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Emotion recognition plays a crucial role in understanding decision-making

processes, as emotional stimuli significantly influence individuals’ choices.

However, existing emotion recognition systems face challenges in handling

complex natural environments, diverse emotional expressions, and limited

data availability, hampering their e�ectiveness and widespread adoption. To

address these issues, we propose an Enhanced GhostNet with Transformer

Encoder (EGT) model that leverages deep learning techniques for robust

emotion recognition through facial expressions. The EGT model integrates

GhostNet’s e�cient feature extraction, the Transformer’s ability to capture global

context, and a dual attention mechanism to selectively enhance critical features.

Experimental results show that the EGTmodel achieves an accuracy of 89.3% on

the RAF-DB dataset and 85.7% on the A�ectNet dataset, outperforming current

state-of-the-art lightweightmodels. These results indicate themodel’s capability

to recognize various emotional states with high confidence, even in challenging

and noisy environments. Our model’s improved accuracy and robustness in

emotion recognition can enhance intelligent human-computer interaction

systems, personalized recommendation systems, and mental health monitoring

tools. This research underscores the potential of advanced deep learning

techniques to significantly improve emotion recognition systems, providing

better user experiences and more informed decision-making processes.

KEYWORDS

emotion recognition, decision-making, GhostNet, Transformer Encoder, dual attention

mechanism, human-computer interaction

1 Introduction

The role of emotional stimuli in the decision-making process is a significant research

area in psychology and cognitive science (Juárez-Varón et al., 2023). Emotions influence

not only individuals’ daily life decisions but also play a crucial role in fields such

as business, medicine, and human-computer interaction. Understanding how emotions

influence decision-making behavior through facial expressions is of great importance

for enhancing the intelligence and effectiveness of various intelligent systems (Zhao

et al., 2022). However, current emotion recognition and decision prediction systems

still face numerous challenges when dealing with complex natural environments. The

diversity of emotional expressions, environmental interference, data scarcity, and the

subjectivity and complexity of emotional states are pressing issues that need to be

addressed in current research. These challenges limit the widespread adoption and

effectiveness of emotion recognition systems in practical applications (Morelli et al., 2022).
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In recent years, deep learning technology has made significant

progress in image processing and pattern recognition. Its powerful

feature extraction and representation capabilities have made

deep learning one of the core methods for facial expression

recognition research. Convolutional Neural Networks (CNNs)

have shown outstanding performance in image classification and

feature extraction. Through multi-layer convolution and pooling

operations, they can effectively extract distinguishable emotional

features (Zhou et al., 2022). Recurrent Neural Networks (RNNs)

and their variants, Long Short-Term Memory Networks (LSTMs),

have demonstrated strong capabilities in handling time-series data,

making them suitable for capturing the dynamic characteristics

of emotions over time (Elliott et al., 2023). Additionally, the

recently emerged Transformer models, which capture global

information through self-attention mechanisms, have excelled in

many tasks (Singh et al., 2022). These technical advantages of

deep learning models provide unique benefits in handling complex

emotional data and improving the accuracy and robustness of

emotion recognition.

The application of deep learning technology in the field

of facial expression recognition has not only improved the

accuracy of emotion recognition but also promoted in-depth

research on the relationship between emotions and decision-

making behavior. For instance, emotion classification models can

assist in predicting users’ decision tendencies under different

emotional states, optimizing the responsiveness of personalized

recommendation systems and intelligent interaction systems (Ge

et al., 2022). These advancements are particularly beneficial

in practical applications such as human-computer interaction

(HCI) and mental health monitoring. In HCI, accurate emotion

recognition can facilitate more natural and responsive interactions,

improving user experience in systems like virtual assistants

and interactive robots. In mental health monitoring, emotion

recognition systems can be used to detect early signs of emotional

distress or mental health issues, providing timely interventions

and personalized support. Understanding the impact of emotions

on the decision-making process can also be applied to mental

health monitoring and intervention systems, helping to detect and

intervene in potential psychological issues promptly (Bisogni et al.,

2022). Deep learning technology, through its end-to-end learning

approach, reduces dependence on manual feature engineering,

enhancing the automation level of models. It can handle large

amounts of unstructured data such as images, videos, and audio,

making it suitable for complex and variable natural environments

(Umer et al., 2022). By extracting multi-level features and adaptive

optimization of deep learning networks, deep learning surpasses

traditional methods in the accuracy and robustness of emotion

recognition. In conclusion, deep learning technology provides

powerful tools for facial expression recognition in the study of

emotional stimuli and decision-making mechanisms. It overcomes

many limitations of traditional methods in feature extraction and

data processing, driving rapid development in related research

fields. In the future, facial expression recognition systems are

expected to have broader applications in fields such as HCI and

healthcare, contributing to improved interaction and mental health

monitoring. In the future, with the continuous advancement of

deep learning technology and the diversification of data acquisition,

facial expression recognition systems will play a more significant

role in more application scenarios, further revealing the profound

impact of emotions on the decision-making process.

In recent years, significant progress has been made in the

study of emotion recognition and decision-making behavior, with

many studies dedicated to exploring the impact of facial expression

recognition on decision-making processes. For instance, one study

utilized Convolutional Neural Networks (CNN) to recognize facial

expressions and examined the influence of emotions on consumer

purchasing decisions. This study, set against the backdrop of e-

commerce platforms aiming to optimize recommendation systems

by analyzing users’ emotional states to boost sales, employed a

Deep CNN model, specifically the VGG-16 model, trained and

tested on a large facial expression dataset (Gupta et al., 2023).

The goal was to provide personalized product recommendations

through real-time emotion recognition. The results indicated an

emotion recognition accuracy of 85%, significantly enhancing the

click-through and conversion rates of the recommendation system.

However, the study noted a decline in recognition accuracy in noisy

environments, affecting the stability of practical applications.

Another related study focused on utilizing Long Short-

Term Memory Networks (LSTM) to capture the dynamic impact

of emotional changes on decision-making processes (Febrian

et al., 2023). This study, set against the backdrop of investment

decisions in financial markets, aimed to predict market trends by

analyzing investors’ emotional fluctuations. The study employed

an LSTM model combined with an emotion classifier to model

and predict investors’ emotional changes under different market

conditions. The objective was to provide more accurate market

forecasts and investment advice by capturing the time-series

characteristics of emotional fluctuations. Experimental results

showed a 15% improvement in prediction accuracy in volatile

market environments compared to traditional methods. However,

the study highlighted the challenges of using LSTM models

in terms of computational complexity, which limited their

applicability in real-time scenarios. Additionally, another study

introduced Generative Adversarial Networks (GAN) to enhance

the diversity of emotion recognition data, aiming to improve the

generalization ability of models (Guo et al., 2023). Set in the

field of affective computing, this study aimed to generate more

high-quality emotional expression data to compensate for the

lack of real data. The study employed a GAN-based model to

generate realistic facial expression images for training emotion

recognition models. The goal was to improve the performance

of emotion recognition models in various scenarios through

data augmentation techniques. Experimental results indicated that

the data generated by GAN significantly improved the accuracy

of emotion recognition models on small sample datasets by

20%. However, the study noted that GAN-generated images still

exhibited unnatural phenomena in some complex expressions,

potentially affecting the accuracy of recognition models. Moreover,

another study combined the Transformer architecture to capture

global emotional features, aiming to improve the accuracy and

stability of emotion recognition (Liang et al., 2023). This study, set

against the backdrop of intelligent monitoring systems, aimed to

provide early warnings of potential dangerous behaviors through

precise emotion recognition. The study employed the Transformer
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model, which uses self-attention mechanisms to analyze and

capture global information from facial expressions in videos.

