 
F(2,475) = 14.8, p < 0.0001, R2 = 0.058) relationships, observing weak 
positive associations.

Finally, control analyses were run on a network whose connectivity 
was not expected to correlate with EF abilities, i.e., the sensorimotor 
network (see Supplementary materials).

3.1 FPN

3.1.1 Network-level analyses
The relationship between age and graph theory measures was 

investigated by means of correlation analyses, revealing a significant 
positive association between age and CP (r = 0.29, p < 0.0001) and a 
significant negative relationship between age and CC (r = −0.15, 
p < 0.0001), GE (r = −0.24, p < 0.0001), MOD (r = −0.18, p < 0.0001) 
and SW (r = −0.16, p < 0.0001) (see Figure 1), suggesting an increased 
distance and loss of network specialization and efficiency as a 
function of age. Notably, we also tried to fit the relationship between 
age and graph theory measures in a quadratic fashion. However, 
almost identical fits and R2 values were obtained, suggesting that the 

relationship between our variables is already captured at the 
linear level.

The overall multiple regression models, which considered age, 
gender, head motion and FPN topology, as well as their interaction, 
in association with Flanker and DCCS performance emerged as 
significant (Flanker: R2 = 0.08; F(12, 459) = 3.3, p = 0.0001); DCCS: 
(R2 = 0.08, F(12, 464) = 3.61, p < 0.0001). For both models, age emerged 
as significantly associated with cognitive performance (Flanker: 
β = 2.78, p < 0.0001, DCCS: β = 5.32, p < 0.0001), suggesting that 
variability in the performance scores can be related to differences in 
age rather than topological properties of the FPN. The individual 
amount of motion inside the scanner was also observed to 
be  negatively correlated with performance on the Flanker task 
(β = −16.6, p = 0.012), suggesting that the individuals with less head 
movement were also the ones who had higher performance scores as 
assessed outside the scanner. To make sure that our results were not 
biased by potential movement confounds, we  checked for the 
interaction between our graph theory measures and framewise 
displacement, which were not significant.

The model testing the association between FPN topology and 
performance on the PVT, our control task, was not significant 
(R2 = 0.02, F(12,461) = 0.95, p = 0.493).

In addition, we tested if a simpler measure of within-network 
connectivity strength could be  significantly associated with EF 
performance across the lifespan in either a linear or quadratic fashion. 
We observed no significant correlation for neither the Flanker (linear: 
r = 0.03, p = 0.53; quadratic: F(2,475) = 0.43, p = 0.64), nor the DCCS task 
(linear: r = −0.02, p = 0.59; quadratic: F(2,475) = 0.14, p = 0.86).

FIGURE 1

Scatterplots of network topology with age. The relationships between age and the topology of the FPN is presented as scatterplots. As a function of 
age, the FPN shows a progressive loss of connection strength (higher characteristic path length—CP), as well as reduced segregation and specialization 
of the networks (lower clustering coefficient and modularity). Furthermore, a general reduction in network efficiency was observed (lower global 
efficiency and small worldness). CP  =  characteristic path length, CC  =  clustering coefficient, MOD  =  modularity, GE  =  global efficiency, SW  =  small 
worldness.
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3.1.2 Node-level analyses
To analyze the differential relationship between FPN components, 

or nodes, and high order performance, the same analyses were 
conducted separately for each region. Overall, the topological 
properties of five FPN regions were significantly associated with 
selective attention (operationalized as performance on the Flanker 
task), and the topological properties of two FPN regions were 
significantly associated with cognitive flexibility (operationalized as 
performance on the DCCS). Importantly, significant interactions were 
observed between FPN topology and age, such that the relationship 
between the functional architecture of the FPN and EF performance 
varied depending on the age of the individual in either a linear or 
quadratic fashion.

Specifically, the right superior parietal lobule (SPL) (R2 = 0.07, 
F(12,459) = 2.86, p = 0.0008) and right precuneus (R2 = 0.09, F(12,459) = 3.74, 
p < 0.0001) were observed to be  meaningfully associated with 
performance on the Flanker task, all showing significant linear 
interactions between their measure of BC and age (right SPL: β = 1.56, 
p = 0.043; right precuneus: β = 1.29, p = 0.023). For both regions, an 
increased centrality within the network was positively associated with 
performance in the older individuals, with an opposite relationship in 
the younger counterpart instead (see Figures 2A,B). The right PCC 
was also meaningfully associated with performance on the Flanker 
task (R2 = 0.09, F(12,459) = 3.81, p < 0.0001), with a positive interaction 
between CC and age (β = 2.74, p = 0.032), suggesting that higher CC is 
associated with better performance in the middle and older age 
groups, with an opposite trend in the younger counterpart (see 
Figure 2C).

On the other hand, the topological properties of both the left 
inferior parietal lobule (IPL) (R2 = 0.09, F(16,455) = 2.91, p = 0.0001) and 
left SMG (R2 = 0.10, F(16,455) = 3.24, p < 0.0001) emerged as significantly 
associated with Flanker performance, with significant quadratic 
interactions between their measure of BC and age (left IPL: β = 2.17, 
p = 0.003; left SMG: β = −1.49, p = 0.028). For the left SMG, meaningful 
quadratic relationships were also observed between age and its 
measure of CP (β = 3.26, p = 0.017) and CC (β = 2.92, p = 0.022). 
Overall, this suggests the presence of a “U” shaped relationship 
between the measures of CP and CC of the left SMG and individual 
performance on the Flanker tasks, such that both younger children 
and older adults seem to benefit from increased local processing of the 
information, whereas the opposite is observed for middle-aged 
individuals. While the same “U” shaped relationship applies for the 
BC of left IPL—such that younger and older individuals benefit from 
a higher centrality of this region—an inverted “U” shape best depicts 
the relationship between BC and Flanker performance for the left 
SMG. In this case, a less central role of this region ensures better 
performance in younger and older individuals. A visual depiction of 
the aforementioned interactions is presented in Figures 2D,E.

