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Introduction

Neuropsychological testing can inform practitioners and scientists about brain-

behavior relationships that guide diagnostic classification and treatment planning

(Donders, 2020). However, not all examinees remain engaged throughout testing and

some may exaggerate or feign impairment, rendering their performance non-credible

and uninterpretable (Roor et al., 2024). It is therefore important to regularly assess the

validity of data obtained during a neuropsychological evaluation (Sweet et al., 2021).

However, performance validity assessment (PVA) is a complex process. Practitioners must

know when and how to use multiple performance validity tests (PVTs) while accounting

for various contextual, diagnostic, and intrapersonal factors (Lippa, 2018). Furthermore,

inaccurate PVA can lead to erroneous and potentially harmful judgments regarding an

examinee’s mental health and neuropsychological status. Although the methods used to

address these complexities in PVA are evolving (Bianchini et al., 2001; Boone, 2021),

improvement is still needed.

Modern digital technologies have the potential to significantly improve PVA, but such

technologies have not received much attention. Most PVTs used today are pencil-and-

paper tests developed several decades ago (Martin et al., 2015), and digital innovations have

largely been confined to computerized validity testing (see Table 1). Meanwhile, other areas

of digital neuropsychology have rapidly expanded. Technologies can now capture high-

dimensional data conducive to precision medicine (Parsons and Duffield, 2020; Harris

et al., 2024), and this surge in digital assessment may soon become the rule rather than

exception for neuropsychology (Bilder and Reise, 2019; Germine et al., 2019). If PVA does

not keep pace with other digital innovations in neuropsychology, many validity tests and

methods may lose relevance.

This paper aims to increase awareness of how digital technologies can improve PVA

so that researchers within neuropsychology and relevant organizations have a clinically

and scientifically meaningful basis for transitioning to digital platforms. Herein, I describe

five ways in which digital technologies can improve PVA: (1) generating more informative

data, (2) leveraging advanced analytics, (3) facilitating scalable and sustainable research,

(4) increasing accessibility, and (5) enhancing efficiencies.

Generating more informative data

Generating a greater volume, variety, and velocity of data core and ancillary to validity

testing may improve the detection of non-credible performance. With these data, scientists

and practitioners can better understand the dimensionality of performance validity and
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assess it effectively, especially in cases without clear evidence of

fabrication. However, capturing sundry data in PVA is challenging,

as practitioners are often limited to a few PVTs throughout

an evaluation that is completed in a single snapshot of time

(Martin et al., 2015). Furthermore, many PVTs index redundant

information because they have similar detection paradigms that

generate only one summary cut-score (Boone, 2021). Digital

technologies can address these issues by capturing additional

aspects of performance validity without increasing time or effort.

Digitally recording the testing process is one way to generate

more diverse data points than a summary score. Some process-

based metrics are already employed in PVA, including recording

response consistency and exaggeration across test items (Schroeder

et al., 2012; Finley et al., 2024a). For example, Leese et al. (2024a)

found that using a digital software to assess discrepancies between

item responses and correct answers improved the detection of

non-credible performance. Using digital tools to objectively and

unobtrusively record response latencies and reaction times during

testing is another useful process-based approach (Erdodi and

Lichtenstein, 2021; Rhoads et al., 2021). Examinees typically

cannot maintain consistent rates of slowed response latencies

across items when attempting to feign impairment (Gutiérrez

and Gur, 2011). Various software can record these process-based

scores (e.g., item-level indices of response time, reliable span,

and exaggeration magnitude) in most existing tests if they are

migrated to tablets/computers (Kush et al., 2012). Recording both

the process and outcome (summary scores) of test completion can

index dimensions of performance validity across and within tests.

Technologies can also record biometric data ancillary to validity

testing. Biometrics including oculomotor, cardiovascular, body

gesture, and electrodermal responses are indicators of cognitive

load and are associated with deception (Ayres et al., 2021).

Deception is believed to increase cognitive load because it requires

more complex processing to falsify a response (Dinges et al., 2024).

Although deception is different from non-credible performance,

neuroimaging research suggests non-credible performance can be

indicative of greater cognitive effort (Allen et al., 2007). For this

reason, technologies like eye-tracking have been used to augment

PVA (Braw et al., 2024). These studies are promising, but other

avenues within this literature have yet to be explored due to

technological limitations. Fortunately, many technologies now

possess built-in cameras, accelerometers, gyroscopes, and sensors

that “see,” “hear,” and “feel” at a basic level, and may be embedded

within existing PVTs to record biometrics.

Technologies under development for cognitive testing may also

provide informative data that has not yet been linked to PVA.