The objective was to monitor and warn of abnormal behaviors

in real-time by analyzing emotions across consecutive video

frames. Experimental results showed that the Transformer model

outperformed traditional CNN and RNN models in both accuracy

and stability of emotion recognition, especially in handling long

video sequences. However, the study pointed out that the high

computational resource requirements of the Transformer model

might limit its application in resource-constrained environments.

Despite the progress made in emotion recognition and

decision analysis, several challenges remain. One major

issue is the robustness of emotion recognition in noisy and

complex environments. Additionally, the high computational

resource requirements of deep learning models continue to

limit their widespread application in real-time and mobile

environments. Addressing these challenges is crucial for enhancing

the effectiveness and adoption of emotion recognition systems.

Based on the shortcomings of the aforementioned studies, we

propose an enhanced GhostNet with Transformer Encoder (EGT)

network. Themotivation for this newmodel arises from the current

methods’ lack of robustness in handling emotion recognition in

complex environments. Our aim is to overcome this challenge

by integrating efficient feature extraction, a Transformer encoder,

and dual attention mechanisms. The GhostNet feature extraction

module, with its unique structural design, achieves efficient feature

extraction while reducing computational load and memory usage,

significantly enhancing the model’s computational efficiency. The

Transformer encoder is employed to capture global information,

while the dual attention mechanism selectively enhances important

features, providing higher accuracy and robustness in dealing

with complex emotional expressions. The EGT model, through

the integration of efficient feature extraction, the Transformer

encoder, and dual attention mechanisms, introduces significant

technical innovations. It demonstrates outstanding effectiveness in

addressing key issues in current emotion recognition tasks. The

EGT model not only improves the accuracy and robustness of

emotion recognition but also significantly enhances the model’s

efficiency in real-time applications. This provides new methods

and tools for improving intelligent systems that require accurate

emotion recognition in challenging environments.

Based on our in-depth research on emotion recognition and

decision prediction, our main contributions are as follows:

• We propose an enhanced GhostNet with Transformer

Encoder (EGT) model, which effectively improves the

accuracy and robustness of emotion recognition by combining

GhostNet’s efficient feature extraction, the Transformer

encoder’s ability to capture global information, and a dual

attention mechanism for selective feature enhancement.

• We design an innovative dual attention mechanism, including

channel attention and spatial attention, which selectively

enhances important features in both the feature channel

and spatial dimensions. This improves the model’s ability to

recognize emotions in complex environments.

• We validate the superior performance of the EGT model

through extensive experiments on multiple emotion

recognition datasets. These experiments demonstrate

the model’s effectiveness in handling complex emotional

expressions, providing a robust solution for studying emotion

recognition in challenging environments.

The rest of this paper is structured as follows: Section 2

reviews related work in emotion recognition. Section 3 outlines

the methodology of the proposed EGT model. Section 4 describes

the experimental setup and data used. Section 5 discusses the

results and analysis. Finally, Section 6 concludes with a summary

of findings, limitations, and future research directions.

2 Related work

2.1 Application of multimodal data fusion
technology in emotion recognition

In recent years, multimodal data fusion technology has gained

widespread attention in the field of emotion recognition. Emotional

expression is typically multimodal, involving facial expressions,

voice, body movements, and physiological signals (Ezzameli and

Mahersia, 2023). By combining data from different modalities,

it is possible to recognize an individual’s emotional state more

comprehensively and accurately. This multimodal fusion approach

overcomes the limitations of single-modal emotion recognition,

significantly improving performance and robustness (Wang et al.,

2024).

Multimodal data fusion techniques mainly include feature-

level fusion and decision-level fusion. Feature-level fusion involves

combining data features from different modalities during the

feature extraction phase to form a comprehensive feature vector

(Chango et al., 2022). This method requires standardizing features

from each modality to eliminate differences in scale, followed

by feature concatenation or dimensionality reduction techniques

such as Principal Component Analysis (PCA) to create a unified

feature vector for input into a classifier for emotion recognition.

Feature-level fusion can capture the potential relationships between

features from different modalities, which enhances the accuracy

of emotion recognition. For example, in the fusion of facial

expression and speech emotion recognition, CNNs can extract

facial expression features, while LSTMs are used to extract speech

features, and these features are then fused to improve overall

emotion recognition performance (Liu et al., 2023). Decision-level

fusion, on the other hand, involves independently recognizing

emotions from each modality and then combining the recognition

results. Common fusion strategies include weighted voting,

Bayesian methods, and Dempster-Shafer theory (Atmaja et al.,

2022; Wu and Li, 2023). Weighted voting assigns different weights

to the recognition results of each modality and makes a decision

based on these weights. Bayesian methods compute posterior

probabilities for each modality and select the most probable

emotional state. Dempster-Shafer theory combines evidence from

different modalities to obtain more reliable decision results

(Sharma et al., 2023). The advantage of decision-level fusion

lies in its flexibility and robustness, as it effectively combines

recognition results from different modalities to improve overall

emotion recognition performance.
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The use of advanced neural network techniques in multimodal

emotion recognition has achieved considerable advancements.

CNNs and RNNs have shown excellent performance in feature

extraction, capable of automatically extracting and fusing

multimodal features. For example, models that combine CNNs and

LSTMs can handle both image and temporal data simultaneously,

achieving more efficient emotion recognition (Gandhi et al., 2023).

Generative models such as Generative Adversarial Networks

(GANs) and Variational Autoencoders (VAEs) enhance model

generalization and robustness through data augmentation and

feature extraction (Kumar et al., 2022). The introduction of

attention mechanisms helps models more effectively select and

weight features from different modalities during feature-level

fusion. The application of multimodal data fusion technology

extends beyond emotion recognition to other areas of affective

computing, such as emotion prediction and emotional interaction.

In emotion prediction, multimodal fusion technology can combine

historical emotional data with current emotional states to more

accurately predict an individual’s emotional changes (Kumar et al.,

2024; Ning et al., 2024). In emotional interaction, multimodal

fusion technology can achieve more natural and intelligent

human-computer interaction by comprehensively analyzing users’

facial expressions, voice, and body movements.

Despite the significant potential of multimodal data fusion

technology in emotion recognition, several challenges remain in

its application. First, the collection and annotation of multimodal

data are costly, and the quality and temporal synchronization of

data from different modalities may vary (Wang S. et al., 2023).

Second, the high dimensionality and complexity of multimodal

data increase the difficulty of model training, requiring more

efficient feature extraction and fusion algorithms. Additionally, the

high variability in emotional expression among individuals poses

a challenge in handling these differences in multimodal emotion

recognition. In summary, multimodal data fusion technology

significantly enhances the accuracy and robustness of emotion

recognition by combining information from different modalities,

providing strong support for building more intelligent and

humanized affective computing systems. As application demands

and technology continue to evolve, ongoing exploration and

optimization of multimodal data fusion methods and technologies

are necessary to address the challenges in practical applications.

2.2 Applications of self-supervised learning
and transfer learning in emotion
recognition

Self-supervised learning and transfer learning are two critical

technologies in the field of emotion recognition, showing

significant potential in enhancingmodel performance and reducing

data dependency in recent years (Yu et al., 2024).

Self-supervised learning is a method that trains models using

unlabeled data. Unlike traditional supervised learning, which

relies on a large amount of labeled data, self-supervised learning

designs pre-training tasks to learn feature representations from

unlabeled data, which are then used for downstream tasks (Zhao

et al., 2023). In emotion recognition, self-supervised learning can

extract useful features from a large volume of unlabeled facial

expressions, speech, or other emotional data through pre-training

tasks such as rotation prediction, occlusion reconstruction, or

video frame sorting (Wang X. et al., 2023). These pre-training

tasks help models capture the intrinsic structure and patterns of

the data, improving the quality of feature representation. When

these self-supervised pre-trained features are used for emotion

recognition, they can significantly enhance model performance,

especially when labeled data is scarce. Transfer learning, on the

other hand, involves applying knowledge learned from a pre-

trained model on one task to another related task. By pre-training

models on large-scale datasets and then fine-tuning them for

specific emotion recognition tasks, transfer learning can effectively

leverage the knowledge of pre-trained models to improve the

accuracy and robustness of emotion recognition (Chaudhari et al.,

2023; Huang et al., 2023). For example, Convolutional Neural

Networks (CNNs), initially trained on extensive image datasets

like ImageNet, can be further adjusted to meet the particular

requirements of facial expression recognition tasks (Latif et al.,

2022). Similarly, Long Short-Term Memory Networks (LSTM) or

Transformers pre-trained on large-scale speech datasets can be

fine-tuned for speech emotion recognition tasks, thus improving

model performance.