Irrespective of age, significant associations between CC and 
performance on the Flanker task were observed for the left middle 
frontal gyrus (MFG) (R2 = 0.08, F(12,459) = 3.46, p < 0.0001; β = 5.85, 
p = 0.047), the left DLPFC (R2 = 0.07, F(12,459) = 3.14, p = 0.0002; β = 7.06, 
p = 0.032) and the right MFG (R2 = 0.08, F(12,459) = 3.34, p = 0.0001; 
β = 7.24, p = 0.023). The CP of the right MFG was also observed to 
be positively associated with Flanker performance (β = 8.29, p = 0.025).

For all the nodes, motion emerged as a significant main effect in 
association with Flanker performance (left IPL: β = −17.4, p = 0.007; 
left SMG: β = −17.38, p = 0.006; left MFG: β = −18.09, p = 0.006; left 

DLFPC: β = −16.17, p = 0.012; right SPL: β = −16.52, p = 0.01; right 
MFG: β = −18.22, p = 0.004; right precuneus: β = −18.72, p = 0.004; 
right PCC: β = −21.19, p = 0.001).

As for what concerns performance on the DCCS, the topological 
profile of two FPN regions showed significant interactions as a 
function of age: the right superior frontal gyrus (SFG) (R2 = 0.08, F(12, 

464) = 3.43, p < 0.0001) and left PCC (R2 = 0.09, F(16, 460) = 3.04, p < 0.0001). 
In particular, significant interactions were observed between the BC 
of these regions and performance on the DCCS, which were observed 
to be linear for the right SFG (β = 2.4, p = 0.026) and quadratic for the 
left PCC (β = 3.33, p = 0.001). A significant main effect of head motion 
was observed for the left PCC (β = −18.12, p = 0.044). Figure 3 reports 
all significant interactions between topology and age associated with 
DCCS performance for both regions. Overall, these results highlight 
the importance of centrality of two main regions within the FPN, 
suggesting that increased centrality of the left PCC favors both elder 
and younger individuals, whereas increased centrality of the right SFG 
benefits elders but disfavors performance of the younger participants.

A full depiction of the relationship between age and topology of 
all of the network’s regions associated with EF performance is shown 
in Figure 4.

3.2 DMN

3.2.1 Network-level analyses
The relationship between age and graph theory measures was also 

investigated for the DMN by means of correlation analyses. 
Significant correlations were observed between CP (r = 0.50, 
p < 0.001), CC (r = −0.38, p < 0.001), GE (r = −0.46, p < 0.001) and SW 
(r = −0.41, p < 0.001) with age, suggesting a significant decrease in 
efficiency and loss of network specialization as a function of age (see 
Figure 5). Notably, we also tried to fit the relationship between age 
and graph theory measures in a quadratic fashion. However, almost 
identical fits and R2 values were obtained, suggesting that the 
relationship between our variables is already captured at the linear 
level. Because we  observed higher correlation coefficients in the 
DMN compared with the FPN (see section 3.1.1.), we decided to 
compare them statistically using the package cocor (Diedenhofen and 
Musch, 2015). We observed that correlations between graph theory 
measures and age in the DMN were significantly higher than those 
observed for the FPN (CP: z = 7.01, p < 0.0001; CC: z = −7.18, 
p < 0.0001; GE: z = −7.43, p < 0.0001; MOD: z = 3.06, p = 0.002; SW: 
z = −7.95, p < 0.0001).

The overall multiple regression model, which considered age, 
gender, head motion and DMN topology, as well as their interaction, 
was significantly associated with both Flanker (R2 = 0.11, F(12,459) = 4.89, 
p < 0.0001) and DCCS (R2 = 0.09, F(12,464) = 4.12, p < 0.0001) 
performance. In particular, for both tasks, we observed a main effect 
of MOD (Flanker: β = −6.66, p = 0.0001; DCCS: β = −6.22, p = 0.012) 
and age (Flanker: β = 1.6, p = 0.042; DCCS: β = 3.77, p = 0.0007). 
Overall, this suggests that better performance on the Flanker and 
DCCS tasks is based on a reduced modularity within the DMN, 
possibly highlighting a benefit when the topology of the DMN shows 
less segregation and higher integration between its nodes. Notably, a 
main effect of motion was observed for the Flanker task (β = −15.9, 
p = 0.017), suggesting that individuals with higher head motion 
performed worse in the cognitive evaluation outside the scanner. No 
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significant interaction between our graph theory measures and head 
motion was observed.

The model testing the association between DMN topology and 
performance on the PVT, our control task, emerged as not significant 
(R2 = 0.02, F(12, 462) = 0.91, p = 0.532).

In addition, we tested if a simpler measure of within-network 
connectivity strength could be  significantly associated with EF 
performance across the lifespan in either a linear or a quadratic 
fashion. We observed no significant correlation for the Flanker task 
(linear: r = −0.01, p = 0.78; quadratic: F(2,475) = 0.25, p = 0.77). On the 
other hand, a significant linear negative association with the DCCS 
task was observed (r = −0.10, p = 0.02), but no quadratic association 
(F(2,475) = 2.7, p = 0.07) (see Supplementary Figure S5).

3.2.2 Node-level analyses
To determine if specific regions within the DMN might drive the 

interaction between network topology and cognitive performance as 
a function of age, the same analyses were repeated at the single region 
level. In this regard, four regions of the DMN were found to 
be  associated with individual selective attention abilities 
(operationalized by Flanker performance), with a meaningful linear 
interaction between age and their topological profile. Specifically, the 
left superior temporal gyrus (STG) (R2 = 0.07, F(12,459) = 3.07, p = 0.0003), 

left IFG (R2 = 0.09, F(12,459) = 3.89, p < 0.0001), left superior frontal gyrus 
(SFG) (R2 = 0.07, F(12,460) = 3.19, p = 0.0002) and right STG (R2 = 0.09, 
F(12,459) = 3.85, p < 0.0001) all showed a significant interaction between 
their degree of centrality in the network and Flanker performance (left 
STG: β = 1.78, p = 0.019; left IFG: β = −1.4, p = 0.011; left SFG: β = −1.23, 
p = 0.034; right STG: β = 2.39, p = 0.001). Interestingly, the left and right 
STG showed similar patterns, with a negative impact of their degree 
of centrality on Flanker performance in young children, but a 
favorable (positive) effect in the older adults. Conversely, a greater BC 
of the left IFG and left SFG appeared beneficial in younger children, 
but not in the older group (Figures 6A–D).