For example, speech analysis software for verbal fluency tasks

(Holmlund et al., 2019) could identify non-credible word choice

or grammatical errors. Similarly, digital phenotyping technologies

may identify novel and useful indices during validity testing, such

as keystroke dynamics (e.g., slowed/inconsistent typing; Chen et al.,

2022) embedded with PVTs requiring typed responses. These are

among many burgeoning technologies that can generate higher

dimensional data needed for robust PVA without adding time

or labor. However, access to a greater range and depth of data

requires advanced methods to effectively and efficiently analyze

the data.

Leveraging advanced analytics

Fortunately, technologies can leverage advanced analytics to

rapidly and accurately analyze a large influx of digital data in real

time. Although several statistical approaches are described within

the PVA literature (Boone, 2021; Jewsbury, 2023), machine learning

(ML) and item response theory (IRT) analytics may be particularly

useful for analyzing large volumes of interrelated, nonlinear, and

high-dimensional data at the item level (Reise and Waller, 2009;

Mohri et al., 2012).

Not only can these approaches analyze more complex data

but they can also improve the development and refinement of

PVTs relative to classical measurement approaches. For example,

person-fit statistics is an IRT approach that has been used to

identify non-credible symptom reporting in dichotomous and

polytomous data (Beck et al., 2019). This approach may also

improve embedded PVTs by estimating the extent to which each

item-level response deviates from one’s true abilities (Bilder and

Reise, 2019). Scott et al. (2023) found that using person-fit statistics

helped embedded PVTs detect subtle patterns of non-credible

performance. IRT is especially amenable to computerized adaptive

testing, which adjusts each item’s difficulty based on one’s response.

Computerized adaptive testing systems can create shorter and

more precise PVTs with psychometrically equivalent alternative

forms (Gibbons et al., 2008). These systems can also detect careless

responding based on unpredictable error patterns that deviate from

normal difficulty curves. Detecting careless responding may be

useful for PVTs embedded within digital self-paced continuous

performance tests (e.g., Nicholls et al., 2020; Berger et al., 2021).

Other IRT approaches can improve PVTs by scrutinizing item

difficulty and discriminatory power and identifying culturally

biased items. For example, differential item functioning is an IRT

approach that may identify items on English-verbally mediated

PVTs that are disproportionately challenging for those who

do not speak English as their primary language, allowing for

appropriate adjustments.

ML has proven useful in symptom validity test development

(Orrù et al., 2021) and may function similarly for PVTs. Two

studies recently investigated whether supervised ML improves

PVA (Pace et al., 2019; Hirsch et al., 2022). Pace et al.

(2019) found that a supervised ML model trained with various

features (demographics, cognitive performance errors, response

time, and a PVT score) discriminated between genuine and

simulated cognitive impairment with high accuracy. Using similar

features, Hirsch et al. (2022) found that their supervised

models had moderate to weak prediction of PVT failure in

a clinical attention-deficit/hyperactivity disorder sample. No

studies have used unsupervised ML for PVA. It is possible

that unsupervised ML could also identify groups of credible

and non-credible performing examinees using relevant factors

such as PVT scores, litigation status, medical history, and

referral reasons, without explicit programming. Software can

be developed to extract data for the ML via computerized

questionnaires or electronic medical records. Deep learning, a

form of ML that processes data using multiple dimensions,

may also detect complex and anomalous patterns indicative

of non-credible performance. Deep learning may be especially
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TABLE 1 Existing digital performance validity tests and methods.

Material-specificity Performance validity test/method References

Memory-focused freestanding PVTs Memory integrated language test (MIL) Finley et al., 2024b; Leese et al., 2024b

Coin in hand–extended version Daugherty et al., 2021

Inventory of problems – memory (IOP-M) Giromini et al., 2020; Erdodi et al., 2024

DETECTS Paulo and Albuquerque, 2019

Computerized forced-choice test (CFCT) Gutiérrez and Gur, 2011

Medical symptom validity test (MSVT) Green, 2004

Word memory test (WMT) Green, 2003

Computerized test of memory malingering (TOMM) Rees et al., 1998

Computerized assessment of response bias (CARB) Allen et al., 1997

Tests of neuropsychological malingering (TNM) Pritchard and Moses, 1992

Non-memory-focused freestanding PVTs Making change test (MCT) Finley et al., 2024b; Leese et al., 2024a

The shell game task∗ Bryant et al., 2023

Multi-level pattern memory test (MPMT) Omer and Braw, 2021

Tests of attentional distraction (TOAD) Morey, 2019

Nonverbal medical symptom validity test (NV-MSVT) Green, 2008

Portland digit recognition test-computerized Rose et al., 1995

Victoria symptom validity test (VSVT) Slick et al., 1995

Forced choice test of nonverbal ability (FCTNV) Frederick and Foster, 1991

Multi-digit memory test (MDMT) Bolter and Niccolls, 1991

Mixed freestanding PVTs Pediatric performance validity test suite (PdPVTS) McCaffrey et al., 2020