The combination of self-supervised learning and transfer

learning shows significant advantages in emotion recognition.

By pre-training feature representations through self-supervised

learning and then transferring these representations to emotion

recognition tasks for fine-tuning, model performance can be

improved while reducing the need for labeled data (Morais et al.,

2022). For example, in facial expression recognition, self-supervised

learning can be used to learn rotation prediction tasks from a

large amount of unlabeled facial images, and then the learned

features can be transferred to labeled emotion recognition tasks for

fine-tuning, thereby significantly improving recognition accuracy.

Transfer learning can also help address the issue of data distribution

inconsistency in emotion recognition. By pre-training on large-

scale datasets related to the target task, the model can learn

more extensive feature representations that better adapt to the

data distribution of the target emotion recognition task (Li and

Xiao, 2023). Self-supervised learning and transfer learning also

show potential in addressing the issue of individual variability

in emotion recognition. The variability in emotional expression

among individuals is a major challenge in emotion recognition

(Chen et al., 2023). Self-supervised learning can derive generalized

feature representations from extensive collections of unlabeled

data obtained from various individuals, capturing commonalities

between them (Wu et al., 2023). Fine-tuning with transfer learning

on specific individuals’ data can then make the model better

adapt to individual differences, thereby improving the accuracy of

emotion recognition.

Despite the significant potential of self-supervised learning and

transfer learning in emotion recognition, challenges remain. For

instance, the design of pre-training tasks in self-supervised learning

needs careful consideration to ensure that the learned features are

useful for downstream emotion recognition tasks (Rafiei et al.,

2022). Additionally, the fine-tuning process in transfer learning

needs to balance the knowledge of the pre-trained model with the

specific needs of the target task to avoid overfitting or underfitting.
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3 Method

3.1 Overview of our network

This study aims to improve the accuracy and robustness

of emotion recognition and decision prediction by proposing

an enhanced GhostNet model, named Enhanced GhostNet with

Transformer Encoder (EGT). The EGT model consists of three

main components: the GhostNet feature extractor, the Transformer

encoder, and a dual attention mechanism. The GhostNet feature

extractor is used to extract fundamental features from raw

data using lightweight convolution operations, which significantly

reduce computational cost and parameter count while maintaining

high accuracy. Its efficiency and simplicity enable the model

to process large-scale data more quickly, providing high-quality

fundamental features for subsequent modules. The Transformer

encoder enhances the expressiveness of these features by capturing

global context. By simultaneously attending to all parts of the

input sequence, the Transformer encoder offers a comprehensive

understanding of the data’s structure and context, resulting in more

stable and accurate handling of complex emotional data. The dual

attention mechanism, comprising channel attention and spatial

attention, selectively enhances important feature representations.

Channel attention focuses on different channels of the feature map,

while spatial attention addresses different spatial locations within

the feature map. By combining these two attention mechanisms,

the model effectively highlights critical features and suppresses

irrelevant or redundant information, thereby improving overall

recognition and prediction performance.

During the construction of the EGT network, data

preprocessing is performed first, extracting images and sequence

data from the dataset, normalizing image data, and applying

various methods to enhance the training dataset. Next, the

GhostNet feature extractor is built to extract fundamental

features from the preprocessed image data using lightweight

convolution operations, and the extracted feature maps are

input into the Transformer encoder. In the Transformer encoder

section, multiple self-attention heads are utilized to capture

overall contextual information. Subsequently, channel and spatial

attention mechanisms are added to enhance the representation

of critical features. Finally, the enhanced features are input into a

fully connected layer or other classifiers for the final classification

of emotional states, outputting the emotion recognition results.

Figure 1, where each component’s role and interaction are clearly

illustrated, provides a comprehensive view of the model’s structure

and workflow.

The EGT model has significant advantages and innovations

in emotion recognition research. First, the GhostNet feature

extractor, through lightweight convolution operations, significantly

reduces computational cost and parameter count, improving

the model’s processing speed and efficiency, allowing it to

quickly process large-scale data. Second, the Transformer encoder,

with its multi-head self-attention mechanism, effectively captures

global information in the input sequence, enhancing feature

expressiveness and stability. Additionally, the dual attention

mechanism, by combining channel and spatial attention, effectively

enhances the representation of critical features and suppresses

irrelevant or redundant information, improving the accuracy and

robustness of emotion recognition. By integrating GhostNet, the

Transformer encoder, and the dual attention mechanism, the EGT

model performs excellently in emotion recognition and decision

prediction tasks, significantly outperforming traditional methods

and existing models. The EGT model’s proposal not only provides

new technical insights but also makes important contributions

to the fields of emotion recognition and decision prediction. By

introducing efficient feature extraction, global context capture,

and critical feature enhancement mechanisms, the EGT model

can more stably and accurately recognize emotions in complex

natural environments, providing solid theoretical and practical

support for the development of intelligent human-computer

interaction systems.

3.2 GhostNet model

GhostNet is a lightweight convolutional neural network

model whose core concept is to enhance feature representation

capabilities while maintaining model efficiency by generating

more feature maps. The working principle of GhostNet is based

on a two-step feature generation strategy: first, using standard

convolution operations to generate a portion of the feature

maps, and then generating additional feature maps through a

set of inexpensive operations (such as linear transformations) to

capture richer feature representations. This approach not only

reduces computational costs and the number of parameters but

also improves the model’s inference speed and efficiency (Du

et al., 2023). Figure 2 illustrates the structure of the GhostNet

model. Below, we present the key mathematical formulations

underpinning the GhostNet model’s feature generation and

processing steps.

The initial and additional feature maps are then concatenated

to form the final feature maps used in the model:

F = [F1, F2] (1)

where F represents the final feature maps used for further

processing, and [F1, F2] denotes the concatenation of initial and

additional feature maps.

To further reduce the dimensionality and computational cost,

pointwise convolution is applied to the concatenated feature maps:

Fout = σ (Wp ∗ F + bp) (2)

where Fout represents the output feature maps after pointwise

convolution, Wp is the weight matrix of the pointwise

convolutional layer, F is the concatenated feature maps, bp is

the bias, and σ is the activation function.

Finally, a residual connection is employed to combine the input

and the output feature maps to enhance feature representation and

gradient flow:

Fres = Fin + Fout (3)
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FIGURE 1

Overall architecture of the EGT network, illustrating the stages of image preprocessing, feature extraction using GhostNet, Transformer Encoder,

attention mechanisms, and final emotion classification. Facial images are adapted with permission from the RAF-DB dataset (Li et al., https://www.

kaggle.com/datasets/shuvoalok/raf-db-dataset).

FIGURE 2

GhostNet architecture. (a) Ghost module generating additional feature maps through lightweight operations. (b) Macro-architecture of GhostNet,

illustrating the integration of Ghost modules, depthwise convolution, and residual connections.
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where Fres represents the residual feature maps, Fin is the input

featuremaps to the GhostNet module, and Fout is the output feature

maps after pointwise convolution.

In our proposed Enhanced GhostNet with Transformer

Encoder (EGT) model, the GhostNet feature extractor plays a

critical role. By utilizing lightweight convolutional operations,

GhostNet extracts efficient fundamental features from the input

data while reducing computational complexity, providing high-

quality feature inputs for the subsequent Transformer encoder.