More complex interaction patterns were observed for the right 
angular gyrus (AG) (R2 = 0.09, F(16,455) = 2.88, p = 0.0001), which showed 
meaningful quadratic interactions between its degree of BC (β = 1.48, 
p = 0.045), CC (β = 2.97, p = 0.017) and CP (β = 2.71, p = 0.045) and age 
in association with Flanker performance. The same relationships were 
observed for the right precuneus (R2 = 0.10, F(16,455) = 3.13, p < 0.0001): 
BC (β = −1.58, p = 0.013), CC (β = 2.7, p = 0.041) and CP (β = 2.94, 
p = 0.045). For both regions, the degree of CP and CC were positively 
associated with performance at the Flanker task at the extremes of the 
aging curve (i.e., younger children and older adults), but negatively 
associated in middle aged individuals. On the other hand, the 
centrality of the right AG was observed to be  strongly positively 

FIGURE 2

Linear and quadratic interactions between FPN topology and age in Flanker performance. Significant linear interactions between age and graph theory 
measures associated with Flanker performance are presented graphically for the right SPL (A), right precuneus (B), right PCC (C). On the other hand, 
significant quadratic interactions between age and graph theory measures associated with Flanker performance were observed for the left IPL (D) and 
the left SMG (E). Age is subdivided into three categories for interpretability, with the average age of each group shown: 10 yo  =  10  years old; 48 
yo  =  48  years old; 85 yo  =  85  years old. BC  =  betweenness centrality, CC  =  clustering coefficient, CP  =  characteristic path length, IPL  =  inferior parietal 
lobule, SMG  =  supramarginal gyrus, SPL  =  superior parietal lobule, PCC  =  posterior cingulate cortex.
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associated with attention performance in older adults, but with little 
or no relationship in the younger age groups. The centrality of the 
right precuneus was instead negatively associated with performance 
in the young and older groups, but positively in the middle-aged 
group (see Figures 6E,F).

All regions also showed a significant main effect of head motion 
(left STG: β = −17.22, p = 0.008; left IFG: β = −17.7, p = 0.006; left SFG: 
β = −17.55, p = 0.008; right AG: β = −15, p = 0.022; right STG: β = −18.6, 
p = 0.003; right precuneus: β = −16.6, p = 0.013).

As for what concerned the association between DMN topology 
and cognitive flexibility (operationalized by DCCS performance), four 
of its nodes were observed to present significant linear interactions 
between their connectivity profile and age. In particular, the left 
posterior middle temporal gyrus (pMTG) (R2 = 0.10, F(16,460) = 3.19, 
p < 0.0001) showed a significant interaction between CP and age 
(β = 6.8, p = 0.005) and between CC and age (β = 5.37, p = 0.024), 
proving that reduced CP and CC are beneficial in the first half of the 
lifespan (from children to middle age), but not in the older age group 
(see Figure  7A). Similarly, the left superior frontal gyrus (SFG) 

(R2 = 0.09, F(12,464) = 4.09, p < 0.0001), left posterior cingulate cortex 
(PCC) (R2 = 0.09, F(12,464) = 3.85, p < 0.0001) and right precuneus 
(R2 = 0.10, F(16,460) = 3.3, p < 0.0001) showed a meaningful interaction 
between their measure of BC and age in association with DCCS 
performance (left SFG: β = −2.36, p = 0.014; left PCC: β = 1.86, 
p = 0.013, right precuneus: β = −2.47, p = 0.014), proving a negative 
association between centrality of the left PCC and performance on the 
DCCS task in children, with an opposite (positive) association in the 
older group instead. The opposite trend was instead observed for the 
left SFG and right precuneus (Figures 7B–D).

Finally, we  also observed that the left precuneus (R2 = 0.10, 
F(16,460) = 3.28, p < 0.0001) and the left STG (R2 = 0.9, F(16,460) = 2.97, 
p < 0.0001) presented a quadratic relationship between their degree of 
BC and age in regard of DCCS performance (left precuneus: β = 2.85, 
p = 0.002; left STG: β = −2.68, p = 0.024), with a significant association 
between BC and DCCS performance that was positive in the younger 
and the older groups, but negative in the middle-aged group. Similarly, 
the right precuneus (R2 = 0.10, F(16,460) = 3.3, p < 0.0001) showed a 
quadratic association between its measures of CP (β = 4.26, p = 0.039) 

FIGURE 3

Linear and quadratic interactions between FPN topology and age in DCCS performance. Significant linear interactions between age and graph theory 
measures associated with DCCS task performance were observed for the right SFG (A). On the other hand, the left PCC presented a quadratic effect of 
age on the relationship between topology and DCCS performance (B). Age is subdivided into three categories for interpretability, with the average age 
of each group shown: 10 yo  =  10  years old; 48 yo  =  48  years old; 85 yo  =  85  years old. DCCS  =  Dimensional Change Card Sorting task, SFG  =  superior 
frontal gyrus, PCC  =  posterior cingulate cortex, BC  =  betweenness centrality.
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and CC (β = 4.03, p = 0.029) with age in respect to DCCS performance, 
whereby higher CP and CC were positively associated with 
performance in children and in older adults, but negatively associated 
in the middle-aged group (Figures 7E,F).

In addition, the left AG (R2 = 0.10, F(12,464) = 4.34, p < 0.0001) and 
the left pars triangularis (PT) (R2 = 0.11, F(12,464) = 4.71, p < 0.0001) 
presented significant main effects in their measure of CC (left AG: 
β = −9.04, p = 0.02, left PT: β = −8.34, p = 0.028) and CP (left AG: 
β = −10.47, p = 0.02, left PT: β = −11.15, p = 0.007) in respect to DCCS 

performance, regardless of age. Finally, the left paracingulate gyrus 
(PG) (R2 = 0.09, F(12,464) = 3.97, p < 0.0001) showed a significant 
association between BC (β = −4.26, p = 0.048) and DCCS, 
regardless of age.

A significant main effect of head motion was observed for the left 
STG (β = −18.79, p = 0.041), left PG (β = −17.95, p = 0.046) and left 
SFG (β = −19.19, p = 0.032).