Memory validity profile (MVP) Brooks and Sherman, 2019; Brooks et al., 2019

Embedded PVTs/methods Penn computerized neurocognitive battery (PennCNB) Scott et al., 2023

National Institutes of Health Toolbox R© (NIHTB) Abeare et al., 2021

MOXO-d-continuous performance test (CPT) Berger et al., 2021; Winter and Braw, 2022

Conners continuous performance test (CPT; Versions 2

and 3)

Ord et al., 2010; Erdodi et al., 2014; Shura et al., 2016; Sharland

et al., 2018; Lichtenstein et al., 2019; Scimeca et al., 2021; Finley

et al., 2023a,b; Robinson et al., 2023;

Test of variables of attention (TOVA) Leark et al., 2002; Marshall et al., 2010; Nicholls et al., 2020

Automated neuropsychological assessment metrics

(ANAM) performance validity index

Roebuck-Spencer et al., 2013; Meyers et al., 2022

Immediate post-concussion assessment and cognitive

testing (ImPACT)

Erdal, 2012; Schatz and Glatts, 2013; Lovell, 2015; Siedlik et al.,

2015; Gaudet and Weyandt, 2017; Higgins et al., 2017;

Manderino and Gunstad, 2018; Raab et al., 2020

CNS vital signs battery Brooks et al., 2014

NeuroTrax battery Hegedish et al., 2012; Bar-Hen et al., 2015

∗Presented as a professional conference poster, not a published article.

useful for analyzing response sequences over time (e.g., non-

credible changes in performance across repeat medico-legal

evaluations). Furthermore, deep-learning models may be effective

at identifying inherent statistical dependencies and patterns of non-

credible performance, and thus generating expectations of how

genuine responses should appear. Combining these algorithms

with other statistical techniques that assess response complexity

and highly anomalous responses (e.g., Lundberg and Lee, 2017;

Parente and Finley, 2018; Finley and Parente, 2020; Orrù et al.,

2020; Mertler et al., 2021; Parente et al., 2021, 2023; Finley

et al., 2022; Rodriguez et al., 2024), may increase the signal

of non-credible performance. These algorithmic approaches can

improve as we better understand cognitive phenotypes and what

is improbable for certain disorders using precision medicine

and bioinformatics.

Facilitating scale and sustainability

To optimize the utility of these digital data, technologies can

include point-of-testing acquisition software that automatically
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transfers data to cloud-based, centralized repositories. These

repositories facilitate sustainable and scalable innovations by

increasing data access and collaboration among PVA stakeholders

(see Reeves et al., 2007 and Gaudet and Weyandt, 2017 for

large-scale developments of digital tests with embedded PVTs).

Multidisciplinary approaches are needed to make theoretical and

empirical sense of the data collected via digital technologies

(Collins and Riley, 2016). With more comprehensive and

uniform data amenable to data mining and deep-learning

analytics, collaborating researchers can address overarching issues

that remain poorly understood within research. For example,

with larger centralized data researchers can directly evaluate

different statistical approaches (e.g., chaining likelihood ratios

vs. multivariable discriminant function analysis, Bayesian model

averaging, or logistic regression) as well as the joint validity of

standardized test batteries (Davis, 2021; Erdodi, 2023; Jewsbury,

2023). Such data and findings could also help determine

robust criterion-grouping combinations, given that multiple PVTs

assessing complementary aspects of performance across various

cognitive domains may be necessary for a strong criterion-

grouping combination (Schroeder et al., 2019; Soble et al.,

2020). Similarly, researchers could expand upon existing decision-

making models (e.g., Rickards et al., 2018; Sherman et al., 2020)

by using these comprehensive data to develop algorithms that

automatically generate credible/non-credible profiles based on the

type and proportion or number of PVTs failed in relation to

various contextual and diagnostic factors, symptom presentations,

and clinical inconsistencies (across medical records, self- and

informant-reports, or behavioral observations). A greater range

and depth of data may further help elucidate the extent to which

several putative factors—such as bona fide injury/disease, normal

fluctuation and variability in testing, level of effort (either to

perform well or to deceive), and symptom validity, among others—

are associated with performance validity (Larrabee, 2012; Bigler,

2014). Understanding these associations could help identify the

mechanisms underlying non-credible performance.