Specifically, the efficient feature extraction capability of GhostNet

enables the EGT model to rapidly process large-scale data,

significantly enhancing the overall computational efficiency of the

model. Furthermore, the rich feature maps generated by GhostNet

undergo further processing through the Transformer encoder and

dual attention mechanisms, resulting in more accurate and robust

emotion recognition and decision prediction. This paper aims to

improve the accuracy and robustness of emotion recognition and

decision prediction by enhancing existing models. The GhostNet

model plays a crucial role in this endeavor, as its efficient

feature extraction capability and lightweight architecture effectively

address the challenges of limited computational resources and

insufficient feature representation in emotion recognition. By

combining GhostNet with the Transformer encoder and dual

attention mechanisms, we not only enhance the efficiency

and performance of the model but also achieve significant

improvements in handling emotion data in complex natural

environments, providing essential support for the development of

intelligent human-computer interaction systems.

3.3 Transformer encoder model

The Transformer encoder is a neural network architecture

designed for processing sequential data by capturing dependencies

between elements within the sequence through self-attention

mechanisms. Unlike traditional recurrent neural networks (RNNs),

the Transformer model processes the entire input sequence

simultaneously, enabling it to efficiently capture global context. The

core components of the Transformer encoder include the multi-

head self-attention mechanism and the position-wise feedforward

network. The self-attention mechanism allows the model to assess

the importance of different elements within the sequence, while

multi-head attention enables the model to focus on various parts

of the sequence simultaneously, enhancing its ability to understand

complex data structures. Figure 3 illustrates the structure of the

Transformer encoder.

In our proposed Enhanced GhostNet with Transformer

Encoder (EGT) model, the Transformer encoder plays a

crucial role in improving the accuracy and robustness of

emotion recognition and decision prediction. The specific

contributions and improvements of the Transformer encoder

in our model include: by utilizing self-attention mechanisms,

the Transformer encoder can capture dependencies in the

feature maps extracted by GhostNet. This capability is essential

for understanding the global context of emotion expressions,

as they often involve subtle interactions. The Transformer

encoder optimizes the feature maps by emphasizing important

FIGURE 3

Diagram of the Transformer Encoder architecture.

elements and suppressing irrelevant ones. This selective attention

enhances the quality of features passed on to the subsequent dual

attention mechanisms, thereby improving emotion recognition

performance. The use of multi-head attention allows the

model to focus on different parts of the input simultaneously,

enabling it to capture the diversity of emotion data. This

parallel processing enhances the model’s ability to handle

complex and varied emotional expressions. To detail the working

principle of the Transformer encoder, the following are its

core formulas:

Scaled Dot-Product Attention: The self-attention mechanism

computes the attention scores using the scaled dot-product

attention formula:

Attention(Q,K,V) = softmax

(

QKT

√

dk

)

V (4)

where Q represents the query matrix, K represents the key matrix,

V represents the value matrix, and dk is the dimensionality of

the keys.

Multi-head attention: To allow the model to jointly attend to

information from different representation subspaces, multi-head

attention is used:

MultiHead(Q,K,V) = Concat(head1, head2, . . . , headh)W
O (5)

where headi = Attention(QWQ
i ,KW

K
i ,VW

V
i ) and

W
Q
i ,W

K
i ,W

V
i ,W

O are the weight matrices for the queries,

keys, values, and output, respectively.
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Position-wise feed-forward networks: Each encoder layer

contains a fully connected feed-forward network, applied to each

position separately and identically:

FFN(x) = max(0, xW1 + b1)W2 + b2 (6)

where x is the input,W1 andW2 are weight matrices, and b1 and b2
are biases.

Add & norm: Residual connections and layer normalization are

applied to the outputs of the attention and feed-forward sub-layers:

Output = LayerNorm(x+ Sublayer(x)) (7)

where x is the input to the sub-layer, and Sublayer(x) is the function

implemented by the sub-layer (either multi-head attention or feed-

forward network).

Encoder output: The final output of the Transformer encoder

layer is the result of applying multi-head attention and feed-

forward networks with residual connections and normalization:

EncoderOutput = FFN(MultiHead(Q,K,V)) (8)

where FFN is the feed-forward network, and MultiHead is the

multi-head attention mechanism.

These equations collectively define the functioning of the

Transformer encoder, highlighting its ability to capture complex

dependencies and enhance feature representations through self-

attention and feed-forward networks.

The research theme of this paper is to enhance the accuracy

and robustness of emotion recognition and decision prediction

through advanced neural network architectures. The Transformer

encoder addresses the critical challenges of understanding the

global context of emotional expressions. Its integration into

the EGT model significantly improves the overall performance

of emotion recognition. Specifically, the Transformer encoder

enhances the accuracy of emotion recognition by comprehensively

understanding the input data and increases the model’s robustness

in dealing with emotional changes and environmental noise. In

summary, the Transformer encoder is a crucial component of the

EGT model, providing essential support for our research objectives

by addressing the limitations of traditional methods.

3.4 Dual attention mechanism model

The dual attention mechanism combines channel attention

and spatial attention to selectively enhance important features

and suppress irrelevant or redundant information. The channel

attention mechanism assesses the importance of each channel

by focusing on different channels of the feature map, thereby

enhancing channels with more information. The spatial attention

mechanism, on the other hand, focuses on different spatial

positions of the feature map, highlighting significant spatial areas

by calculating the importance of each position (Guo et al., 2022). By

integrating these two attention mechanisms, the model can more

efficiently identify and emphasize critical information within the

feature map, enhancing both feature representation quality and

recognition performance. Figure 4 depicts the architecture of the

dual attention mechanism.

In our proposed Enhanced GhostNet with Transformer

Encoder (EGT) model, the dual attention mechanism plays

a crucial role. Specifically, the channel attention mechanism

enhances channel features with more information by calculating

the importance weights of each channel in the feature map,

thereby improving the expressive capability of the feature map.

The spatial attention mechanism further enhances the model’s

ability to capture emotional features by weighting each spatial

position in the feature map, highlighting significant spatial areas.

The combination of the dual attention mechanisms enables the

EGT model to more robustly handle emotional data in complex

environments, improving the accuracy and stability of emotion

recognition. Additionally, the dual attention mechanism reduces

the model’s reliance on redundant information, enhancing its

generalization ability and computational efficiency.

To understand the dual attention mechanism, we introduce key

mathematical formulations that describe its operation.

Channel attention mechanism: The channel attention

mechanism focuses on the importance of each channel. It first

applies global average pooling to aggregate spatial information:

Favg =
1

H ×W

H
∑

i=1

W
∑

j=1

F(i, j) (9)

where Favg represents the channel-wise global average pooling

result, F(i, j) is the feature map value at position (i, j), and H and

W are the height and width of the feature map, respectively.

Next, the pooled feature is passed through a shared network to

produce the channel attention map:

Mc = σ (W1(ReLU(W0Favg))) (10)

where Mc is the channel attention map, W0 and W1 are

weight matrices of the shared network, and σ is the sigmoid

activation function.

Spatial attention mechanism: The spatial attention mechanism

focuses on the importance of each spatial position. It applies

both global average pooling and global max pooling along

the channel axis, and concatenates them to form a combined

feature descriptor:

Fspatial = Concat(AvgPool(F),MaxPool(F)) (11)

where Fspatial is the combined spatial feature descriptor, AvgPool

andMaxPool are the global average pooling and global max pooling

operations, respectively.

This combined feature descriptor is then passed

through a convolution layer to generate the spatial

attention map:

Ms = σ (Conv(Fspatial)) (12)

where Ms is the spatial attention map, Conv is the convolution

operation, and σ is the sigmoid activation function.
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FIGURE 4

Diagram of the dual attention mechanism model, illustrating (A) the position attention module, which captures spatial dependencies by reshaping and

transposing feature maps, and (B) the channel attention module, which enhances feature representation by focusing on inter-channel relationships.