A full depiction of the relationship between age and topology of the 
network’s regions associated with EF performance is shown in Figure 8.

FIGURE 4

Interactions between age and topology associated with EF performance. Quadratic relationships are shown between topology of all regions of the FPN 
and performance at the Flanker (A–C) and DCCS (D–F) tasks. Colors reflect the slope of the interaction in z scores, such as that cooler colors reflect 
more negative relationships whereas warmer colors reflect more positive relationships.
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3.3 Changes in network hubs across the 
lifespan

At last, we computed the networks’ hubs by averaging the measures 
of BC across our young (mean age: 10.4 years), middle-aged (mean age: 
47.3 years) and older participants (mean age: 85.7 years) for both the 
FPN and the DMN. We  considered as hubs only the nodes with a 
measure of BC that was 1.5 standard deviations higher than the group 
average. We  then plotted the obtained results by means of Gephi3 
(Bastian et al., 2009). We observed that, on average, the distribution of 
hubs in the FPN tended to remain stable across the lifespan, with a major 
role of the ACC as a core hub in the network irrespective of age. On the 
other hand, the DMN showed changes in its number of hubs across the 
lifespan (Figure 9). In particular, a greater and more diversified number 
of hubs was present in the younger and older participants, whereas the 
number of hubs diminished in middle-aged participants. While regions 
like the bilateral dorsomedial prefrontal cortex (ldmPFC and rdmPFC) 
and the left parahippocampal cortex (lPaHC) remained stable hubs in 
the DMN across the lifespan, other regions such as the right orbitofrontal 
cortex (rOFC), the left paracingulate gyrus (lPaCiG) and the rSTG gain 
a role as hubs only in children and older participants, suggesting a 

3 https://gephi.org/

possible involvement in aiding at the integration of the information at 
the extremes of the aging curve.

3.4 Between-network connectivity of the 
FPN and DMN

We then tested the association between the average value of 
participation coefficient for each network (DMN and FPN 
respectively) and EF measures in both a linear and quadratic 
fashion. Interestingly, we observed that the average diversity of 
the connectivity of the FPN towards the DMN was significantly 
associated with performance on the Flanker task (linear: r = 0.13, 
p = 0.004; quadratic: F(2,475) = 0.25, p = 0.77), but not with 
performance on the DCCS (linear: r = 0.06, p = 0.18; quadratic: 
F(2,475) = 4.25, p = 0.015).

As for the DMN, no significant association was observed between 
its measure of PC and performance on either the Flanker (linear: 
r = 0.08, p = 0.08; quadratic: F(2,475) = 1.57, p = 0.21) or the DCCS 
(linear: r = 0.03, p = 0.46; quadratic: F(2,475) = 0.47, p = 0.62) tasks.

4 Discussion

The present study sought to investigate the relationship 
between the intrinsic functional architecture of the brain over 

FIGURE 5

Scatterplots of network topology with age. The relationships between age and the topology of the DMN is presented as scatterplots. As a function of 
age, the DMN shows a progressive loss of connection strength (higher characteristic path length), as well as reduced segregation (lower clustering 
coefficient). Furthermore, a general reduction in network efficiency was observed (lower global efficiency and small worldness). CP  =  characteristic 
path length, CC  =  clustering coefficient, GE  =  global efficiency, SW  =  small worldness.
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time and EF performance. Specifically, it aimed to determine 
whether normal age-related changes in the topology of the FPN 
and DMN might provide a neural basis for selective attention and 
cognitive flexibility abilities across the lifespan. It was 
hypothesized that within-network topological properties of both 
the FPN and DMN would change as a function of age, and that 
this interaction would be significantly associated with behavioral 
manifestations of both key executive capacities in development 
and aging. In particular, it was hypothesized that the functional 
topology of the DMN, a network traditionally conceptualized as 
suppressed during higher order cognition (for a review see 
Menon, 2023), would show higher association values with 
executive capacities across the healthy lifespan than the 

task-positive FPN, due to its earlier functional maturation and 
overall role in the integration of information.

To the best of our knowledge, this is the first study directly 
addressing the role of DMN topological properties in EF performance 
across the lifespan. Indeed, though neuroimaging studies support the 
notion that the functional connectome at rest is unique to each 
individual and that its organizational patterns might be predictive of 
cognitive performance (Smith et al., 2009), prior studies have either 
focused on whole brain approaches (Cohen and D’Esposito, 2016; 
Onoda et al., 2012; Sadiq et al., 2021) rather than on specific functional 
networks, or have investigated age-related changes on narrower age 
distributions (Bagarinao et al., 2019; Cohen and D’Esposito, 2016; 
Stanford et al., 2022) rather than on one spanning from 10 to 100 years. 

FIGURE 6

Linear and quadratic interactions between DMN topology and age in Flanker performance. Significant linear interactions between age and graph 
theory measures associated with Flanker performance are presented graphically for the left STG (A), left IFG (B), left SFG (C) and right STG (D). On the 
other hand, significant quadratic interactions between age and graph theory measures associated with Flanker performance were observed for the 
right AG (E) and the right precuneus (F) for measures of BC, CC ad CP, respectively. Age is subdivided into three categories for interpretability, with the 
average age of each group shown: 10 yo  =  10  years old; 48 yo  =  48  years old; 85 yo  =  85  years old. AG  =  angular gyrus, BC  =  betweenness centrality, 
CC  =  clustering coefficient, CP  =  characteristic path length, IFG  =  inferior frontal gyrus, SFG  =  superior frontal gyrus, STG  =  superior temporal gyrus.
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Furthermore, the majority of these studies focused on between-
network connectivity, reporting findings similar to the results 
observed in this study, including an overall decreased functional 
connectivity strength in aging and a trend towards greater integration, 
necessary to sustain high-order task execution (Bagarinao et al., 2019; 
Cohen and D’Esposito, 2016; Onoda et al., 2012; Stanford et al., 2022).