Collaboration is especially needed for basic and applied

sciences to coalesce unique aspects of PVA that have been

studied independently, such as integrating neuropsychology and

neurocognitive processing theories to develop more sophisticated

stimuli/paradigms (Leighton et al., 2014). For example, less

applied scientific models, such as memory familiarity vs. conscious

recollection theories, may be applied to clinically available PVTs

to reduce false-positive rates in certain neurological populations

(Eglit et al., 2017). Similar areas of cognitive science have also

shown that using pictorial or numerical stimuli (vs. words) across

multiple learning trials can reduce false-positive errors in clinical

settings (Leighton et al., 2014). Furthermore, integrating data in

real time into these repositories offers a sustainable and accurate

way of estimating PVT failure base rates and developing cutoffs

accordingly. Finally, as proposed by the National Neuropsychology

Network (Loring et al., 2022), a centralized repository for digital

data that is backward-compatible with analog test data can provide

a smooth transition from traditional pencil-and-paper tests to

digital formats. These repositories (including those curated via

the National Neuropsychology Network) thus enable sustainable

innovation by supporting continuous incremental refinement of

PVTs over time.

Increasing accessibility

As observed in other areas of neuropsychology (Miller and

Barr, 2017), digital technologies can offer more accessible PVA.

Specifically, web-based PVTs can help access underserved and

geographically restricted communities, but with the understanding

that disparities in digital technology may also exist. Although

more web-based PVTs are needed, not every PVT requires

digitization for telehealth (e.g., Reliable Digit Span; Kanser et al.,

2021; Harrison and Davin, 2023). Digital PVTs can also increase

accessibility in primary care settings where digital cognitive

screeners are being developed for face-to-face evaluations and may

be completed in distracting, unsupervised environments (Zygouris

and Tsolaki, 2015). Validity indicators could be embedded within

these screeners rather than creating new freestanding PVTs. The

National Institutes of Health Toolbox R© (Abeare et al., 2021)

and Penn Computerized Neurocognitive Battery (Scott et al.,

2023) are well-established digital screeners with embedded PVTs

that offer great promise for these evaluations. In primary care,

embedded PVTs could serve as preliminary screeners for atypical

performance that warrants further investigation. Digital PVTs

may also increase accessibility in research settings. Although it

is not highly likely research volunteers would deliberately feign

impairment, they may lose interest, doze off, or rush through

testing (An et al., 2017), especially in dementia-focused research

where digital testing is common. Some digitally embedded PVTs

have been developed for ADHD research (Table 1) andmay be used

in other research focused on digital cognitive testing (Bauer et al.,

2012).

Enhancing e�ciencies

Finally, the application of digital technologies introduces

new efficiencies; in PVA, they hold the promise of improved

standardization and administration/scoring accuracy.

Technologies can leverage automated algorithms to reduce time

spent on scoring and routine aspects of PVA (e.g., finding/adjusting

PVT cutoffs according to various contextual/intrapersonal

factors). Automation would allow providers to allocate more

time to case conceptualization and responding to (rather

than detecting) validity issues. Greater efficiencies in PVA

translate into greater cost-efficiencies as well as reduced

collateral expenses for specialized training, testing support,

and materials (Davis, 2023). Further, digital PVTs can

automatically store, retrieve, and analyze data to generate

multiple relevant scores (e.g., specificity, sensitivity, predictive

power adjusted for diagnostic-specific base rates, false-positive

estimates, and likelihood ratios or probability estimates for

single/multivariable failure combinations). Automated scoring

will likely become increasingly useful as more PVTs and data

are generated.

Limitations and concluding remarks

By no means an exhaustive review, this paper describes five

ways in which digital technologies can improve PVA. These
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improvements can complement rather than replace the uniquely

human aspects of PVA. Thus, the upfront investments required

to transition to digital approaches are likely justifiable. However,

other limitations deserve attention before making this transition.

As described elsewhere (Miller and Barr, 2017; Germine et al.,

2019), limitations to digital assessment may include variability

across devices, which can impose different perceptual, motor,

and cognitive demands that affect the reliability and accuracy

of the tests. Variations in hardware and software within the

same class of devices can affect stimulus presentation and

response (including response latency) measurement. Individual

differences in access to and familiarity with technology may further

affect test performance. Additionally, the rapid advancement in

technologies suggests that hardware and software can quickly

become obsolete. A large influx of data and the application of

“black box” ML algorithms and cloud-based repositories also

raises concerns regarding data security and privacy. Addressing

these issues and implementing digital methods into practice

or research would require substantial technological and human

infrastructure that may not be attainable in certain settings (Miller,

2019). Indeed, the utility of digital assessments likely depends on

the context in which they are implemented. For example, PVA

is critical in forensic evaluations but the limitations described

above could challenge compliance with the evolving standards

for the admissibility of scientific evidence in these evaluations.

Further discussion of these limitations along with the logistical

and practical considerations for a digital transition is needed

(for further discussion, see Miller, 2019; Singh and Germine,

2021). Finally, other digital opportunities, such as using validity

indicators with ecological momentary assessment and virtual

reality technologies, merit further discussion. Moving forward,

scientists are encouraged to expand upon these digital innovations

to ensure that PVA evolves alongside the broader landscape of

digital neuropsychology.
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