Enhanced feature map: The final enhanced feature map is

obtained by applying the channel and spatial attention maps to the

original feature map:

Fenhanced = Mc · (Ms · F) (13)

where Fenhanced represents the enhanced feature map, Mc is the

channel attention map, Ms is the spatial attention map, and F is

the original feature map.

These equations collectively describe the functioning of the

dual attention mechanism, illustrating how it enhances important

features while suppressing irrelevant information.

By introducing the dual attention mechanism, the EGT

model can better capture key information in the input data,

improving the accuracy of emotion recognition and enhancing

the model’s robustness in dealing with emotional changes and

environmental noise. This mechanism provides strong support for

the research on emotion recognition and decision prediction by

enabling more stable and accurate emotion recognition in complex

natural environments.

4 Experiment

4.1 Experimental environment

All experiments were conducted in a high-performance

computational environment equipped with an NVIDIA Tesla V100

GPU with 32 GB memory, an Intel Xeon E5-2698 v4 CPU,

and 128 GB RAM. The system ran on the Ubuntu 18.04 LTS

operating system, providing a stable and efficient platform for

intensive computation. The deep learning models were developed

and trained using the PyTorch framework, which is well-suited

for handling complex neural network architectures. Additional

libraries such as NumPy, SciPy, OpenCV, and scikit-learn were

employed for data manipulation, image processing, and evaluation

tasks. This robust setup facilitated the efficient processing and

analysis of large-scale datasets, ensuring that the experimental

procedures were carried out smoothly and effectively.

4.2 Datasets

To evaluate the effectiveness of our Enhanced GhostNet with

Transformer Encoder (EGT) model, we utilized two benchmark

datasets commonly employed in emotion recognition research:

RAF-DB (Greco et al., 2023) and AffectNet (Hwooi et al.,

2022). Examples of images from these datasets are illustrated in

Figure 5, providing a visual representation of the diverse emotional

expressions captured.

RAF-DB dataset: RAF-DB (Real-world Affective Faces

Database) is a large-scale database for facial expression recognition.

It comprises around 30,000 diverse facial images collected from

the Internet, annotated with seven basic emotions (anger, disgust,

fear, happiness, sadness, surprise, and neutral) as well as twelve

compound emotions. The images in RAF-DB vary widely in

terms of age, gender, ethnicity, and lighting conditions, providing

a comprehensive dataset for testing the robustness of emotion

recognition models in real-world scenarios.

AffectNet dataset: AffectNet is one of the largest databases

for facial expression analysis, consisting of more than 1 million

images manually annotated with eight emotion categories (neutral,

happiness, sadness, surprise, fear, disgust, anger, and contempt) and
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FIGURE 5

Examples of images from the RAF-DB and A�ectNet datasets. Facial images are adapted with permission from the RAF-DB dataset (Li et al., https://

www.kaggle.com/datasets/shuvoalok/raf-db-dataset) and adapted from the A�ectNet dataset (Mollahosseini et al., https://www.kaggle.com/

datasets/thienkhonghoc/a�ectnet/data).

continuous emotion labels (valence and arousal). The images in

AffectNet are also collected from the Internet, representing a wide

range of facial expressions, demographics, and conditions, making

it an ideal dataset for training and evaluating models designed to

handle diverse and complex emotional data.

These datasets provide a comprehensive evaluation framework

for our EGT model, allowing us to assess its performance across

various scenarios and emotional expressions.

4.3 Experimental details

Step1:Data preprocessing

In the experiments, we first preprocessed the data to ensure that

the model could efficiently learn and recognize emotion features.

The specific steps are as follows:

• Data cleaning: To ensure the quality of the data, we conducted

a comprehensive cleaning of the raw data. First, we removed

samples with poor image quality, including blurry, unclear,

or noticeably noisy images. Then, using a combination of

manual annotation and automated tools, we identified and

corrected erroneous emotion labels. Next, we used hash value

computation to remove potential duplicate samples, retaining

only unique image samples. Through these steps, we ensured

high data quality and consistency, laying a solid foundation for

model training and performance improvement.

• Data standardization: To enhance image contrast and ensure

data consistency, we applied histogram equalization to the

images. Histogram equalization adjusts the distribution of

pixel intensities to make them more uniform across the entire

range of intensity levels, thereby enhancing the contrast of

the images. First, we compute the number of pixels for each

intensity level to obtain the histogram. Next, we accumulate

the histogram values to get the cumulative distribution

function (CDF). Finally, we adjust the pixel intensity values

based on the CDF to ensure they are evenly distributed across

the intensity range. The histogram equalization formula is

as follows:

x′ =
CDF(x)− CDFmin

N − CDFmin
× (L− 1) (14)

where x represents the original pixel value, CDF(x) is the

cumulative distribution function of pixel value x, CDFmin

is the minimum non-zero value of the CDF, N is the total

number of pixels, and L is the number of intensity levels.

By applying histogram equalization, we ensure the contrast

and consistency of the input data, laying a solid foundation

for improving the model’s training and performance. Figure 6

shows the comparison and histogram distribution of face

images before and after normalization.

• Data augmentation: To increase the diversity of the training

data and prevent overfitting, we applied a series of data

augmentation techniques. These techniques were chosen

to reflect the diversity of real-world images and enhance

the model’s robustness under different conditions. Specific

methods include random horizontal flipping of images to

simulate changes in facial orientation, random rotation of

images within a ± 10-degree range to account for slight

head tilts, random cropping where a 200×200 pixel region is
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FIGURE 6

Comparison of facial images before and after normalization and their histogram distributions. (a) Original Image and its histogram. (b) Processed

Image after histogram equalization and its histogram. Facial images are adapted with permission from the RAF-DB dataset (Li et al., https://www.

kaggle.com/datasets/shuvoalok/raf-db-dataset).

cropped from the original image and then resized to 224×224

pixels to simulate different zoom levels and focus areas, and

brightness adjustment where the image brightness is randomly

adjusted within a ± 20% range to simulate different lighting

conditions. These data augmentation techniques help create a

more diverse and extensive training set, thereby improving the

model’s generalization ability and performance.

• Data splitting: To evaluate the model’s performance, we

divided the dataset into training, validation, and test sets.

This division ensures a balanced representation of all emotion

categories in each subset. Specifically, the training set

comprises 70% of the total data and is used for model training,

applying the aforementioned data augmentation techniques

to increase its size and diversity. The validation set accounts

for 15% and is used to adjust hyperparameters and prevent

overfitting by monitoring the model’s performance on unseen

data during training. The test set also comprises 15% and is

used for the final evaluation of the model’s performance. This

data division method allows us to comprehensively assess the

model’s actual effectiveness.

Step2:Model training

• Network parameter settings: In this study, we meticulously

set the network parameters to optimize model performance.

Specifically, the learning rate was set to 0.001 and decayed by

a factor of 0.1 every 10 epochs. The model used the Adam

optimizer, with a batch size of 32, and was trained for a total

of 50 epochs. To prevent overfitting, L2 regularization was

applied during training, with a weight decay coefficient of

0.0001. Additionally, the dropout rate was set to 0.5 to further

enhance the model’s generalization ability.

• We designed an enhanced model combining GhostNet and a

Transformer encoder (EGT). The GhostNet part is responsible

for efficiently extracting basic features, significantly reducing

computational cost and the number of parameters through

its lightweight convolution operations. The GhostNet feature

extractor consists of ∼2.1 million parameters, ensuring

both efficiency and performance. The Transformer encoder

part captures global information through a multi-head self-

attention mechanism, enhancing the feature representation

capability. The Transformer encoder includes 3.4 million

parameters, contributing significantly to the model’s

capacity to capture complex emotional features. The dual

attention mechanism, combining channel attention and

spatial attention, selectively enhances important features

and suppresses redundant information. The dual attention

mechanism has 1.2 million parameters, effectively refining

feature selection for improved recognition accuracy. Overall,

the EGT model has ∼6.7 million parameters, striking a

balance between computational complexity and performance.