In this study, we observed that topological features of both the 
FPN and DMN were subject to age-related effects. Indeed, a significant 
increase in the average CP as a function of age was observed for both 
networks, suggesting a progressively higher number of steps necessary 
to link, on average, all within-networks nodes. Because CP represents 
the inverse of edge weights, such that stronger edges are equivalent to 

a shorter CP between nodes, this result can also be interpreted from a 
functional perspective as a progressive weakening of functional 
correlations. Moreover, an overall reduced segregation characterized 
both networks as a function of age, as indexed by a reduced CC and 
MOD for the FPN and a reduced CC for the DMN. In other words, a 
progressive loss of functional differentiation seems to occur within the 
FPN with age, favored by an increase in between-module connections, 
rather than within-module edges, and a decrease in its clusterization. 
This might result in more distributed information processing at a loss 
of compartmentalized information. Similarly, the reduced CC 
observed for the DMN reflects a reduced tendency for nodes to share 
edges preferentially with nodes that are in spatial proximity (i.e., 

FIGURE 7

Linear and quadratic interactions between DMN topology and age in DCCS performance. Significant linear interactions between age and graph theory 
measures associated with DCCS performance are presented graphically for the left pMTG (A), left SFG (B), left PCC (C) and left precuneus (D). On the 
other hand, significant quadratic interactions between age and graph theory measures associated with DCCS performance were observed for the left 
precuneus (E), left STG (F) and the right precuneus (G). Age is subdivided into three categories for interpretability, with the average age of each group 
shown: 10 yo  =  10  years old; 48 yo  =  48  years old; 85 yo  =  85  years old. BC  =  betweenness centrality, CC  =  clustering coefficient, CP  =  characteristic 
path length, pMTG  =  posterior middle temporal gyrus, PCC  =  posterior cingulate cortex, SFG  =  superior frontal gyrus, STG  =  superior temporal gyrus.
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neighbors), thus also hindering a loss of specialization in favor of a 
more distributed connectivity pattern with age. An overall significant 
decrease in GE and SW also characterized the topology of both 
networks as a function of age, suggesting a progressive loss in network 
efficiency over the lifespan. Of note, all associations between topology 
and age were observed to be  significantly stronger for the DMN 
compared to the FPN, consolidating the notion that DMN topology 
might be more sensitive to age-related changes.

Prior studies have similarly observed a decrease in CP with age at 
the whole brain level (Bagarinao et al., 2019) and an overall loss of 
specialization (Edde et  al., 2021), while mixed results have been 
reported in relation to changes in GE as a function of age, for which 
both positive (Bagarinao et al., 2019) and negative (Stanford et al., 
2022) associations have been observed. Again, the apparent 
contradictions reported in previous research are most likely 
attributable to the methods employed. Specifically, previous studies 

FIGURE 8

Interactions between age and topology associated with EF performance. Quadratic relationships are shown between topology of all regions of the 
DMN and performance at the Flanker (A–C) and DCCS (D–F) tasks. Colors reflect the slope of the interaction in z scores, such as that cooler colors 
reflect more negative relationships whereas warmer colors reflect more positive relationships.
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mostly considered changes in topology at the whole brain level, and 
the averaging between several brain regions might have, thus, resulted 
in the confounding of results. Given that different brain regions are 
subject to age-related changes to a greater or lesser degree, and that 
averaging among them leads to the washing out of such variability, a 
different approach is to consider the networks and their 
regions individually.

In the second set of analyses, it was of interest to determine 
whether the topological properties of the FPN and the DMN were 
associated with EFs, measured with a DCCS and a Flanker task, 
differently as a function of age. Despite the well-known literature 
association between FPN and EF performance, we did not observe a 
significant association between the topology of this network and 
higher order behavior. Rather, the only significant main effect of the 
models was that of age, suggesting that performance on the Flanker 
and DCCS tasks simply improved from childhood to adulthood, 
without being mediated by FPN topology. Interestingly, these findings 
might be in line with recent multimodal evidence on properties of the 
FPN across the lifespan in explaining interindividual differences in EF 
skills, which proved that grey matter volume, more than resting state-
derived topological measures, was a better predictor of performance 
(Yao et al., 2020). Even so, a significant mediating role for such a 
measure was observed regarding age-related differences in common 
EF, but not in shifting-specific and updating-specific EF components 
(Yao et  al., 2020). As our study focused on measures of selective 
attention and cognitive flexibility, our results appear in line with this 
prior evidence, leading to the argument that the functional profile of 
the FPN might fail to show sufficient sensitivity towards such 

components. Indeed, prior studies looking at the topographical 
correlates of interindividual differences in EF also reported that 
shifting and updating-specific abilities were better predicted by 
variability in the cingulo-opercular, subcortical and ventral attention 
networks, at least in young healthy individuals (Menardi et al., 2022).

In this study, stronger association between EF performance and 
topology across the lifespan was observed for the DMN. More 
specifically, the degree of MOD of the DMN was negatively associated 
with both Flanker and DCCS performance, suggesting that decreased 
modularity in the network is associated with better performance on 
those tasks. This suggests that individuals with higher cognitive 
flexibility might benefit from more widespread information processing 
within the DMN. This first result is of particular interest because it 
suggests that a more widespread distribution of connections within 
the DMN might explain behavioural flexibility in tasks that require 
continuous dynamic switching. While this interpretation is only 
speculative, it aligns with prior literature that has linked the DMN as 
having a role in average controllability, described as the ability of a 
node—or a collection of nodes—to steer a system into a variety of 
activity states (Gu et al., 2015). That is, individuals appear to benefit 
cognitively from greater integration in the connectivity between DMN 
nodes, as measured intrinsically during rest. Flexibility at the 
behavioral level seems, hence, paired with flexibility at the neural level, 
irrespective of age.

Given that whole-network dynamics might conceal patterns that 
are specific to single components, however, the same analyses were 
replicated at a regional level, looking at the association between 
topology, age and EF. As expected, the topological properties of many 

FIGURE 9

Changes in network hubs across the lifespan. FPN and DMN network hubs are computed based on their measure of BC. For graphic purposes, only the 
hubs above 1.5 standard deviations are labelled. Nodes’ numbers refer to their parcel number inside the FPN (30 nodes) and DMN (46 nodes), 
respectively, according to the Schaefer et al. (2018). Size and color of the nodes is proportional to their measure of BC. aCC  =  anterior cingulate cortex, 
lPaHC  =  left parahippocampal cortex, ldmPFC  =  left dorsomedial prefrontal cortex, lPaCig  =  left paracingulate gyrus, rIFC  =  right inferior forntal cortex, 
rdmPFC  =  right dorsomedial prefrontal cortex, rSTG  =  right superior temporal gyrus.
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single regions forming both the FPN and the DMN were significantly 
associated with executive performance.

For what concerns the FPN, we  first observed that linear 
relationships between node topology and age were limited to the 
right hemisphere, whereas more complex, quadratic relationships 
were limited to the left hemisphere in explaining performance on 
both the Flanker and the DCCS. Prior work on hemispheric 
asymmetries of within-network connectivity has highlighted the 
frontal networks as the most sharply lateralized, with a strong effect 
of age in shaping homotopic similarities (Agcaoglu et  al., 2015). 
According to the authors, changes in laterality factors with age reflect 
the cooperative role between homotopic regions in sustaining more 
complex behaviors (Agcaoglu et al., 2015). Looking at our study, this 
is interesting as it might suggest a greater sensitivity of the left FPN 
to age changes. Its quadratic relationship to age implies a supporting 
role of these regions in EF especially at the extremes of the aging 
curve. Another interpretation is that the left lateralization of our 
quadratic effects might reflect its involvement in skills, such as 
language, that change in a quadratic fashion as a function of age. In 
support of this, prior studies have also reported that quadratic 
changes in grey matter volume peak in language cortices and are 
more prominent in the left than in the right hemisphere (Sowell et al., 
2003). However, this interpretation is only speculative. Furthermore, 
not all language skills fluctuate with age as some that are part of 
crystallized intelligence (such as reading and semantic 
representations) remain stable, or even improve, as a function of age 
(Burke and Shafto, 2011).

For the majority of FPN nodes showing a meaningful interaction 
between age and topology, it was observed that their increased 
centrality in the network was positively associated with performance 
on both the Flanker and the DCCS tasks in older adults. This pattern 
was true for both linear and quadratic effects of age on this metric. 
Given the definition of centrality in this study, we can conclude that 
older adults benefit from a FPN network that is tightly linked, so 
that communication between its nodes happens rapidly. In 
particular, higher centrality across several nodes allows transitioning 
from local information processing to global network communication 
(Oldham and Fornito, 2019). On the other hand, children seem to 
benefit from an opposite pattern (i.e., decreased centrality of FPN 
nodes). As a result, we might argue that the negative association 
seen between BC and EF performance could reflect the already 
reported evidence in the literature that children benefit from higher 
local processing of information in EF tasks, which reflects the 
progressive emergence of specialized functions (Wang et al., 2019). 
Interestingly, the relationship between centrality of FPN nodes and 
performance on the Flanker/DCCS tasks in middle-aged individuals 
appeared to be less marked, with moderate interactions in between 
the patterns observed for children and older adults. The only 
exception is represented by the observed negative interactions 
between centrality of the left IPL/PCC with Flanker and DCCS 
performance, respectively, in an opposite fashion to that observed 
in the younger and older participants. The IPL and the PCC have 
been associated with interference resolution and filtering of 
irrelevant information (Berron et al., 2015), as well as monitoring 
and regulation of neural dynamics (Leech and Smallwood, 2019), 
such that their increased centrality at the extremes of the aging 
curve might reflect a greater need for supervision by these regions 
to ensure task execution. On the contrary, optimization of those 

processes as a function of maturation, and before neurodegeneration 
occurs, might require a less central role of these regions to ensure 
efficient performance.

The main focus of this study, however, was to determine whether 
the most well-known resting state network, the DMN, could also 
be meaningfully associated with high order cognition outside of the 
scanner. As stated above, the modularity of the whole DMN was 
significantly related to Flanker and DCCS performance, but so were 
several of its anatomical components when analyzed separately. In 
particular, we observed that performance on the Flanker task was 
associated with centrality measures of the bilateral STG, left IFG, left 
SFG, right AG, and right precuneus. As for what was observed for the 
FPN, increased centrality of most of these regions was associated with 
better performance on the Flanker task in older adults, but not in 
children or middle-aged individuals. The opposite trend was instead 
observed for the left IFG, left SFG and the right precuneus, whose 
increased centrality exerted a negative effect on elderlies’ performance. 
Interestingly, such key hubs in the DMN have been reported to play 
an active role in Flanker performance during task fMRI, such that 
their activation was most prominent when the individual was required 
to inhibit an inappropriate response, namely to be most active when 
response to a stimulus was not required (Anderson et al., 2016). This 
evidence favors the conception of DMN activity as related to the 
preparedness of the individual to respond to a stimulus more in 
general (Anderson et al., 2016), which again falls with the suggested 
role of the DMN to mediate the fast transitioning toward a multitude 
of states (Gu et al., 2015). This aligns with the interpretation that the 
centrality of DMN hubs could mediate its ability to integrate 
information (Buckner et  al., 2009) and help in modulating the 
promptness of this system to disengage from a resting state condition 
and allow task-relevant activity to occur, or the opposite, hence 
mediating performance outside the scanner. As DMN undergoes 
continuous progressive increased connectivity in its posterior-to-
anterior axis during childhood (Rebello et al., 2018; Ricardo Sato et al., 
2014), followed by decreased connectivity in later age (Vidal-Piñeiro 
et al., 2014), it is not surprising that those older adults showing the 
highest centrality of these hubs, indicative of more preserved 
connectivity, are the ones who perform better. Furthermore, given the 
reported role of these regions in contextual information processing 
(Ames et al., 2015; Anderson et al., 2016), we argue that the centrality 
of DMN nodes might influence how the information from the 
environment is used by the individual. In particular, the centrality of 
these regions might modulate the amount of information coming 
from the environment that is used by the individual to aid in the 
execution of the task. The interaction that we  observed with age 
suggests that high centrality is beneficial in the older individuals, such 
that they might rely more on contextual information to direct their 
attention. On the other hand, this might represent a source of noise in 
children, such that the excessive centrality of these regions and the 
related amount of contextual information that is processed could 
be detrimental to their performance. An alternative hypothesis is that 
the preferred reduced centrality in children might simply be the result 
of diminished connectivity between DMN nodes, typical of this age 
group (Rebello et al., 2018; Ricardo Sato et al., 2014). This would be in 
line with the observed negative correlation between DMN connectivity 
strength and DCCS performance (see Supplementary Figure S5), for 
which lower connectivity values, driving the negativity of the 
correlation, are observed in the younger counterpart of the sample.
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Aside from centrality measures, we also observed that increased 
clusterization and path length of the right AG and right precuneus 
were also positively correlated with Flanker performance in children 
and older adults, but negatively in middle-aged individuals. Both 
measures suggest a favorable impact of local information processing 
on performance of children and older adults, but not in middle-aged 
individuals. The higher local processing seen in children can 
be interpreted with the “local to distributed” organization principles 
(Fair et  al., 2009), which suggests that communities of nodes in 
children emerge from simple anatomical proximity of regions, which 
will then evolve in a functionally distributed information processing 
as a result of brain maturation and experience (Fair et al., 2009). As 
the brain ages further, the distributed information processing 
progresses to the extreme, resulting in the loss of brain segregation in 
aging, which has been found predictive of long-term cognitive 
functioning in the older adults (Chan et al., 2014). In this study, older 
adults with increased local processing (higher CC and CP) in the right 
AG and the right cuneus were observed to have higher performance 
at the Flanker task, which might suggest they displayed neural patterns 
closer to a younger counterpart, resulting in more favorable 
cognitive performance.