• Model training process: The model training process includes

data loading, forward propagation, loss computation,

backward propagation, and parameter updating. After data
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augmentation, the training data is fed into the model for

forward propagation. We use the cross-entropy loss function

to measure the difference between the predicted emotion

categories and the true labels. The formula is as follows:

L = −
1

N

N
∑

i=1

C
∑

c=1

yi,c log(ŷi,c) (15)

where N is the number of samples, C is the number of classes,

yi,c is the true label of sample i for class c, and ŷi,c is the

predicted probability of sample i for class c.

Then, the backpropagation algorithm is used to calculate

gradients, and the Adam optimizer updates the model

parameters. At the end of each epoch, the model performance

is evaluated using the validation set, and the learning rate is

adjusted based on the validation set loss. The training process

lasted for 50 epochs, with∼500 batches trained per epoch, and

the model’s performance was finally evaluated on the test set.

By monitoring the loss and accuracy on the validation set, we

ensured that the model did not overfit during training and

achieved good generalization performance.

Step3:Model evaluation

• Model performance metrics: During the model evaluation

process, we used accuracy, Receiver Operating Characteristic

(ROC) curve, and Multiplication Operations (MULs) to

thoroughly assess the model’s performance.

Accuracy measures the overall correctness of the model’s

classifications for all samples and is the most commonly used

classification performance metric. The calculation formula is

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

where TP denotes true positives, TN denotes true negatives,

FP denotes false positives, and FN denotes false negatives.

The ROC curve assesses the classifier’s performance by

graphing the true positive rate (TPR) vs. the false positive rate

(FPR) across different threshold settings. The formulas used to

calculate TPR and FPR are:

TPR =
TP

TP + FN
(17)

FPR =
FP

FP + TN
(18)

Multiplication operations (MULs) measure the

computational complexity of the model, indicating the

number of multiplication operations required for one forward

pass. The calculation formula for MULs is as follows:

MULs =

L
∑

l=1

(2 · Hl ·Wl · Cl · Kl) (19)

where L represents the number of layers, Hl and Wl are the

height and width of the l-th layer, Cl is the number of channels

in the l-th layer, and Kl is the size of the convolution kernel.

These metrics allow us to comprehensively evaluate the

accuracy, discriminative power, and computational efficiency

of the model.

• Cross-validation: To further validate the stability and

generalization ability of the model, we employed the cross-

validation method. In this study, we used k-fold cross-

validation with k set to 5. Specifically, we randomly divided the

training dataset into five subsets. Each time, four subsets were

used for model training, and the remaining one subset was

used for validation. This process was repeated 5 times, with

a different subset used as the validation set each time. Finally,

we calculated the average of all validation results as the final

evaluation result of the model. This method effectively reduces

bias caused by data splitting and provides a more reliable

estimate of the model’s performance, ensuring consistent and

stable performance on unseen data.

Through these evaluation methods, we can

comprehensively measure the model’s performance, ensuring

its reliability and accuracy in practical applications. These

evaluation results not only help us understand the strengths

and weaknesses of the model but also provide important

reference points for further optimization and improvement.

5 Results and discussion

5.1 Performance of models on emotion
recognition

To evaluate the performance of our proposed EGT model,

we conducted extensive experiments on two widely used emotion

recognition datasets, RAF-DB and AffectNet. The accuracy of

different lightweight models, including our proposed EGT model,

was assessed to determine their effectiveness in recognizing

various emotions.

The performance of different lightweight models on the

RAF-DB dataset, as shown in Table 1, highlights the superior

capabilities of the Proposed EGT Model. Achieving the highest

overall accuracy at 89.3%, the EGTModel significantly outperforms

other models such as MobileNetV2, ShuffleNetV2, and GhostNet.

This model excels in recognizing specific emotions, with notably

high accuracy rates for happy (92.7%), surprise (91.5%), and sad

(88.3%). These results indicate that the EGT Model’s architecture,

which combines GhostNet’s efficient feature extraction with the

Transformer Encoder’s ability to capture global information and

enhance feature representation, provides a significant advantage

in accurately interpreting facial expressions. The dual attention

mechanism further enhances this capability by focusing on

the most relevant features, reducing the influence of noise

and irrelevant information. This robust performance across all

emotion categories suggests that the EGT Model can reliably

handle diverse and complex emotional expressions in real-

world scenarios.

The results on the AffectNet dataset, presented in Table 2,

further confirm the superior performance of the Proposed
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TABLE 1 Emotion recognition accuracy of di�erent lightweight models on RAF-DB dataset.

Model Overall
(%)

Angry
(%)

Disgust
(%)

Fear (%) Happy
(%)

Sad (%) Surprise
(%)

Neutral
(%)

MobileNetV2 (Indraswari

et al., 2022)

85.4 83.2 81.5 80.3 90.1 84.7 88.9 83.6

ShuffleNetV2 (Chen et al.,

2022)

83.8 82.1 80.2 78.5 88.7 83.3 87.4 81.9

SqueezeNet (Ullah et al., 2022) 82.5 80.5 78.9 77.3 87.2 81.8 85.6 80.4

GhostNet (Chi et al., 2023) 86.7 84.3 82.6 81.2 91.0 85.8 89.5 84.5

EfficientNet-B0 (Goutham

et al., 2022)

87.1 84.8 83.1 81.7 91.3 86.1 89.8 85.0

EGT Model 89.3 87.2 85.3 83.6 92.7 88.3 91.5 86.9

TABLE 2 Emotion recognition accuracy of di�erent lightweight models on A�ectNet dataset.

Model Overall
(%)

Angry
(%)

Disgust
(%)

Fear (%) Happy
(%)

Sad (%) Surprise
(%)

Neutral
(%)

MobileNetV2 82.1 79.8 78.2 76.9 87.3 81.2 85.5 80.6

ShuffleNetV2 80.5 78.1 76.7 75.4 85.9 79.6 83.9 79.1

SqueezeNet 79.3 76.5 75.0 73.8 84.6 78.4 82.5 77.9

GhostNet 83.2 80.9 79.4 78.1 88.1 82.0 86.3 81.5

EfficientNet-B0 84.0 81.7 80.3 78.9 88.9 82.8 87.0 82.3

EGT Model 85.7 83.5 82.1 80.6 90.4 84.3 88.5 83.7

EGT Model, which achieves an overall accuracy of 85.7%.

This model demonstrates remarkable accuracy in recognizing

happy (90.4%), angry (83.5%), and sad (84.3%). While other

models like EfficientNet-B0 and GhostNet also perform well,

the EGT Model maintains the highest accuracy across most

emotion categories, showcasing its robustness and generalization

capability. The consistent high performance on both RAF-DB

and AffectNet datasets underscores the effectiveness of the EGT

Model’s architecture in handling varied and complex emotional

data. The dual attention mechanism’s role in enhancing critical

feature representation and the Transformer Encoder’s ability to

understand global context contribute to the model’s exceptional

performance. The results indicate that the EGT Model is highly

applicable for practical use in emotion recognition systems, offering

reliable and accurate emotion detection across various datasets

and scenarios.

Table 3 shows that the EGT model outperforms other

lightweight models in key metrics such as F1-Score, Precision,

and Recall on the RAF-DB and AffectNet datasets, demonstrating

its superior performance in emotion recognition tasks. In the

RAF-DB dataset, the EGT model achieved an F1-Score of 88.5%,

while Precision and Recall were 89.0 and 88.0%, respectively.