Notably, similar topological patterns were observed in association 
with DCCS performance as well, with an even greater number of 
DMN nodes significantly associated with cognitive flexibility as a 
function of age: the left pMTG, left SFG, left PCC, left STG and the 
bilateral precuneus. Compared to the FPN, the DMN seemed to show 
a left predominance of the regions whose topological properties 
showed meaningful interactions with age and DCCS performance. 
These results appear in line with prior studies from the literature 
suggesting a left lateralization of within-network connectivity of the 
DMN (Agcaoglu et al., 2015) and of cognitive flexibility (Kim et al., 
2012; Yin et al., 2015). In particular, criterion setting, central in DCCS 
tasks, has been associated with left PFC involvement (Vallesi, 2012, 
2021), which embeds the left SFG reported in this study. As for what 
concerns the other regions in the DMN that emerged as significant, 
namely the left pMTG and the left PCC, both have been reported to 
cooperate in ensuring optimal execution in high demanding cognitive 
control tasks (Cocchi et al., 2013; Davey et al., 2016). Furthermore, 
given their role in the integration of multisensory information and in 
the coordination of activity among specialized systems (Cocchi et al., 
2013; Davey et al., 2016), their role in high order behavior has been 
extensively reported, such as in creative thinking (Beaty et al., 2015; 
Davey et al., 2016; Fink et al., 2010; Leech and Smallwood, 2019).

Overall, the functional activity of a widespread set of regions in 
the inferior frontal junction and the posterior parietal cortex has been 
reliably found as part of a meta-analytically derived set of regions 
involved in switching-related tasks (Kim et al., 2012). We provide 
support for these prior studies by highlighting how such switch-
related meta-regions, carefully reported based on an extensive review 
of task-evoked fMRI studies (Kim et al., 2012), can in fact be found 
even when looking solely at their connectivity profiles at rest.

Lastly, we observed that an easier communication between the left 
pMTG to the rest of the DMN (lower CP) ensured better performance 
in children and middle-aged adults, with minimum positive effect on 
the older adults instead. These results mirror the functional refinement 
reported to occur across the lifespan, with a progressive increase in 
integration measures until the age of 40 (Edde et al., 2021). In contrast 

to what was observed for the Flanker task, for which the centrality of 
DMN nodes was a critical factor, here its impact appeared modest but 
with the same trends; that is, with a particular positive effect on 
cognitive flexibility performance in the older adults.

Based on the observed patterns, we  can conclude that EF 
performance across the lifespan seems to rely on local information 
processing in children, reflective of the emergence of specialization 
with the brain network. As the individual matures, EF performance 
starts to depend more on the integration between networks’ nodes, 
possibly reflective of a more efficient parallel processing of the 
information. As the brain ages further, the distributed information 
processing progresses to the extreme, resulting in the loss of brain 
segregation in aging and the possible presence of compensatory 
mechanisms. Of interest, those topological changes seem to be more 
marked in the DMN, which might explain its tighter link to 
individual performance.

We wish to conclude by discussing two additional results in our 
analyses. First, despite the extensive number of studies that have 
investigated the FPN-DMN interplay in explaining high cognitive 
functioning (Cocchi et al., 2013; Hearne et al., 2015, 2016; Menon and 
D’Esposito, 2021; Shi et al., 2018), we decided to test the association 
between the diversity of their intermodular connections with EF 
performance. We hence observed that the higher the average amount 
of FPN-DMN connections, rather than FPN-FPN connections, the 
better the performance on the Flanker task. This appears in line with 
the suggested “gate-keeping role” of the FPN in mediating goal-
directed cognition by orchestrating the dynamic interplay between 
other resting state networks, such as the DMN (Spreng et al., 2013). In 
particular, the participatory role of FPN nodes towards the DMN 
appears beneficial in selective attention, probably by favoring the 
integration of information between the two networks (Spreng 
et al., 2013).

Second, head motion often appeared as a significant main factor 
in our analyses, suggesting that individuals who moved less inside the 
scanner had a better cognitive performance as assessed by the Flanker 
and DCCS tasks. Despite the very low level of movement in the sample 
(mean = 0.2 mm, std. = 0.09 mm), these results replicate previous 
findings (Bolton et al., 2020; Hausman et al., 2022) on how even small 
head movements (in putatively clean sets of timepoints) carry 
behaviorally relevant information. Nevertheless, none of the 
interactions between our graph theory measures and head movement 
were significantly associated with task performance, suggesting that 
motion exerts a stand-alone effect in the analyses.

5 Limitations and future directions

While our study addressed an important gap in the literature by 
focusing on within-network functional connectivity of the DMN in 
association with EF abilities, a few limitations should be noted. First, 
regions of the FPN and DMN were defined with the Schaefer et al. (2018). 
However, a general consensus is lacking in terms of which brain 
parcellation system is optimal for brain network construction in both 
adults and children (Han et  al., 2018). Because the final topological 
properties of a network are ultimately biased by the method chosen, 
future studies might consider employing different parcellation schemes 
to determine if the present findings are replicable. For instance, prior 

https://doi.org/10.3389/fpsyg.2024.1441584
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Menardi et al. 10.3389/fpsyg.2024.1441584

Frontiers in Psychology 18 frontiersin.org

studies found meaningful associations between interindividual differences 
in shifting-specific abilities and the cingulo-opercular network, instead of 
the FPN, which is represented in the parcellation of Power et al. (2011) 
but not in that of Schaefer et al. (2018). Because we did not investigate the 
association between topology, age and EF in other resting state networks 
outside of the FPN and DMN, we cannot exclude that other networks 
might show significant associations with high order behavior. However, 
this aspect has already been covered by several studies in the literature that 
addressed between-network connectivity changes in respect to EF, 
whereas none selectively looked at the roles of the FPN and DMN as in 
this study.

In this regard, it has been reported that the extent of modular 
reorganization with age can cause the DMN and FPN to be identified as 
a single module in the older population (Geerligs et al., 2015). This and 
other findings on the intra- and inter-individual variability of the 
functional connectome (Laumann et al., 2015) might lead to questioning 
the appropriateness of employing group-derived atlases in lifespan 
studies, since these parcellations are usually derived using samples of 
young adults between 18 and 35 years of age. A potential solution stands 
in the use of individual-specific parcellations, allowing ROIs boundaries 
to change across individuals to better reflect their true functional and 
structural correspondence (Chong et al., 2017; Kong et al., 2019). Despite 
the fact that those approaches are proving to be highly advantageous, to 
the best of our knowledge, no study has yet attempted to apply this 
methodology to the parcellation of much younger or older brains, where 
the interindividual variability in functional connectivity may be even 
greater. As such, even recent work on normative models depicting lifespan 
trajectory changes in functional connectivity has necessarily relied on the 
use of group-level parcellations (Rutherford et al., 2023). Future studies 
are needed to develop reliable cortical parcellations across the lifespan.

Furthermore, HCP Lifespan data have been preprocessed based 
on the existing HCP preprocessing pipelines, which involve 
normalization of the volumetric data by means of nonlinear 
coregistration to the MNI template, while the surfaces are mapped 
to the standard fs_LR_32k space using spherical registration and 
surface downsampling (Glasser et al., 2013). This might cause a bias 
in the greater amount of warping necessary to bring very young/old 
brains in the space of a common template built from a population of 
young adults. The process of normalizing the data to a common 
template in lifespan studies represents indeed a technical challenge 
when trying to harmonize data across age groups (Harms et al., 
2018). On the positive side, cortical surface registration that relies 
on areal features, used in the HCP multimodal pipeline for data 
alignment, is far superior to traditional volume-based coregistrations 
(Coalson et  al., 2018) and might therefore help improve spatial 
localization across the lifespan. It has also been reported that brain 
volume reaches 90% of the adult brain size by the age of 6 (Stiles and 
Jernigan, 2010) and the head size of children >7 years of age is 
sufficiently similar to that of adults to allow the same head coil to 
be used for MRI data acquisition (Harms et al., 2018). On the other 
hand, a smaller pediatric coil was used for the acquisition of data in 
5–7 years old participants (Harms et al., 2018). As the present study 
only analyzed data of individuals ≥10 years of age, we believe that the 
risk of bias in structural and functional normalization across age 
groups was reduced as much as possible, albeit still not being as 
optimal as using age-specific templates.

While several common frameworks of the EF system assume that its 
core components are working memory, selective attention, and cognitive 

flexibility (Diamond, 2012; Miyake et  al., 2000), the present study 
considered only selective attention and cognitive flexibility. Given that 
working memory is intertwined in the ability to select attention and to 
shift focus, it would be  critical to consider how working memory 
performance alone might be associated with the functional topology of 
the DMN. It is also worth mentioning that the models’ accuracy in 
explaining EF performance in this study emerged as moderate, in line 
with the known small effect size typical of brain-behavior associations 
studies (Marek et  al., 2022). Aside from the issue of sample size, 
granularity mismatch between neuroimaging and cognitive measures, as 
well as insufficient phenotypic complexity/resolution and measurement 
non variance in cognitive testing can limit even further the magnitude of 
brain-behavior associations (Tiego and Fornito, 2022). As such, future 
studies should consider a more in-depth cognitive evaluation to overcome 
the lack of sufficiently complex and exhaustive measures of behaviour that 
often characterize large sample studies.

Our study made use of data coming from the HCP Lifespan 
database, which merges the Developmental and the Aging projects 
(Harms et al., 2018). As such, it does not include participants between 
21 to 36 years of age, which were extensively studied in the HCP Young 
Adult dataset (Van Essen et al., 2013).

Lastly, our study relies on a cross-sectional design investigation, 
which can be  considered suboptimal compared to longitudinal 
approaches. As such, we are limited on the type of inferences we can 
draw from our results, which remain highly correlational and not 
causal in nature. Longitudinal scan acquisitions are now being 
performed for some big cohorts (e.g., UK Biobank) and will hopefully 
help bridge the gap in brain-behavior association studies across the 
lifespan in the future.

6 Conclusion

The results of this study point to a promising resting state neural 
basis of the EF system. In particular, we  demonstrate that the 
topological organization of both the FPN and the DMN are associated 
with high order behavior outside of the scanner, and suggest a tight 
link between neuro-functional and cognitive-behavioral efficiency. 
Interestingly, our results also suggest that DMN topology might 
be more sensitive to age-related changes, as well as more sensitive to 
a hemispheric specificity of cognitive flexibility, as evinced from the 
reported left-hemisphere dominance of regions whose topology 
meaningfully interacted with age and DCCS performance. Similarly, 
both the topology of the whole DMN, as well as that of its single 
components, were associated with EF performance, whereas the 
topological properties of only single regions within the FPN were 
related to EF. Because the DMN is present and matures earlier in life 
than the FPN, and because it can be more easily measured in otherwise 
challenging populations (e.g., pediatric individuals, older adults, or 
neurologically impaired patients), we  argue that the study of its 
topology in association with higher order cognition across the lifespan 
might be of greater interest compared with other resting state networks.
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