This indicates that the EGT model not only accurately recognizes

emotions but also effectively handles the identification of positive

samples, maintaining high precision and recall. Similarly, in the

AffectNet dataset, the F1-Score, Precision, and Recall of the

EGT model were 85.0, 85.5, and 84.5%, respectively, showing a

significant improvement over other models. These results further

demonstrate the robustness and reliability of the EGT model in

emotion recognition. Compared to other models, the EGT model

achieves a better balance between Precision and Recall, reducing

both false positives and false negatives while maintaining high

recognition rates for different emotional states. This makes the

EGT model particularly advantageous for applications in human-

computer interaction and mental health monitoring, where reliable

emotion detection is crucial. These experimental results illustrate

the consistent superior performance of the EGT model across both

datasets, further validating its practicality and generalizability in the

field of emotion recognition.

Table 4 shows the comparison of different lightweight models

in terms of training speed and multiply-accumulate operations

(MULs) on the RAF-DB and AffectNet datasets. The results

indicate that the EGT model has the fastest training speed on

both datasets, with 0.08 and 0.09 s per iteration, respectively,

and also the lowest MULs, at 1.1 and 1.12 billion operations,

respectively. This demonstrates that the EGT model is not only

superior in performance but also highly efficient in computation.

In comparison, EfficientNet-B0 also exhibits relatively fast training

speeds of 0.09 and 0.10 s per iteration on the RAF-DB and

AffectNet datasets, respectively. However, it has higher MULs, at

1.4 and 1.41 billion operations. While EfficientNet-B0 performs

well in terms of training speed, its higher computational demand

may limit its applicability in resource-constrained environments.

Additionally, ShuffleNetV2 shows good computational efficiency

with training speeds of 0.10 and 0.11 s per iteration and MULs of

1.2 and 1.21 billion operations on the two datasets, respectively.

However, its training speed is slightly lower than that of the EGT

model. SqueezeNet and GhostNet exhibit moderate performance

in terms of training speed and MULs. SqueezeNet has training

speeds of 0.14 and 0.15 s per iteration and MULs of 1.25 and
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TABLE 3 Performance comparison of di�erent models on RAF-DB and A�ectNet datasets.

Model RAF-DB A�ectNet

Accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

Accuracy
(%)

F1-score
(%)

Precision
(%)

Recall
(%)

MobileNetV2 85.4 84.7 85.1 83.9 82.1 81.5 82.0 81.0

ShuffleNetV2 83.8 82.9 83.5 82.4 80.5 79.8 80.2 79.4

SqueezeNet 82.5 81.6 82.0 81.0 79.3 78.7 79.1 78.4

GhostNet 86.7 85.9 86.5 85.4 83.2 82.5 82.9 82.1

EfficientNet-B0 87.1 86.3 86.8 85.9 84.0 83.3 83.8 82.7

EGT Model 89.3 88.5 89.0 88.0 85.7 85.0 85.5 84.5

TABLE 4 Comparison of lightweight models on RAF-DB and A�ectNet datasets in terms of training speed (s/iter) and MULs (B).

Model RAF-DB dataset A�ectNet dataset

Training speed
(s/iter)

MULs (B) Training speed
(s/iter)

MULs (B)

MobileNetV2 0.12 1.3 0.13 1.32

ShuffleNetV2 0.10 1.2 0.11 1.21

SqueezeNet 0.14 1.25 0.15 1.26

GhostNet 0.11 1.28 0.12 1.29

EfficientNet-B0 0.09 1.4 0.10 1.41

EGT Model 0.08 1.1 0.09 1.12

1.26 billion operations, while GhostNet shows training speeds

of 0.11 and 0.12 s per iteration and MULs of 1.28 and 1.29

billion operations. Although these models demonstrate balanced

computational demands, their performance is somewhat inferior

compared to the EGT model.

Overall, the EGT model stands out for its high performance

and efficiency in emotion recognition tasks. Its exceptional

performance on both datasets highlights its advantages in

handling complex emotional data, particularly in terms of training

speed and computational efficiency. These results indicate that

the EGT model significantly reduces computational resource

consumption while maintaining high accuracy, enhancing the

feasibility and widespread application of emotion recognition

systems in practical scenarios.

5.2 ROC curve analysis

Figure 7 presents the ROC curves of six different models

in the classification task, namely SqueezeNet, ShuffleNetV2,

MobileNetV2, GhostNet, EfficientNet-B0, and our proposed EGT

Model. As illustrated in the figure, the EGT Model achieves the

highest AUC value of 0.912, indicating its superior classification

performance. Following the EGT Model, EfficientNet-B0 and

GhostNet achieve AUC values of 0.853 and 0.823, respectively.

The remaining models’ AUC values are 0.801 for MobileNetV2,

0.782 for ShuffleNetV2, and 0.751 for SqueezeNet. These results

suggest that our proposed EGT Model, which integrates efficient

feature extraction from GhostNet, global context capture from the

Transformer encoder, and dual attention mechanisms, significantly

enhances the accuracy and robustness of emotion recognition.

Specifically, the EGT Model demonstrates superior capability

in handling complex emotional data, capturing critical features

while mitigating the impact of noise and irrelevant information.

Compared to the other models, the EGT Model shows stronger

emotion recognition ability in real-world applications, further

validating its effectiveness in emotion recognition and decision

prediction tasks.

5.3 Confusion matrices analysis

To comprehensively assess the performance of our proposed

EGT model, we generated confusion matrices for the RAF-DB and

AffectNet datasets, as shown in Figure 8. These matrices provide

a detailed visualization of the model’s accuracy in predicting each

emotion category.

The confusion matrix for the RAF-DB dataset reveals that

the EGT model performs exceptionally well in recognizing

“Happy” (0.66) and “Surprise” (0.26) emotions, with high true

positive rates in these categories. However, there is some

misclassification between “Disgust” (0.31) and “Anger” (0.68),

indicating areas for further refinement. Overall, the model shows

robustness in handling a diverse set of emotions. For the

AffectNet dataset, the EGT model achieves high accuracy in

recognizing “Happy” (0.69), “Angry” (0.72), and “Sad” (0.54)

emotions. There is some confusion between “Fear” (0.40) and

“Surprise” (0.36), suggesting these emotions may share similar

Frontiers in Psychology 14 frontiersin.org

https://doi.org/10.3389/fpsyg.2024.1459446
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Sun et al. 10.3389/fpsyg.2024.1459446

FIGURE 7

ROC curves for six di�erent models used in the classification task on the A�ectNet dataset: SqueezeNet, Shu	eNetV2, MobileNetV2, GhostNet,

E�cientNet-B0, and the proposed EGT model.

FIGURE 8

Confusion matrices for RAF-DB and A�ectNet datasets showing the EGT model’s performance in recognizing di�erent emotions.

features. Despite these challenges, the EGT model consistently

achieves high overall accuracy, reinforcing its effectiveness in

real-world tasks.

These confusion matrices highlight the EGT model’s strengths

and areas for improvement, demonstrating its reliable performance

in diverse emotion recognition scenarios.

5.4 Ablation experiment

The results of the ablation study are summarized in Table 5,

which highlights the significance of each component in the

Enhanced GhostNet with Transformer Encoder (EGT) model.

By systematically adding or removing key components such as
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TABLE 5 Ablation study results on RAF-DB and A�ectNet datasets.

GhostNet Transformer
encoder

Dual attention RAF-DB accuracy (%) A�ectNet accuracy (%)

X ✗ ✗ 85.7 82.3

X X ✗ 87.1 83.5

X ✗ X 86.8 83.0

✗ X X 88.2 84.2

X X X 89.3 85.7

the GhostNet feature extractor, the Transformer encoder, and

the dual attention mechanism, we were able to analyze their

individual and combined contributions to the overall performance

of the model. Starting with the baseline model, which uses

only the GhostNet feature extractor, we observed an accuracy of

85.7% on RAF-DB and 82.3% on AffectNet. This establishes the

foundational effectiveness of the GhostNet in extracting efficient

features for emotion recognition. Adding the Transformer encoder

to the GhostNet significantly improved the accuracy to 87.1% on

RAF-DB and 83.5% on AffectNet. This improvement highlights

the importance of capturing global information and enhancing

feature representation, which the Transformer encoder excels at.

Introducing the dual attention mechanism to the GhostNet feature

extractor further improved accuracy to 86.8% on RAF-DB and

83.0% on AffectNet. The dual attention mechanism enhances the

model’s ability to focus on the most relevant features, thereby

improving recognition performance. The combination of the

Transformer encoder and the dual attention mechanism, without

the GhostNet, achieved accuracies of 88.2% on RAF-DB and 84.2%

on AffectNet. This result shows the significant contribution of both

the Transformer encoder and the dual attention mechanism in

handling complex emotional data. Finally, the full model, which

integrates the GhostNet, Transformer encoder, and dual attention

mechanism, achieved the highest accuracy of 89.3% on RAF-DB

and 85.7% on AffectNet. This confirms that the full integration

of these components provides the best performance in emotion

recognition. The results clearly demonstrate that each component

of the EGT model contributes to its overall performance, with

the full integration yielding the best results. This comprehensive

analysis validates the design of the EGT model and its effectiveness

in improving emotion recognition accuracy and robustness across

diverse datasets.

5.5 Emotion recognition example graph
analysis

As shown in Figure 9, the spatial attention mechanism

effectively focuses on key facial regions, such as the eyes, mouth,

and eyebrows, for recognizing different emotions. For each

emotion, such as anger, surprise, and happiness, the bright areas

in the heatmaps represent the parts where the model places the

highest attention. These visualizations demonstrate that the spatial

attention mechanism is able to capture significant features of

the face under different emotional states, indicating its selectivity

and robustness in emotion recognition. These heatmaps not

only provide insight into how the model works internally but

also illustrate how the model efficiently focuses on and extracts

critical information during complex emotion classification tasks,

leading to improved classification accuracy. This visualization

approach adds interpretability to the model, helping us better

understand the role of spatial attention in emotion recognition

and confirming that the attention mechanism enhances the model’s

accuracy and robustness by emphasizing important features in

challenging environments.

Figure 10 illustrates the emotion recognition results using the

EGT model on samples from the RAF-DB and AffectNet datasets.

The images are annotated with confidence values, prediction

distribution, semantic distance, and voluntary annotations. The

results showcase the model’s proficiency in accurately classifying

emotions with a high degree of confidence. The prediction

distribution graphs show the model’s likelihood estimates for each

emotion category, while the semantic distance graphs indicate the

proximity of the predicted emotions to the ground truth. Voluntary

annotation graphs further validate the model’s predictions against

human annotations. Overall, the EGT model exhibits robust

performance across diverse emotional expressions, highlighting its

effectiveness in real-world applications.

Figure 11 demonstrates the performance of the Enhanced

GhostNet with Transformer Encoder (EGT) model on the RAF-

DB dataset for emotion recognition. Each image is annotated

with a confidence value, indicating the model’s certainty in its

classification. The EGT model shows high accuracy and confidence

across various emotions. Notably, the model excels in recognizing

“Happy" (confidence value: 0.915), “Surprise" (confidence value:

0.868), and “Sad” (confidence value: 0.905), indicating a strong

ability to accurately classify these emotions. Furthermore, even

for more challenging emotions such as “Disgust” (confidence

value: 0.881) and “Anger” (confidence value: 0.868), the model

maintains high confidence and accuracy. These results highlight

the robustness and effectiveness of the EGT model in emotion

recognition tasks, showcasing its capability to handle diverse

emotional expressions and complex natural environments with a

high degree of reliability.

6 Conclusion

In this study, we proposed and evaluated an enhanced

GhostNet with Transformer Encoder (EGT) network for emotion

recognition and decision prediction.We conducted comprehensive
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FIGURE 9

Visualization of attention heatmaps for di�erent emotions. Facial images are adapted with permission from the RAF-DB dataset (Li et al., https://www.

kaggle.com/datasets/shuvoalok/raf-db-dataset) and adapted from the A�ectNet dataset (Mollahosseini et al., https://www.kaggle.com/datasets/

thienkhonghoc/a�ectnet/data).

FIGURE 10

Example images with emotion recognition results using the EGT model, including prediction distribution, semantic distance, and voluntary

annotation for samples from the RAF-DB and A�ectNet datasets. Facial images are adapted with permission from the RAF-DB dataset (Li et al.,

https://www.kaggle.com/datasets/shuvoalok/raf-db-dataset) and adapted from the A�ectNet dataset (Mollahosseini et al., https://www.kaggle.com/

datasets/thienkhonghoc/a�ectnet/data).

experiments on two widely-used benchmark datasets, RAF-DB

and AffectNet, to rigorously evaluate the model’s performance.

The results demonstrated that the EGT model significantly

outperforms existing lightweight models, resulting in improved

accuracy and resilience in recognizing a range of emotional

expressions. The model integrates GhostNet’s efficient feature

extraction, the Transformer encoder’s capability to enhance feature

representation and global information capture, and a dual attention

mechanism to selectively enhance critical features, thereby

providing a comprehensive solution for emotion recognition tasks.

Visualization analyses, including confidence values, prediction

distribution, semantic distance, and voluntary annotations, further

validated the model’s capability to handle complex emotional

data effectively.

Despite its impressive performance, the EGT model has certain

limitations. First, the computational complexity of the Transformer

encoder and the dual attention mechanism, while beneficial for

capturing detailed feature representations, imposes a significant

computational burden. This makes real-time applications on

resource-constrained devices challenging. Optimization strategies

are needed to reduce the model’s computational requirements

without compromising accuracy. Second, the model’s performance,

although superior to existing methods, still shows room for

improvement in recognizing subtle and ambiguous emotional

expressions. These limitations are particularly evident in noisy and

low-resolution images, where the model occasionally misclassifies

similar emotional states, such as distinguishing between “disgust”

and “anger.”
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FIGURE 11

Example images with emotion recognition results using the EGT model, annotated with confidence values indicating the model’s certainty in its

classification. Facial images are adapted with permission from the RAF-DB dataset (Li et al., https://www.kaggle.com/datasets/shuvoalok/raf-db-

dataset) and adapted from the A�ectNet dataset (Mollahosseini et al., https://www.kaggle.com/datasets/thienkhonghoc/a�ectnet/data).

Looking forward, future work will address these limitations

to enhance the model’s applicability and performance. One

direction is to explore model compression techniques, such

as quantization and pruning, to reduce computational load

for deployment on mobile and edge devices, making the

model more suitable for real-time applications in low-

resource environments. Additionally, incorporating more

diverse training datasets, including those that cover a wider

range of demographic characteristics and environmental

conditions, could improve the model’s generalization to

various emotional expressions and scenarios. Enhancing the

interpretability of the model will also be a key focus, such as

employing attention map visualization techniques to better

understand how specific features contribute to the model’s

predictions, thereby improving transparency and user trust.

Furthermore, we plan to conduct a comparative analysis with

non-lightweight models to provide deeper insights into the

trade-offs between model performance and computational

complexity, which will further validate the strengths and

limitations of the proposed approach. This work has practical

significance in enhancing human-computer interaction and

mental health monitoring, where accurate emotion recognition

is crucial.

In summary, the proposed EGT model has demonstrated

improvements in emotion recognition tasks, validated

through rigorous experiments and comprehensive analyses.

Addressing its current limitations, future enhancements and

integrations could further improve the model, advancing

the development of intelligent systems that can understand

and respond to human emotions with enhanced accuracy

and reliability.
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